1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
|
// SPDX-License-Identifier: GPL-2.0
/*
* Support for Realtek hardware ECC engine in RTL93xx SoCs
*/
#include <linux/bitfield.h>
#include <linux/dma-mapping.h>
#include <linux/mtd/nand.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
/*
* The Realtek ECC engine has two operation modes.
*
* - BCH6 : Generate 10 ECC bytes from 512 data bytes plus 6 free bytes
* - BCH12 : Generate 20 ECC bytes from 512 data bytes plus 6 free bytes
*
* It can run for arbitrary NAND flash chips with different block and OOB sizes. Currently there
* are only two known devices in the wild that have NAND flash and make use of this ECC engine
* (Linksys LGS328C & LGS352C). To keep compatibility with vendor firmware, new modes can only
* be added when new data layouts have been analyzed. For now allow BCH6 on flash with 2048 byte
* blocks and 64 bytes oob.
*
* This driver aligns with kernel ECC naming conventions. Neverthless a short notice on the
* Realtek naming conventions for the different structures in the OOB area.
*
* - BBI : Bad block indicator. The first two bytes of OOB. Protected by ECC!
* - tag : 6 User/free bytes. First tag "contains" 2 bytes BBI. Protected by ECC!
* - syndrome : ECC/parity bytes
*
* Altogether this gives currently the following block layout.
*
* +------+------+------+------+-----+------+------+------+------+-----+-----+-----+-----+
* | 512 | 512 | 512 | 512 | 2 | 4 | 6 | 6 | 6 | 10 | 10 | 10 | 10 |
* +------+------+------+------+-----+------+------+------+------+-----+-----+-----+-----+
* | data | data | data | data | BBI | free | free | free | free | ECC | ECC | ECC | ECC |
* +------+------+------+------+-----+------+------+------+------+-----+-----+-----+-----+
*/
#define RTL_ECC_ALLOWED_PAGE_SIZE 2048
#define RTL_ECC_ALLOWED_OOB_SIZE 64
#define RTL_ECC_ALLOWED_STRENGTH 6
#define RTL_ECC_BLOCK_SIZE 512
#define RTL_ECC_FREE_SIZE 6
#define RTL_ECC_PARITY_SIZE_BCH6 10
#define RTL_ECC_PARITY_SIZE_BCH12 20
/*
* The engine is fed with two DMA regions. One for data (always 512 bytes) and one for free bytes
* and parity (either 16 bytes for BCH6 or 26 bytes for BCH12). Start and length of each must be
* aligned to a multiple of 4.
*/
#define RTL_ECC_DMA_FREE_PARITY_SIZE ALIGN(RTL_ECC_FREE_SIZE + RTL_ECC_PARITY_SIZE_BCH12, 4)
#define RTL_ECC_DMA_SIZE (RTL_ECC_BLOCK_SIZE + RTL_ECC_DMA_FREE_PARITY_SIZE)
#define RTL_ECC_CFG 0x00
#define RTL_ECC_BCH6 0
#define RTL_ECC_BCH12 BIT(28)
#define RTL_ECC_DMA_PRECISE BIT(12)
#define RTL_ECC_BURST_128 GENMASK(1, 0)
#define RTL_ECC_DMA_TRIGGER 0x08
#define RTL_ECC_OP_DECODE 0
#define RTL_ECC_OP_ENCODE BIT(0)
#define RTL_ECC_DMA_START 0x0c
#define RTL_ECC_DMA_TAG 0x10
#define RTL_ECC_STATUS 0x14
#define RTL_ECC_CORR_COUNT GENMASK(19, 12)
#define RTL_ECC_RESULT BIT(8)
#define RTL_ECC_ALL_ONE BIT(4)
#define RTL_ECC_OP_STATUS BIT(0)
struct rtl_ecc_engine {
struct device *dev;
struct nand_ecc_engine engine;
struct mutex lock;
char *buf;
dma_addr_t buf_dma;
struct regmap *regmap;
};
struct rtl_ecc_ctx {
struct rtl_ecc_engine * rtlc;
struct nand_ecc_req_tweak_ctx req_ctx;
int steps;
int bch_mode;
int strength;
int parity_size;
};
