summaryrefslogtreecommitdiff
path: root/drivers/spi/spi-amlogic-spisg.c
blob: 2ab8bdf2a6761e90852355540f20c48423ad851c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
// SPDX-License-Identifier: GPL-2.0+
/*
 * Driver for Amlogic SPI communication Scatter-Gather Controller
 *
 * Copyright (C) 2025 Amlogic, Inc. All rights reserved
 *
 * Author: Sunny Luo <sunny.luo@amlogic.com>
 * Author: Xianwei Zhao <xianwei.zhao@amlogic.com>
 */

#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/reset.h>
#include <linux/regmap.h>

/* Register Map */
#define SPISG_REG_CFG_READY		0x00

#define SPISG_REG_CFG_SPI		0x04
#define CFG_BUS64_EN			BIT(0)
#define CFG_SLAVE_EN			BIT(1)
#define CFG_SLAVE_SELECT		GENMASK(3, 2)
#define CFG_SFLASH_WP			BIT(4)
#define CFG_SFLASH_HD			BIT(5)
/* start on vsync rising */
#define CFG_HW_POS			BIT(6)
/* start on vsync falling */
#define CFG_HW_NEG			BIT(7)

#define SPISG_REG_CFG_START		0x08
#define CFG_BLOCK_NUM			GENMASK(19, 0)
#define CFG_BLOCK_SIZE			GENMASK(22, 20)
#define CFG_DATA_COMMAND		BIT(23)
#define CFG_OP_MODE			GENMASK(25, 24)
#define CFG_RXD_MODE			GENMASK(27, 26)
#define CFG_TXD_MODE			GENMASK(29, 28)
#define CFG_EOC				BIT(30)
#define CFG_PEND			BIT(31)

#define SPISG_REG_CFG_BUS		0x0C
#define CFG_CLK_DIV			GENMASK(7, 0)
#define CLK_DIV_WIDTH			8
#define CFG_RX_TUNING			GENMASK(11, 8)
#define CFG_TX_TUNING			GENMASK(15, 12)
#define CFG_CS_SETUP			GENMASK(19, 16)
#define CFG_LANE			GENMASK(21, 20)
#define CFG_HALF_DUPLEX			BIT(22)
#define CFG_B_L_ENDIAN			BIT(23)
#define CFG_DC_MODE			BIT(24)
#define CFG_NULL_CTL			BIT(25)
#define CFG_DUMMY_CTL			BIT(26)
#define CFG_READ_TURN			GENMASK(28, 27)
#define CFG_KEEP_SS			BIT(29)
#define CFG_CPHA			BIT(30)
#define CFG_CPOL			BIT(31)

#define SPISG_REG_PIO_TX_DATA_L		0x10
#define SPISG_REG_PIO_TX_DATA_H		0x14
#define SPISG_REG_PIO_RX_DATA_L		0x18
#define SPISG_REG_PIO_RX_DATA_H		0x1C
#define SPISG_REG_MEM_TX_ADDR_L		0x10
#define SPISG_REG_MEM_TX_ADDR_H		0x14
#define SPISG_REG_MEM_RX_ADDR_L		0x18
#define SPISG_REG_MEM_RX_ADDR_H		0x1C
#define SPISG_REG_DESC_LIST_L		0x20
#define SPISG_REG_DESC_LIST_H		0x24
#define LIST_DESC_PENDING		BIT(31)
#define SPISG_REG_DESC_CURRENT_L	0x28
#define SPISG_REG_DESC_CURRENT_H	0x2c
#define SPISG_REG_IRQ_STS		0x30
#define SPISG_REG_IRQ_ENABLE		0x34
#define IRQ_RCH_DESC_EOC		BIT(0)
#define IRQ_RCH_DESC_INVALID		BIT(1)
#define IRQ_RCH_DESC_RESP		BIT(2)
#define IRQ_RCH_DATA_RESP		BIT(3)
#define IRQ_WCH_DESC_EOC		BIT(4)
#define IRQ_WCH_DESC_INVALID		BIT(5)
#define IRQ_WCH_DESC_RESP		BIT(6)
#define IRQ_WCH_DATA_RESP		BIT(7)
#define IRQ_DESC_ERR			BIT(8)
#define IRQ_SPI_READY			BIT(9)
#define IRQ_DESC_DONE			BIT(10)
#define IRQ_DESC_CHAIN_DONE		BIT(11)

