1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2022-2024 Canaan Bright Sight Co., Ltd
* Copyright (C) 2024-2025 Junhui Liu <junhui.liu@pigmoral.tech>
*
* The reset management module in the K230 SoC provides reset time control
* registers. For RST_TYPE_CPU0, RST_TYPE_CPU1 and RST_TYPE_SW_DONE, the period
* during which reset is applied or removed while the clock is stopped can be
* set up to 15 * 0.25 = 3.75 µs. For RST_TYPE_HW_DONE, that period can be set
* up to 255 * 0.25 = 63.75 µs. For RST_TYPE_FLUSH, the reset bit is
* automatically cleared by hardware when flush completes.
*
* Although this driver does not configure the reset time registers, delays have
* been added to the assert, deassert, and reset operations to cover the maximum
* reset time. Some reset types include done bits whose toggle does not
* unambiguously signal whether hardware reset removal or clock-stop period
* expiration occurred first. Delays are therefore retained for types with done
* bits to ensure safe timing.
*
* Reference: K230 Technical Reference Manual V0.3.1
* https://kendryte-download.canaan-creative.com/developer/k230/HDK/K230%E7%A1%AC%E4%BB%B6%E6%96%87%E6%A1%A3/K230_Technical_Reference_Manual_V0.3.1_20241118.pdf
*/
#include <linux/cleanup.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/reset-controller.h>
#include <linux/spinlock.h>
#include <dt-bindings/reset/canaan,k230-rst.h>
/**
* enum k230_rst_type - K230 reset types
* @RST_TYPE_CPU0: Reset type for CPU0
* Automatically clears, has write enable and done bit, active high
* @RST_TYPE_CPU1: Reset type for CPU1
* Manually clears, has write enable and done bit, active high
* @RST_TYPE_FLUSH: Reset type for CPU L2 cache flush
* Automatically clears, has write enable, no done bit, active high
* @RST_TYPE_HW_DONE: Reset type for hardware auto clear
* Automatically clears, no write enable, has done bit, active high
* @RST_TYPE_SW_DONE: Reset type for software manual clear
* Manually clears, no write enable and done bit,
* active high if ID is RST_SPI2AXI, otherwise active low
*/
enum k230_rst_type {
RST_TYPE_CPU0,
RST_TYPE_CPU1,
RST_TYPE_FLUSH,
RST_TYPE_HW_DONE,
RST_TYPE_SW_DONE,
};
struct k230_rst_map {
u32 offset;
enum k230_rst_type type;
u32 done;
u32 reset;
};
struct k230_rst {
struct reset_controller_dev rcdev;
void __iomem *base;
/* protect register read-modify-write */
spinlock_t lock;
};
static const struct k230_rst_map k230_resets[] = {
[RST_CPU0] = { 0x4, RST_TYPE_CPU0, BIT(12), BIT(0) },
[RST_CPU1] = { 0xc, RST_TYPE_CPU1, BIT(12), BIT(0) },
[RST_CPU0_FLUSH] = { 0x4, RST_TYPE_FLUSH, 0, BIT(4) },
[RST_CPU1_FLUSH] = { 0xc, RST_TYPE_FLUSH, 0, BIT(4) },
[RST_AI] = { 0x14, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_VPU] = { 0x1c, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_HISYS] = { 0x2c, RST_TYPE_HW_DONE, BIT(4), BIT(0) },
[RST_HISYS_AHB] = { 0x2c, RST_TYPE_HW_DONE, BIT(5), BIT(1) },
[RST_SDIO0] = { 0x34, RST_TYPE_HW_DONE, BIT(28), BIT(0) },
[RST_SDIO1] = { 0x34, RST_TYPE_HW_DONE, BIT(29), BIT(1) },
[RST_SDIO_AXI] = { 0x34, RST_TYPE_HW_DONE, BIT(30), BIT(2) },
[RST_USB0] = { 0x3c, RST_TYPE_HW_DONE, BIT(28), BIT(0) },
[RST_USB1] = { 0x3c, RST_TYPE_HW_DONE, BIT(29), BIT(1) },
[RST_USB0_AHB] = { 0x3c, RST_TYPE_HW_DONE, BIT(30), BIT(0) },
[RST_USB1_AHB] = { 0x3c, RST_TYPE_HW_DONE, BIT(31), BIT(1) },
[RST_SPI0] = { 0x44, RST_TYPE_HW_DONE, BIT(28), BIT(0) },
[RST_SPI1] = { 0x44, RST_TYPE_HW_DONE, BIT(29), BIT(1) },
[RST_SPI2] = { 0x44, RST_TYPE_HW_DONE, BIT(30), BIT(2) },
[RST_SEC] = { 0x4c, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_PDMA] = { 0x54, RST_TYPE_HW_DONE, BIT(28), BIT(0) },
[RST_SDMA] = { 0x54, RST_TYPE_HW_DONE, BIT(29), BIT(1) },
[RST_DECOMPRESS] = { 0x5c, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_SRAM] = { 0x64, RST_TYPE_HW_DONE, BIT(28), BIT(0) },
[RST_SHRM_AXIM] = { 0x64, RST_TYPE_HW_DONE, BIT(30), BIT(2) },
[RST_SHRM_AXIS] = { 0x64, RST_TYPE_HW_DONE, BIT(31), BIT(3) },
[RST_NONAI2D] = { 0x6c, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_MCTL] = { 0x74, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_ISP] = { 0x80, RST_TYPE_HW_DONE, BIT(29), BIT(6) },
[RST_ISP_DW] = { 0x80, RST_TYPE_HW_DONE, BIT(28), BIT(5) },
[RST_DPU] = { 0x88, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_DISP] = { 0x90, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_GPU] = { 0x98, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_AUDIO] = { 0xa4, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_TIMER0] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(0) },
[RST_TIMER1] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(1) },
[RST_TIMER2] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(2) },
[RST_TIMER3] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(3) },
[RST_TIMER4] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(4) },