static const struct regmap_config rtl_ecc_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
};
static inline void *nand_to_ctx(struct nand_device *nand)
{
return nand->ecc.ctx.priv;
}
static inline struct rtl_ecc_engine *nand_to_rtlc(struct nand_device *nand)
{
struct nand_ecc_engine *eng = nand->ecc.engine;
return container_of(eng, struct rtl_ecc_engine, engine);
}
static int rtl_ecc_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
struct rtl_ecc_ctx *ctx = nand_to_ctx(nand);
if (section < 0 || section >= ctx->steps)
return -ERANGE;
oobregion->offset = ctx->steps * RTL_ECC_FREE_SIZE + section * ctx->parity_size;
oobregion->length = ctx->parity_size;
return 0;
}
static int rtl_ecc_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
struct rtl_ecc_ctx *ctx = nand_to_ctx(nand);
int bbm;
if (section < 0 || section >= ctx->steps)
return -ERANGE;
/* reserve 2 BBM bytes in first block */
bbm = section ? 0 : 2;
oobregion->offset = section * RTL_ECC_FREE_SIZE + bbm;
oobregion->length = RTL_ECC_FREE_SIZE - bbm;
return 0;
}
static const struct mtd_ooblayout_ops rtl_ecc_ooblayout_ops = {
.ecc = rtl_ecc_ooblayout_ecc,
.free = rtl_ecc_ooblayout_free,
};
static void rtl_ecc_kick_engine(struct rtl_ecc_ctx *ctx, int operation)
{
struct rtl_ecc_engine *rtlc = ctx->rtlc;
regmap_write(rtlc->regmap, RTL_ECC_CFG,
ctx->bch_mode | RTL_ECC_BURST_128 | RTL_ECC_DMA_PRECISE);
regmap_write(rtlc->regmap, RTL_ECC_DMA_START, rtlc->buf_dma);
regmap_write(rtlc->regmap, RTL_ECC_DMA_TAG, rtlc->buf_dma + RTL_ECC_BLOCK_SIZE);
regmap_write(rtlc->regmap, RTL_ECC_DMA_TRIGGER, operation);
}
static int rtl_ecc_wait_for_engine(struct rtl_ecc_ctx *ctx)
{
struct rtl_ecc_engine *rtlc = ctx->rtlc;
int ret, status, bitflips;
bool all_one;
/*
* The ECC engine needs 6-8 us to encode/decode a BCH6 syndrome for 512 bytes of data
* and 6 free bytes. In case the NAND area has been erased and all data and oob is
* set to 0xff, decoding takes 30us (reason unknown). Although the engine can trigger
* interrupts when finished, use active polling for now. 12 us maximum wait time has
* proven to be a good tradeoff between performance and overhead.
*/
ret = regmap_read_poll_timeout(rtlc->regmap, RTL_ECC_STATUS, status,
!(status & RTL_ECC_OP_STATUS), 12, 1000000);
if (ret)
return ret;
ret = FIELD_GET(RTL_ECC_RESULT, status);
all_one = FIELD_GET(RTL_ECC_ALL_ONE, status);
bitflips = FIELD_GET(RTL_ECC_CORR_COUNT, status);
/* For erased blocks (all bits one) error status can be ignored */
if (all_one)
ret = 0;
return ret ? -EBADMSG : bitflips;
}
static int rtl_ecc_run_engine(struct rtl_ecc_ctx *ctx, char *data, char *free,
char *parity, int operation)
{
struct rtl_ecc_engine *rtlc = ctx->rtlc;
char *buf_parity = rtlc->buf + RTL_ECC_BLOCK_SIZE + RTL_ECC_FREE_SIZE;
char *buf_free = rtlc->buf + RTL_ECC_BLOCK_SIZE;
char *buf_data = rtlc->buf;
int ret;
mutex_lock(&rtlc->lock);
memcpy(buf_data, data, RTL_ECC_BLOCK_SIZE);
memcpy(buf_free, free, RTL_ECC_FREE_SIZE);
memcpy(buf_parity, parity, ctx->parity_size);
dma_sync_single_for_device(rtlc->dev, rtlc->buf_dma, RTL_ECC_DMA_SIZE, DMA_TO_DEVICE);
rtl_ecc_kick_engine(ctx, operation);
ret = rtl_ecc_wait_for_engine(ctx);
dma_sync_single_for_cpu(rtlc->dev, rtlc->buf_dma, RTL_ECC_DMA_SIZE, DMA_FROM_DEVICE);