#define SPISG_MAX_REG			0x40

#define SPISG_BLOCK_MAX			0x100000

#define SPISG_OP_MODE_WRITE_CMD		0
#define SPISG_OP_MODE_READ_STS		1
#define SPISG_OP_MODE_WRITE		2
#define SPISG_OP_MODE_READ		3

#define SPISG_DATA_MODE_NONE		0
#define SPISG_DATA_MODE_PIO		1
#define SPISG_DATA_MODE_MEM		2
#define SPISG_DATA_MODE_SG		3

#define SPISG_CLK_DIV_MAX		256
/* recommended by specification */
#define SPISG_CLK_DIV_MIN		4
#define DIV_NUM (SPISG_CLK_DIV_MAX - SPISG_CLK_DIV_MIN + 1)

#define SPISG_PCLK_RATE_MIN		24000000

#define SPISG_SINGLE_SPI		0
#define SPISG_DUAL_SPI			1
#define SPISG_QUAD_SPI			2

struct spisg_sg_link {
#define LINK_ADDR_VALID		BIT(0)
#define LINK_ADDR_EOC		BIT(1)
#define LINK_ADDR_IRQ		BIT(2)
#define LINK_ADDR_ACT		GENMASK(5, 3)
#define LINK_ADDR_RING		BIT(6)
#define LINK_ADDR_LEN		GENMASK(31, 8)
	u32			addr;
	u32			addr1;
};

struct spisg_descriptor {
	u32				cfg_start;
	u32				cfg_bus;
	u64				tx_paddr;
	u64				rx_paddr;
};

struct spisg_descriptor_extra {
	struct spisg_sg_link		*tx_ccsg;
	struct spisg_sg_link		*rx_ccsg;
	int				tx_ccsg_len;
	int				rx_ccsg_len;
};

struct spisg_device {
	struct spi_controller		*controller;
	struct platform_device		*pdev;
	struct regmap			*map;
	struct clk			*core;
	struct clk			*pclk;
	struct clk			*sclk;
	struct clk_div_table		*tbl;
	struct completion		completion;
	u32				status;
	u32				speed_hz;
	u32				effective_speed_hz;
	u32				bytes_per_word;
	u32				cfg_spi;
	u32				cfg_start;
	u32				cfg_bus;
};

static int spi_delay_to_sclk(u32 slck_speed_hz, struct spi_delay *delay)
{
	s32 ns;

	if (!delay)
		return 0;

	if (delay->unit == SPI_DELAY_UNIT_SCK)
		return delay->value;

	ns = spi_delay_to_ns(delay, NULL);
	if (ns < 0)
		return 0;

	return DIV_ROUND_UP_ULL(slck_speed_hz * ns, NSEC_PER_SEC);
}

static inline u32 aml_spisg_sem_down_read(struct spisg_device *spisg)
{
	u32 ret;

	regmap_read(spisg->map, SPISG_REG_CFG_READY, &ret);
	if (ret)
		regmap_write(spisg->map, SPISG_REG_CFG_READY, 0);

	return ret;
}

static inline void aml_spisg_sem_up_write(struct spisg_device *spisg)
{
	regmap_write(spisg->map, SPISG_REG_CFG_READY, 1);
}

static int aml_spisg_set_speed(struct spisg_device *spisg, uint speed_hz)
{
	u32 cfg_bus;

	if (!speed_hz || speed_hz == spisg->speed_hz)
		return 0;

	spisg->speed_hz = speed_hz;
	clk_set_rate(spisg->sclk, speed_hz);
	/* Store the div for the descriptor mode */
	regmap_read(spisg->map, SPISG_REG_CFG_BUS, &cfg_bus);
	spisg->cfg_bus &= ~CFG_CLK_DIV;
	spisg->cfg_bus |= cfg_bus & CFG_CLK_DIV;
	spisg->effective_speed_hz = clk_get_rate(spisg->sclk);
	dev_dbg(&spisg->pdev->dev,
		"desired speed %dHz, effective speed %dHz\n",
		speed_hz, spisg->effective_speed_hz);

	return 0;
}

static bool aml_spisg_can_dma(struct spi_controller *ctlr,
			      struct spi_device *spi,
			      struct spi_transfer *xfer)
{
	return true;
}