[RST_TIMER5] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(5) },
[RST_TIMER_APB] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(6) },
[RST_HDI] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(7) },
[RST_WDT0] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(12) },
[RST_WDT1] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(13) },
[RST_WDT0_APB] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(14) },
[RST_WDT1_APB] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(15) },
[RST_TS_APB] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(16) },
[RST_MAILBOX] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(17) },
[RST_STC] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(18) },
[RST_PMU] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(19) },
[RST_LOSYS_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(0) },
[RST_UART0] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(1) },
[RST_UART1] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(2) },
[RST_UART2] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(3) },
[RST_UART3] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(4) },
[RST_UART4] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(5) },
[RST_I2C0] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(6) },
[RST_I2C1] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(7) },
[RST_I2C2] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(8) },
[RST_I2C3] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(9) },
[RST_I2C4] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(10) },
[RST_JAMLINK0_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(11) },
[RST_JAMLINK1_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(12) },
[RST_JAMLINK2_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(13) },
[RST_JAMLINK3_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(14) },
[RST_CODEC_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(17) },
[RST_GPIO_DB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(18) },
[RST_GPIO_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(19) },
[RST_ADC] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(20) },
[RST_ADC_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(21) },
[RST_PWM_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(22) },
[RST_SHRM_APB] = { 0x64, RST_TYPE_SW_DONE, 0, BIT(1) },
[RST_CSI0] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(0) },
[RST_CSI1] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(1) },
[RST_CSI2] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(2) },
[RST_CSI_DPHY] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(3) },
[RST_ISP_AHB] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(4) },
[RST_M0] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(7) },
[RST_M1] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(8) },
[RST_M2] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(9) },
[RST_SPI2AXI] = { 0xa8, RST_TYPE_SW_DONE, 0, BIT(0) }
};
static inline struct k230_rst *to_k230_rst(struct reset_controller_dev *rcdev)
{
return container_of(rcdev, struct k230_rst, rcdev);
}
static void k230_rst_clear_done(struct k230_rst *rstc, unsigned long id,
bool write_en)
{
const struct k230_rst_map *rmap = &k230_resets[id];
u32 reg;
guard(spinlock_irqsave)(&rstc->lock);
reg = readl(rstc->base + rmap->offset);
reg |= rmap->done; /* write 1 to clear */
if (write_en)
reg |= rmap->done << 16;
writel(reg, rstc->base + rmap->offset);
}
static int k230_rst_wait_and_clear_done(struct k230_rst *rstc, unsigned long id,
bool write_en)
{
const struct k230_rst_map *rmap = &k230_resets[id];
u32 reg;
int ret;
ret = readl_poll_timeout(rstc->base + rmap->offset, reg,
reg & rmap->done, 10, 1000);
if (ret) {
dev_err(rstc->rcdev.dev, "Wait for reset done timeout\n");
return ret;
}
k230_rst_clear_done(rstc, id, write_en);
return 0;
}
static void k230_rst_update(struct k230_rst *rstc, unsigned long id,
bool assert, bool write_en, bool active_low)
{
const struct k230_rst_map *rmap = &k230_resets[id];
u32 reg;
guard(spinlock_irqsave)(&rstc->lock);
reg = readl(rstc->base + rmap->offset);
if (assert ^ active_low)
reg |= rmap->reset;
else
reg &= ~rmap->reset;
if (write_en)
reg |= rmap->reset << 16;
writel(reg, rstc->base + rmap->offset);
}
static int k230_rst_assert(struct reset_controller_dev *rcdev, unsigned long id)
{
struct k230_rst *rstc = to_k230_rst(rcdev);
switch (k230_resets[id].type) {
case RST_TYPE_CPU1:
k230_rst_update(rstc, id, true, true, false);
break;
case RST_TYPE_SW_DONE:
k230_rst_update(rstc, id, true, false,
id == RST_SPI2AXI ? false : true);
break;
case RST_TYPE_CPU0:
case RST_TYPE_FLUSH:
case RST_TYPE_HW_DONE:
return -EOPNOTSUPP;
}
/*
* The time period when reset is applied but the clock is stopped for
* RST_TYPE_CPU1 and RST_TYPE_SW_DONE can be set up to 3.75us. Delay
* 10us to ensure proper reset timing.