if (ret >= 0) {
memcpy(data, buf_data, RTL_ECC_BLOCK_SIZE);
memcpy(free, buf_free, RTL_ECC_FREE_SIZE);
memcpy(parity, buf_parity, ctx->parity_size);
}
mutex_unlock(&rtlc->lock);
return ret;
}
static int rtl_ecc_prepare_io_req(struct nand_device *nand, struct nand_page_io_req *req)
{
struct rtl_ecc_engine *rtlc = nand_to_rtlc(nand);
struct rtl_ecc_ctx *ctx = nand_to_ctx(nand);
char *data, *free, *parity;
int ret = 0;
if (req->mode == MTD_OPS_RAW)
return 0;
nand_ecc_tweak_req(&ctx->req_ctx, req);
if (req->type == NAND_PAGE_READ)
return 0;
free = req->oobbuf.in;
data = req->databuf.in;
parity = req->oobbuf.in + ctx->steps * RTL_ECC_FREE_SIZE;
for (int i = 0; i < ctx->steps; i++) {
ret |= rtl_ecc_run_engine(ctx, data, free, parity, RTL_ECC_OP_ENCODE);
free += RTL_ECC_FREE_SIZE;
data += RTL_ECC_BLOCK_SIZE;
parity += ctx->parity_size;
}
if (unlikely(ret))
dev_dbg(rtlc->dev, "ECC calculation failed\n");
return ret ? -EBADMSG : 0;
}
static int rtl_ecc_finish_io_req(struct nand_device *nand, struct nand_page_io_req *req)
{
struct rtl_ecc_engine *rtlc = nand_to_rtlc(nand);
struct rtl_ecc_ctx *ctx = nand_to_ctx(nand);
struct mtd_info *mtd = nanddev_to_mtd(nand);
char *data, *free, *parity;
bool failure = false;
int bitflips = 0;
if (req->mode == MTD_OPS_RAW)
return 0;
if (req->type == NAND_PAGE_WRITE) {
nand_ecc_restore_req(&ctx->req_ctx, req);
return 0;
}
free = req->oobbuf.in;
data = req->databuf.in;
parity = req->oobbuf.in + ctx->steps * RTL_ECC_FREE_SIZE;
for (int i = 0 ; i < ctx->steps; i++) {
int ret = rtl_ecc_run_engine(ctx, data, free, parity, RTL_ECC_OP_DECODE);
if (unlikely(ret < 0))
/* ECC totally fails for bitflips in erased blocks */
ret = nand_check_erased_ecc_chunk(data, RTL_ECC_BLOCK_SIZE,
parity, ctx->parity_size,
free, RTL_ECC_FREE_SIZE,
ctx->strength);
if (unlikely(ret < 0)) {
failure = true;
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += ret;
bitflips = max_t(unsigned int, bitflips, ret);
}
free += RTL_ECC_FREE_SIZE;
data += RTL_ECC_BLOCK_SIZE;
parity += ctx->parity_size;
}
nand_ecc_restore_req(&ctx->req_ctx, req);
if (unlikely(failure))
dev_dbg(rtlc->dev, "ECC correction failed\n");
else if (unlikely(bitflips > 2))
dev_dbg(rtlc->dev, "%d bitflips detected\n", bitflips);
return failure ? -EBADMSG : bitflips;
}
static int rtl_ecc_check_support(struct nand_device *nand)
{
struct mtd_info *mtd = nanddev_to_mtd(nand);
struct device *dev = nand->ecc.engine->dev;
if (mtd->oobsize != RTL_ECC_ALLOWED_OOB_SIZE ||
mtd->writesize != RTL_ECC_ALLOWED_PAGE_SIZE) {
dev_err(dev, "only flash geometry data=%d, oob=%d supported\n",
RTL_ECC_ALLOWED_PAGE_SIZE, RTL_ECC_ALLOWED_OOB_SIZE);
return -EINVAL;
}
if (nand->ecc.user_conf.algo != NAND_ECC_ALGO_BCH ||
nand->ecc.user_conf.strength != RTL_ECC_ALLOWED_STRENGTH ||
nand->ecc.user_conf.placement != NAND_ECC_PLACEMENT_OOB ||
nand->ecc.user_conf.step_size != RTL_ECC_BLOCK_SIZE) {
dev_err(dev, "only algo=bch, strength=%d, placement=oob, step=%d supported\n",
RTL_ECC_ALLOWED_STRENGTH, RTL_ECC_BLOCK_SIZE);
return -EINVAL;
}
return 0;
}
static int rtl_ecc_init_ctx(struct nand_device *nand)
{
struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
struct rtl_ecc_engine *rtlc = nand_to_rtlc(nand);
struct mtd_info *mtd = nanddev_to_mtd(nand);