static void aml_spisg_sg_xlate(struct sg_table *sgt, struct spisg_sg_link *ccsg)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
		ccsg->addr = FIELD_PREP(LINK_ADDR_VALID, 1) |
			     FIELD_PREP(LINK_ADDR_RING, 0) |
			     FIELD_PREP(LINK_ADDR_EOC, sg_is_last(sg)) |
			     FIELD_PREP(LINK_ADDR_LEN, sg_dma_len(sg));
		ccsg->addr1 = (u32)sg_dma_address(sg);
		ccsg++;
	}
}

static int nbits_to_lane[] = {
	SPISG_SINGLE_SPI,
	SPISG_SINGLE_SPI,
	SPISG_DUAL_SPI,
	-EINVAL,
	SPISG_QUAD_SPI
};

static int aml_spisg_setup_transfer(struct spisg_device *spisg,
				    struct spi_transfer *xfer,
				    struct spisg_descriptor *desc,
				    struct spisg_descriptor_extra *exdesc)
{
	int block_size, blocks;
	struct device *dev = &spisg->pdev->dev;
	struct spisg_sg_link *ccsg;
	int ccsg_len;
	dma_addr_t paddr;
	int ret;

	memset(desc, 0, sizeof(*desc));
	if (exdesc)
		memset(exdesc, 0, sizeof(*exdesc));
	aml_spisg_set_speed(spisg, xfer->speed_hz);
	xfer->effective_speed_hz = spisg->effective_speed_hz;

	desc->cfg_start = spisg->cfg_start;
	desc->cfg_bus = spisg->cfg_bus;

	block_size = xfer->bits_per_word >> 3;
	blocks = xfer->len / block_size;

	desc->cfg_start |= FIELD_PREP(CFG_EOC, 0);
	desc->cfg_bus |= FIELD_PREP(CFG_KEEP_SS, !xfer->cs_change);
	desc->cfg_bus |= FIELD_PREP(CFG_NULL_CTL, 0);

	if (xfer->tx_buf || xfer->tx_dma) {
		desc->cfg_bus |= FIELD_PREP(CFG_LANE, nbits_to_lane[xfer->tx_nbits]);
		desc->cfg_start |= FIELD_PREP(CFG_OP_MODE, SPISG_OP_MODE_WRITE);
	}
	if (xfer->rx_buf || xfer->rx_dma) {
		desc->cfg_bus |= FIELD_PREP(CFG_LANE, nbits_to_lane[xfer->rx_nbits]);
		desc->cfg_start |= FIELD_PREP(CFG_OP_MODE, SPISG_OP_MODE_READ);
	}

	if (FIELD_GET(CFG_OP_MODE, desc->cfg_start) == SPISG_OP_MODE_READ_STS) {
		desc->cfg_start |= FIELD_PREP(CFG_BLOCK_SIZE, blocks) |
				   FIELD_PREP(CFG_BLOCK_NUM, 1);
	} else {
		blocks = min_t(int, blocks, SPISG_BLOCK_MAX);
		desc->cfg_start |= FIELD_PREP(CFG_BLOCK_SIZE, block_size & 0x7) |
				   FIELD_PREP(CFG_BLOCK_NUM, blocks);
	}

	if (xfer->tx_sg.nents && xfer->tx_sg.sgl) {
		ccsg_len = xfer->tx_sg.nents * sizeof(struct spisg_sg_link);
		ccsg = kzalloc(ccsg_len, GFP_KERNEL | GFP_DMA);
		if (!ccsg) {
			dev_err(dev, "alloc tx_ccsg failed\n");
			return -ENOMEM;
		}

		aml_spisg_sg_xlate(&xfer->tx_sg, ccsg);
		paddr = dma_map_single(dev, (void *)ccsg,
				       ccsg_len, DMA_TO_DEVICE);
		ret = dma_mapping_error(dev, paddr);
		if (ret) {
			kfree(ccsg);
			dev_err(dev, "tx ccsg map failed\n");
			return ret;
		}

		desc->tx_paddr = paddr;
		desc->cfg_start |= FIELD_PREP(CFG_TXD_MODE, SPISG_DATA_MODE_SG);
		exdesc->tx_ccsg = ccsg;
		exdesc->tx_ccsg_len = ccsg_len;
		dma_sync_sgtable_for_device(spisg->controller->cur_tx_dma_dev,
					    &xfer->tx_sg, DMA_TO_DEVICE);
	} else if (xfer->tx_buf || xfer->tx_dma) {
		paddr = xfer->tx_dma;
		if (!paddr) {
			paddr = dma_map_single(dev, (void *)xfer->tx_buf,
					       xfer->len, DMA_TO_DEVICE);
			ret = dma_mapping_error(dev, paddr);
			if (ret) {
				dev_err(dev, "tx buf map failed\n");
				return ret;
			}
		}
		desc->tx_paddr = paddr;
		desc->cfg_start |= FIELD_PREP(CFG_TXD_MODE, SPISG_DATA_MODE_MEM);
	}