*/
udelay(10);
return 0;
}
static int k230_rst_deassert(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct k230_rst *rstc = to_k230_rst(rcdev);
int ret = 0;
switch (k230_resets[id].type) {
case RST_TYPE_CPU1:
k230_rst_update(rstc, id, false, true, false);
ret = k230_rst_wait_and_clear_done(rstc, id, true);
break;
case RST_TYPE_SW_DONE:
k230_rst_update(rstc, id, false, false,
id == RST_SPI2AXI ? false : true);
break;
case RST_TYPE_CPU0:
case RST_TYPE_FLUSH:
case RST_TYPE_HW_DONE:
return -EOPNOTSUPP;
}
/*
* The time period when reset is removed but the clock is stopped for
* RST_TYPE_CPU1 and RST_TYPE_SW_DONE can be set up to 3.75us. Delay
* 10us to ensure proper reset timing.
*/
udelay(10);
return ret;
}
static int k230_rst_reset(struct reset_controller_dev *rcdev, unsigned long id)
{
struct k230_rst *rstc = to_k230_rst(rcdev);
const struct k230_rst_map *rmap = &k230_resets[id];
u32 reg;
int ret = 0;
switch (rmap->type) {
case RST_TYPE_CPU0:
k230_rst_clear_done(rstc, id, true);
k230_rst_update(rstc, id, true, true, false);
ret = k230_rst_wait_and_clear_done(rstc, id, true);
/*
* The time period when reset is applied and removed but the
* clock is stopped for RST_TYPE_CPU0 can be set up to 7.5us.
* Delay 10us to ensure proper reset timing.
*/
udelay(10);
break;
case RST_TYPE_FLUSH:
k230_rst_update(rstc, id, true, true, false);
/* Wait flush request bit auto cleared by hardware */
ret = readl_poll_timeout(rstc->base + rmap->offset, reg,
!(reg & rmap->reset), 10, 1000);
if (ret)
dev_err(rcdev->dev, "Wait for flush done timeout\n");
break;
case RST_TYPE_HW_DONE:
k230_rst_clear_done(rstc, id, false);
k230_rst_update(rstc, id, true, false, false);
ret = k230_rst_wait_and_clear_done(rstc, id, false);
/*
* The time period when reset is applied and removed but the
* clock is stopped for RST_TYPE_HW_DONE can be set up to
* 127.5us. Delay 200us to ensure proper reset timing.
*/
fsleep(200);
break;
case RST_TYPE_CPU1:
case RST_TYPE_SW_DONE:
k230_rst_assert(rcdev, id);
ret = k230_rst_deassert(rcdev, id);
break;
}
return ret;
}
static const struct reset_control_ops k230_rst_ops = {
.reset = k230_rst_reset,
.assert = k230_rst_assert,
.deassert = k230_rst_deassert,
};
static int k230_rst_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct k230_rst *rstc;
rstc = devm_kzalloc(dev, sizeof(*rstc), GFP_KERNEL);
if (!rstc)
return -ENOMEM;
rstc->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(rstc->base))
return PTR_ERR(rstc->base);
spin_lock_init(&rstc->lock);
rstc->rcdev.dev = dev;
rstc->rcdev.owner = THIS_MODULE;
rstc->rcdev.ops = &k230_rst_ops;
rstc->rcdev.nr_resets = ARRAY_SIZE(k230_resets);
rstc->rcdev.of_node = dev->of_node;
return devm_reset_controller_register(dev, &rstc->rcdev);
}
static const struct of_device_id k230_rst_match[] = {
{ .compatible = "canaan,k230-rst", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, k230_rst_match);
static struct platform_driver k230_rst_driver = {
.probe = k230_rst_probe,
.driver = {
.name = "k230-rst",
.of_match_table = k230_rst_match,
}
};
module_platform_driver(k230_rst_driver);
MODULE_AUTHOR("Junhui Liu <junhui.liu@pigmoral.tech>");
MODULE_DESCRIPTION("Canaan K230 reset driver");
MODULE_LICENSE("GPL");
|