int strength = nand->ecc.user_conf.strength;
struct device *dev = nand->ecc.engine->dev;
struct rtl_ecc_ctx *ctx;
int ret;
ret = rtl_ecc_check_support(nand);
if (ret)
return ret;
ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
nand->ecc.ctx.priv = ctx;
mtd_set_ooblayout(mtd, &rtl_ecc_ooblayout_ops);
conf->algo = NAND_ECC_ALGO_BCH;
conf->strength = strength;
conf->step_size = RTL_ECC_BLOCK_SIZE;
conf->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
ctx->rtlc = rtlc;
ctx->steps = mtd->writesize / RTL_ECC_BLOCK_SIZE;
ctx->strength = strength;
ctx->bch_mode = strength == 6 ? RTL_ECC_BCH6 : RTL_ECC_BCH12;
ctx->parity_size = strength == 6 ? RTL_ECC_PARITY_SIZE_BCH6 : RTL_ECC_PARITY_SIZE_BCH12;
ret = nand_ecc_init_req_tweaking(&ctx->req_ctx, nand);
if (ret)
return ret;
dev_dbg(dev, "using bch%d with geometry data=%dx%d, free=%dx6, parity=%dx%d",
conf->strength, ctx->steps, conf->step_size,
ctx->steps, ctx->steps, ctx->parity_size);
return 0;
}
static void rtl_ecc_cleanup_ctx(struct nand_device *nand)
{
struct rtl_ecc_ctx *ctx = nand_to_ctx(nand);
if (ctx)
nand_ecc_cleanup_req_tweaking(&ctx->req_ctx);
}
static struct nand_ecc_engine_ops rtl_ecc_engine_ops = {
.init_ctx = rtl_ecc_init_ctx,
.cleanup_ctx = rtl_ecc_cleanup_ctx,
.prepare_io_req = rtl_ecc_prepare_io_req,
.finish_io_req = rtl_ecc_finish_io_req,
};
static int rtl_ecc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rtl_ecc_engine *rtlc;
void __iomem *base;
int ret;
rtlc = devm_kzalloc(dev, sizeof(*rtlc), GFP_KERNEL);
if (!rtlc)
return -ENOMEM;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
ret = devm_mutex_init(dev, &rtlc->lock);
if (ret)
return ret;
rtlc->regmap = devm_regmap_init_mmio(dev, base, &rtl_ecc_regmap_config);
if (IS_ERR(rtlc->regmap))
return PTR_ERR(rtlc->regmap);
/*
* Focus on simplicity and use a preallocated DMA buffer for data exchange with the
* engine. For now make it a noncoherent memory model as invalidating/flushing caches
* is faster than reading/writing uncached memory on the known architectures.
*/
rtlc->buf = dma_alloc_noncoherent(dev, RTL_ECC_DMA_SIZE, &rtlc->buf_dma,
DMA_BIDIRECTIONAL, GFP_KERNEL);
if (IS_ERR(rtlc->buf))
return PTR_ERR(rtlc->buf);
rtlc->dev = dev;
rtlc->engine.dev = dev;
rtlc->engine.ops = &rtl_ecc_engine_ops;
rtlc->engine.integration = NAND_ECC_ENGINE_INTEGRATION_EXTERNAL;
nand_ecc_register_on_host_hw_engine(&rtlc->engine);
platform_set_drvdata(pdev, rtlc);
return 0;
}
static void rtl_ecc_remove(struct platform_device *pdev)
{
struct rtl_ecc_engine *rtlc = platform_get_drvdata(pdev);
nand_ecc_unregister_on_host_hw_engine(&rtlc->engine);
dma_free_noncoherent(rtlc->dev, RTL_ECC_DMA_SIZE, rtlc->buf, rtlc->buf_dma,
DMA_BIDIRECTIONAL);
}
static const struct of_device_id rtl_ecc_of_ids[] = {
{
.compatible = "realtek,rtl9301-ecc",
},
{ /* sentinel */ },
};
static struct platform_driver rtl_ecc_driver = {
.driver = {
.name = "rtl-nand-ecc-engine",
.of_match_table = rtl_ecc_of_ids,
},
.probe = rtl_ecc_probe,
.remove = rtl_ecc_remove,
};
module_platform_driver(rtl_ecc_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Markus Stockhausen <markus.stockhausen@gmx.de>");
MODULE_DESCRIPTION("Realtek NAND hardware ECC controller");
|