	if (xfer->rx_sg.nents && xfer->rx_sg.sgl) {
		ccsg_len = xfer->rx_sg.nents * sizeof(struct spisg_sg_link);
		ccsg = kzalloc(ccsg_len, GFP_KERNEL | GFP_DMA);
		if (!ccsg) {
			dev_err(dev, "alloc rx_ccsg failed\n");
			return -ENOMEM;
		}

		aml_spisg_sg_xlate(&xfer->rx_sg, ccsg);
		paddr = dma_map_single(dev, (void *)ccsg,
				       ccsg_len, DMA_TO_DEVICE);
		ret = dma_mapping_error(dev, paddr);
		if (ret) {
			kfree(ccsg);
			dev_err(dev, "rx ccsg map failed\n");
			return ret;
		}

		desc->rx_paddr = paddr;
		desc->cfg_start |= FIELD_PREP(CFG_RXD_MODE, SPISG_DATA_MODE_SG);
		exdesc->rx_ccsg = ccsg;
		exdesc->rx_ccsg_len = ccsg_len;
		dma_sync_sgtable_for_device(spisg->controller->cur_rx_dma_dev,
					    &xfer->rx_sg, DMA_FROM_DEVICE);
	} else if (xfer->rx_buf || xfer->rx_dma) {
		paddr = xfer->rx_dma;
		if (!paddr) {
			paddr = dma_map_single(dev, xfer->rx_buf,
					       xfer->len, DMA_FROM_DEVICE);
			ret = dma_mapping_error(dev, paddr);
			if (ret) {
				dev_err(dev, "rx buf map failed\n");
				return ret;
			}
		}

		desc->rx_paddr = paddr;
		desc->cfg_start |= FIELD_PREP(CFG_RXD_MODE, SPISG_DATA_MODE_MEM);
	}

	return 0;
}

static void aml_spisg_cleanup_transfer(struct spisg_device *spisg,
				       struct spi_transfer *xfer,
				       struct spisg_descriptor *desc,
				       struct spisg_descriptor_extra *exdesc)
{
	struct device *dev = &spisg->pdev->dev;

	if (desc->tx_paddr) {
		if (FIELD_GET(CFG_TXD_MODE, desc->cfg_start) == SPISG_DATA_MODE_SG) {
			dma_unmap_single(dev, (dma_addr_t)desc->tx_paddr,
					 exdesc->tx_ccsg_len, DMA_TO_DEVICE);
			kfree(exdesc->tx_ccsg);
			dma_sync_sgtable_for_cpu(spisg->controller->cur_tx_dma_dev,
						 &xfer->tx_sg, DMA_TO_DEVICE);
		} else if (!xfer->tx_dma) {
			dma_unmap_single(dev, (dma_addr_t)desc->tx_paddr,
					 xfer->len, DMA_TO_DEVICE);
		}
	}

	if (desc->rx_paddr) {
		if (FIELD_GET(CFG_RXD_MODE, desc->cfg_start) == SPISG_DATA_MODE_SG) {
			dma_unmap_single(dev, (dma_addr_t)desc->rx_paddr,
					 exdesc->rx_ccsg_len, DMA_TO_DEVICE);
			kfree(exdesc->rx_ccsg);
			dma_sync_sgtable_for_cpu(spisg->controller->cur_rx_dma_dev,
						 &xfer->rx_sg, DMA_FROM_DEVICE);
		} else if (!xfer->rx_dma) {
			dma_unmap_single(dev, (dma_addr_t)desc->rx_paddr,
					 xfer->len, DMA_FROM_DEVICE);
		}
	}
}

static void aml_spisg_setup_null_desc(struct spisg_device *spisg,
				      struct spisg_descriptor *desc,
				      u32 n_sclk)
{
	/* unit is the last xfer sclk */
	desc->cfg_start = spisg->cfg_start;
	desc->cfg_bus = spisg->cfg_bus;

	desc->cfg_start |= FIELD_PREP(CFG_OP_MODE, SPISG_OP_MODE_WRITE) |
			   FIELD_PREP(CFG_BLOCK_SIZE, 1) |
			   FIELD_PREP(CFG_BLOCK_NUM, DIV_ROUND_UP(n_sclk, 8));

	desc->cfg_bus |= FIELD_PREP(CFG_NULL_CTL, 1);
}

static void aml_spisg_pending(struct spisg_device *spisg,
			      dma_addr_t desc_paddr,
			      bool trig,
			      bool irq_en)
{
	u32 desc_l, desc_h, cfg_spi, irq_enable;

#ifdef	CONFIG_ARCH_DMA_ADDR_T_64BIT
	desc_l = (u64)desc_paddr & 0xffffffff;
	desc_h = (u64)desc_paddr >> 32;
#else
	desc_l = desc_paddr & 0xffffffff;
	desc_h = 0;
#endif

	cfg_spi = spisg->cfg_spi;
	if (trig)
		cfg_spi |= CFG_HW_POS;
	else
		desc_h |= LIST_DESC_PENDING;

	irq_enable = IRQ_RCH_DESC_INVALID | IRQ_RCH_DESC_RESP |
		     IRQ_RCH_DATA_RESP | IRQ_WCH_DESC_INVALID |
		     IRQ_WCH_DESC_RESP | IRQ_WCH_DATA_RESP |
		     IRQ_DESC_ERR | IRQ_DESC_CHAIN_DONE;
	regmap_write(spisg->map, SPISG_REG_IRQ_ENABLE, irq_en ? irq_enable : 0);
	regmap_write(spisg->map, SPISG_REG_CFG_SPI, cfg_spi);
	regmap_write(spisg->map, SPISG_REG_DESC_LIST_L, desc_l);
	regmap_write(spisg->map, SPISG_REG_DESC_LIST_H, desc_h);
}

static irqreturn_t aml_spisg_irq(int irq, void *data)
{
	struct spisg_device *spisg = (void *)data;
	u32 sts;

	spisg->status = 0;
	regmap_read(spisg->map, SPISG_REG_IRQ_STS, &sts);
	regmap_write(spisg->map, SPISG_REG_IRQ_STS, sts);
	if (sts & (IRQ_RCH_DESC_INVALID |
		   IRQ_RCH_DESC_RESP |
		   IRQ_RCH_DATA_RESP |
		   IRQ_WCH_DESC_INVALID |
		   IRQ_WCH_DESC_RESP |
		   IRQ_WCH_DATA_RESP |
		   IRQ_DESC_ERR))
		spisg->status = sts;
	else if (sts & IRQ_DESC_CHAIN_DONE)
		spisg->status = 0;
	else
		return IRQ_NONE;

	complete(&spisg->completion);

	return IRQ_HANDLED;
}

static int aml_spisg_transfer_one_message(struct spi_controller *ctlr,
					  struct spi_message *msg)
{
	struct spisg_device *spisg = spi_controller_get_devdata(ctlr);
	struct device *dev = &spisg->pdev->dev;
	unsigned long long ms = 0;
	struct spi_transfer *xfer;
	struct spisg_descriptor *descs, *desc;
	struct spisg_descriptor_extra *exdescs, *exdesc;
	dma_addr_t descs_paddr;
	int desc_num = 1, descs_len;
	u32 cs_hold_in_sclk = 0;
	int ret = -EIO;

	if (!aml_spisg_sem_down_read(spisg)) {
		spi_finalize_current_message(ctlr);
		dev_err(dev, "controller busy\n");
		return -EBUSY;
	}

	/* calculate the desc num for all xfer */
	list_for_each_entry(xfer, &msg->transfers, transfer_list)
		desc_num++;

	/* alloc descriptor/extra-descriptor table */
	descs = kcalloc(desc_num, sizeof(*desc) + sizeof(*exdesc),
			GFP_KERNEL | GFP_DMA);
	if (!descs) {
		spi_finalize_current_message(ctlr);
		aml_spisg_sem_up_write(spisg);
		return -ENOMEM;
	}
	descs_len = sizeof(*desc) * desc_num;
	exdescs = (struct spisg_descriptor_extra *)(descs + desc_num);

	/* config descriptor for each xfer */
	desc = descs;
	exdesc = exdescs;
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		ret = aml_spisg_setup_transfer(spisg, xfer, desc, exdesc);
		if (ret) {
			dev_err(dev, "config descriptor failed\n");
			goto end;
		}

		/* calculate cs-setup delay with the first xfer speed */
		if (list_is_first(&xfer->transfer_list, &msg->transfers))
			desc->cfg_bus |= FIELD_PREP(CFG_CS_SETUP,
				spi_delay_to_sclk(xfer->effective_speed_hz, &msg->spi->cs_setup));

		/* calculate cs-hold delay with the last xfer speed */
		if (list_is_last(&xfer->transfer_list, &msg->transfers))
			cs_hold_in_sclk =
				spi_delay_to_sclk(xfer->effective_speed_hz, &msg->spi->cs_hold);

		desc++;
		exdesc++;
		ms += DIV_ROUND_UP_ULL(8LL * MSEC_PER_SEC * xfer->len,
				       xfer->effective_speed_hz);
	}

	if (cs_hold_in_sclk)
		/* additional null-descriptor to achieve the cs-hold delay */
		aml_spisg_setup_null_desc(spisg, desc, cs_hold_in_sclk);
	else
		desc--;

	desc->cfg_bus |= FIELD_PREP(CFG_KEEP_SS, 0);
	desc->cfg_start |= FIELD_PREP(CFG_EOC, 1);

	/* some tolerances */
	ms += ms + 20;
	if (ms > UINT_MAX)
		ms = UINT_MAX;

	descs_paddr = dma_map_single(dev, (void *)descs,
				     descs_len, DMA_TO_DEVICE);
	ret = dma_mapping_error(dev, descs_paddr);
	if (ret) {
		dev_err(dev, "desc table map failed\n");
		goto end;
	}

	reinit_completion(&spisg->completion);
	aml_spisg_pending(spisg, descs_paddr, false, true);
	if (wait_for_completion_timeout(&spisg->completion,
					spi_controller_is_target(spisg->controller) ?
					MAX_SCHEDULE_TIMEOUT : msecs_to_jiffies(ms)))
		ret = spisg->status ? -EIO : 0;
	else
		ret = -ETIMEDOUT;

	dma_unmap_single(dev, descs_paddr, descs_len, DMA_TO_DEVICE);
end:
	desc = descs;
	exdesc = exdescs;
	list_for_each_entry(xfer, &msg->transfers, transfer_list)
		aml_spisg_cleanup_transfer(spisg, xfer, desc++, exdesc++);
	kfree(descs);

	if (!ret)
		msg->actual_length = msg->frame_length;
	msg->status = ret;
	spi_finalize_current_message(ctlr);
	aml_spisg_sem_up_write(spisg);

	return ret;
}

static int aml_spisg_prepare_message(struct spi_controller *ctlr,
				     struct spi_message *message)
{
	struct spisg_device *spisg = spi_controller_get_devdata(ctlr);
	struct spi_device *spi = message->spi;

	if (!spi->bits_per_word || spi->bits_per_word % 8) {
		dev_err(&spisg->pdev->dev, "invalid wordlen %d\n", spi->bits_per_word);
		return -EINVAL;
	}

	spisg->bytes_per_word = spi->bits_per_word >> 3;

	spisg->cfg_spi &= ~CFG_SLAVE_SELECT;
	spisg->cfg_spi |= FIELD_PREP(CFG_SLAVE_SELECT, spi_get_chipselect(spi, 0));

	spisg->cfg_bus &= ~(CFG_CPOL | CFG_CPHA | CFG_B_L_ENDIAN | CFG_HALF_DUPLEX);
	spisg->cfg_bus |= FIELD_PREP(CFG_CPOL, !!(spi->mode & SPI_CPOL)) |
			  FIELD_PREP(CFG_CPHA, !!(spi->mode & SPI_CPHA)) |
			  FIELD_PREP(CFG_B_L_ENDIAN, !!(spi->mode & SPI_LSB_FIRST)) |
			  FIELD_PREP(CFG_HALF_DUPLEX, !!(spi->mode & SPI_3WIRE));

	return 0;
}

static int aml_spisg_setup(struct spi_device *spi)
{
	if (!spi->controller_state)
		spi->controller_state = spi_controller_get_devdata(spi->controller);

	return 0;
}

static void aml_spisg_cleanup(struct spi_device *spi)
{
	spi->controller_state = NULL;
}

static int aml_spisg_target_abort(struct spi_controller *ctlr)
{
	struct spisg_device *spisg = spi_controller_get_devdata(ctlr);

	spisg->status = 0;
	regmap_write(spisg->map, SPISG_REG_DESC_LIST_H, 0);
	complete(&spisg->completion);

	return 0;
}

static int aml_spisg_clk_init(struct spisg_device *spisg, void __iomem *base)
{
	struct device *dev = &spisg->pdev->dev;
	struct clk_init_data init;
	struct clk_divider *div;
	struct clk_div_table *tbl;
	char name[32];
	int ret, i;

	spisg->core = devm_clk_get_enabled(dev, "core");
	if (IS_ERR_OR_NULL(spisg->core)) {
		dev_err(dev, "core clock request failed\n");
		return PTR_ERR(spisg->core);
	}

	spisg->pclk = devm_clk_get_enabled(dev, "pclk");
	if (IS_ERR_OR_NULL(spisg->pclk)) {
		dev_err(dev, "pclk clock request failed\n");
		return PTR_ERR(spisg->pclk);
	}

	clk_set_min_rate(spisg->pclk, SPISG_PCLK_RATE_MIN);

	clk_disable_unprepare(spisg->pclk);

	tbl = devm_kzalloc(dev, sizeof(struct clk_div_table) * (DIV_NUM + 1), GFP_KERNEL);
	if (!tbl)
		return -ENOMEM;

	for (i = 0; i < DIV_NUM; i++) {
		tbl[i].val = i + SPISG_CLK_DIV_MIN - 1;
		tbl[i].div = i + SPISG_CLK_DIV_MIN;
	}
	spisg->tbl = tbl;

	div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
	if (!div)
		return -ENOMEM;

	div->flags = CLK_DIVIDER_ROUND_CLOSEST;
	div->reg = base + SPISG_REG_CFG_BUS;
	div->shift = __bf_shf(CFG_CLK_DIV);
	div->width = CLK_DIV_WIDTH;
	div->table = tbl;

	/* Register value should not be outside of the table */
	regmap_update_bits(spisg->map, SPISG_REG_CFG_BUS, CFG_CLK_DIV,
			   FIELD_PREP(CFG_CLK_DIV, SPISG_CLK_DIV_MIN - 1));

	/* Register clk-divider */
	snprintf(name, sizeof(name), "%s_div", dev_name(dev));
	init.name = name;
	init.ops = &clk_divider_ops;
	init.flags = CLK_SET_RATE_PARENT;
	init.parent_data = &(const struct clk_parent_data) {
				.fw_name = "pclk",
			   };
	init.num_parents = 1;
	div->hw.init = &init;
	ret = devm_clk_hw_register(dev, &div->hw);
	if (ret) {
		dev_err(dev, "clock registration failed\n");
		return ret;
	}

	spisg->sclk = devm_clk_hw_get_clk(dev, &div->hw, NULL);
	if (IS_ERR_OR_NULL(spisg->sclk)) {
		dev_err(dev, "get clock failed\n");
		return PTR_ERR(spisg->sclk);
	}

	clk_prepare_enable(spisg->sclk);

	return 0;
}

static int aml_spisg_probe(struct platform_device *pdev)
{
	struct spi_controller *ctlr;
	struct spisg_device *spisg;
	struct device *dev = &pdev->dev;
	void __iomem *base;
	int ret, irq;

	const struct regmap_config aml_regmap_config = {
		.reg_bits = 32,
		.val_bits = 32,
		.reg_stride = 4,
		.max_register = SPISG_MAX_REG,
	};

	if (of_property_read_bool(dev->of_node, "spi-slave"))
		ctlr = spi_alloc_target(dev, sizeof(*spisg));
	else
		ctlr = spi_alloc_host(dev, sizeof(*spisg));
	if (!ctlr)
		return dev_err_probe(dev, -ENOMEM, "controller allocation failed\n");

	spisg = spi_controller_get_devdata(ctlr);
	spisg->controller = ctlr;

	spisg->pdev = pdev;
	platform_set_drvdata(pdev, spisg);

	base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(base))
		return dev_err_probe(dev, PTR_ERR(base), "resource ioremap failed\n");

	spisg->map = devm_regmap_init_mmio(dev, base, &aml_regmap_config);
	if (IS_ERR(spisg->map))
		return dev_err_probe(dev, PTR_ERR(spisg->map), "regmap init failed\n");

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		ret = irq;
		goto out_controller;
	}

	ret = device_reset_optional(dev);
	if (ret)
		return dev_err_probe(dev, ret, "reset dev failed\n");

	ret = aml_spisg_clk_init(spisg, base);
	if (ret)
		return dev_err_probe(dev, ret, "clock init failed\n");

	spisg->cfg_spi = 0;
	spisg->cfg_start = 0;
	spisg->cfg_bus = 0;

	spisg->cfg_spi = FIELD_PREP(CFG_SFLASH_WP, 1) |
			 FIELD_PREP(CFG_SFLASH_HD, 1);
	if (spi_controller_is_target(ctlr)) {
		spisg->cfg_spi |= FIELD_PREP(CFG_SLAVE_EN, 1);
		spisg->cfg_bus = FIELD_PREP(CFG_TX_TUNING, 0xf);
	}
	/* default pending */
	spisg->cfg_start = FIELD_PREP(CFG_PEND, 1);

	pm_runtime_set_active(&spisg->pdev->dev);
	pm_runtime_enable(&spisg->pdev->dev);
	pm_runtime_resume_and_get(&spisg->pdev->dev);

	ctlr->num_chipselect = 4;
	ctlr->dev.of_node = pdev->dev.of_node;
	ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_LSB_FIRST |
			  SPI_3WIRE | SPI_TX_QUAD | SPI_RX_QUAD;
	ctlr->max_speed_hz = 1000 * 1000 * 100;
	ctlr->min_speed_hz = 1000 * 10;
	ctlr->setup = aml_spisg_setup;
	ctlr->cleanup = aml_spisg_cleanup;
	ctlr->prepare_message = aml_spisg_prepare_message;
	ctlr->transfer_one_message = aml_spisg_transfer_one_message;
	ctlr->target_abort = aml_spisg_target_abort;
	ctlr->can_dma = aml_spisg_can_dma;
	ctlr->max_dma_len = SPISG_BLOCK_MAX;
	ctlr->auto_runtime_pm = true;

	dma_set_max_seg_size(&pdev->dev, SPISG_BLOCK_MAX);

	ret = devm_request_irq(&pdev->dev, irq, aml_spisg_irq, 0, NULL, spisg);
	if (ret) {
		dev_err(&pdev->dev, "irq request failed\n");
		goto out_clk;
	}

	ret = devm_spi_register_controller(dev, ctlr);
	if (ret) {
		dev_err(&pdev->dev, "spi controller registration failed\n");
		goto out_clk;
	}

	init_completion(&spisg->completion);

	pm_runtime_put(&spisg->pdev->dev);

	return 0;
out_clk:
	if (spisg->core)
		clk_disable_unprepare(spisg->core);
	clk_disable_unprepare(spisg->pclk);
out_controller:
	spi_controller_put(ctlr);

	return ret;
}

static void aml_spisg_remove(struct platform_device *pdev)
{
	struct spisg_device *spisg = platform_get_drvdata(pdev);

	if (!pm_runtime_suspended(&pdev->dev)) {
		pinctrl_pm_select_sleep_state(&spisg->pdev->dev);
		clk_disable_unprepare(spisg->core);
		clk_disable_unprepare(spisg->pclk);
	}
}

static int spisg_suspend_runtime(struct device *dev)
{
	struct spisg_device *spisg = dev_get_drvdata(dev);

	pinctrl_pm_select_sleep_state(&spisg->pdev->dev);
	clk_disable_unprepare(spisg->sclk);
	clk_disable_unprepare(spisg->core);

	return 0;
}

static int spisg_resume_runtime(struct device *dev)
{
	struct spisg_device *spisg = dev_get_drvdata(dev);

	clk_prepare_enable(spisg->core);
	clk_prepare_enable(spisg->sclk);
	pinctrl_pm_select_default_state(&spisg->pdev->dev);

	return 0;
}

static const struct dev_pm_ops amlogic_spisg_pm_ops = {
	.runtime_suspend	= spisg_suspend_runtime,
	.runtime_resume		= spisg_resume_runtime,
};

static const struct of_device_id amlogic_spisg_of_match[] = {
	{
		.compatible = "amlogic,a4-spisg",
	},

	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, amlogic_spisg_of_match);

static struct platform_driver amlogic_spisg_driver = {
	.probe = aml_spisg_probe,
	.remove = aml_spisg_remove,
	.driver  = {
		.name = "amlogic-spisg",
		.of_match_table = amlogic_spisg_of_match,
		.pm = &amlogic_spisg_pm_ops,
	},
};

module_platform_driver(amlogic_spisg_driver);

MODULE_DESCRIPTION("Amlogic SPI Scatter-Gather Controller driver");
MODULE_AUTHOR("Sunny Luo <sunny.luo@amlogic.com>");
MODULE_LICENSE("GPL");