summaryrefslogtreecommitdiff
path: root/rust/kernel/alloc/allocator.rs
blob: 63bfb91b36712a6fcf04b59f2fe2359ee85e3fce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
// SPDX-License-Identifier: GPL-2.0

//! Allocator support.
//!
//! Documentation for the kernel's memory allocators can found in the "Memory Allocation Guide"
//! linked below. For instance, this includes the concept of "get free page" (GFP) flags and the
//! typical application of the different kernel allocators.
//!
//! Reference: <https://docs.kernel.org/core-api/memory-allocation.html>

use super::Flags;
use core::alloc::Layout;
use core::ptr;
use core::ptr::NonNull;

use crate::alloc::{AllocError, Allocator, NumaNode};
use crate::bindings;
use crate::page;

const ARCH_KMALLOC_MINALIGN: usize = bindings::ARCH_KMALLOC_MINALIGN;

mod iter;
pub use self::iter::VmallocPageIter;

/// The contiguous kernel allocator.
///
/// `Kmalloc` is typically used for physically contiguous allocations up to page size, but also
/// supports larger allocations up to `bindings::KMALLOC_MAX_SIZE`, which is hardware specific.
///
/// For more details see [self].
pub struct Kmalloc;

/// The virtually contiguous kernel allocator.
///
/// `Vmalloc` allocates pages from the page level allocator and maps them into the contiguous kernel
/// virtual space. It is typically used for large allocations. The memory allocated with this
/// allocator is not physically contiguous.
///
/// For more details see [self].
pub struct Vmalloc;

/// The kvmalloc kernel allocator.
///
/// `KVmalloc` attempts to allocate memory with `Kmalloc` first, but falls back to `Vmalloc` upon
/// failure. This allocator is typically used when the size for the requested allocation is not
/// known and may exceed the capabilities of `Kmalloc`.
///
/// For more details see [self].
pub struct KVmalloc;

/// # Invariants
///
/// One of the following: `krealloc_node_align`, `vrealloc_node_align`, `kvrealloc_node_align`.
struct ReallocFunc(
    unsafe extern "C" fn(
        *const crate::ffi::c_void,
        usize,
        crate::ffi::c_ulong,
        u32,
        crate::ffi::c_int,
    ) -> *mut crate::ffi::c_void,
);

impl ReallocFunc {
    // INVARIANT: `krealloc_node_align` satisfies the type invariants.
    const KREALLOC: Self = Self(bindings::krealloc_node_align);

    // INVARIANT: `vrealloc_node_align` satisfies the type invariants.
    const VREALLOC: Self = Self(bindings::vrealloc_node_align);

    // INVARIANT: `kvrealloc_node_align` satisfies the type invariants.
    const KVREALLOC: Self = Self(bindings::kvrealloc_node_align);

    /// # Safety
    ///
    /// This method has the same safety requirements as [`Allocator::realloc`].
    ///
    /// # Guarantees
    ///
    /// This method has the same guarantees as `Allocator::realloc`. Additionally
    /// - it accepts any pointer to a valid memory allocation allocated by this function.
    /// - memory allocated by this function remains valid until it is passed to this function.
    #[inline]
    unsafe fn call(
        &self,
        ptr: Option<NonNull<u8>>,
        layout: Layout,
        old_layout: Layout,
        flags: Flags,
        nid: NumaNode,
    ) -> Result<NonNull<[u8]>, AllocError> {
        let size = layout.size();
        let ptr = match ptr {
            Some(ptr) => {
                if old_layout.size() == 0 {
                    ptr::null()
                } else {
                    ptr.as_ptr()
                }
            }
            None => ptr::null(),
        };

        // SAFETY:
        // - `self.0` is one of `krealloc`, `vrealloc`, `kvrealloc` and thus only requires that
        //   `ptr` is NULL or valid.
        // - `ptr` is either NULL or valid by the safety requirements of this function.
        //
        // GUARANTEE:
        // - `self.0` is one of `krealloc`, `vrealloc`, `kvrealloc`.
        // - Those functions provide the guarantees of this function.
        let raw_ptr = unsafe {
            // If `size == 0` and `ptr != NULL` the memory behind the pointer is freed.
            self.0(ptr.cast(), size, layout.align(), flags.0, nid.0).cast()
        };

        let ptr = if size == 0 {
            crate::alloc::dangling_from_layout(layout)
        } else {
            NonNull::new(raw_ptr).ok_or(AllocError)?
        };

        Ok(NonNull::slice_from_raw_parts(ptr, size))
    }
}

impl Kmalloc {
    /// Returns a [`Layout`] that makes [`Kmalloc`] fulfill the requested size and alignment of
    /// `layout`.
    pub fn aligned_layout(layout: Layout) -> Layout {
        // Note that `layout.size()` (after padding) is guaranteed to be a multiple of
        // `layout.align()` which together with the slab guarantees means that `Kmalloc` will return
        // a properly aligned object (see comments in `kmalloc()` for more information).
        layout.pad_to_align()
    }
}

// SAFETY: `realloc` delegates to `ReallocFunc::call`, which guarantees that
// - memory remains valid until it is explicitly freed,
// - passing a pointer to a valid memory allocation is OK,
// - `realloc` satisfies the guarantees, since `ReallocFunc::call` has the same.
unsafe impl Allocator for Kmalloc {
    const MIN_ALIGN: usize = ARCH_KMALLOC_MINALIGN;

    #[inline]
    unsafe fn realloc(
        ptr: Option<NonNull<u8>>,
        layout: Layout,
        old_layout: Layout,
        flags: Flags,
        nid: NumaNode,
    ) -> Result<NonNull<[u8]>, AllocError> {
        let layout = Kmalloc::aligned_layout(layout);

        // SAFETY: `ReallocFunc::call` has the same safety requirements as `Allocator::realloc`.
        unsafe { ReallocFunc::KREALLOC.call(ptr, layout, old_layout, flags, nid) }
    }
}

impl Vmalloc {
    /// Convert a pointer to a [`Vmalloc`] allocation to a [`page::BorrowedPage`].
    ///
    /// # Examples
    ///
    /// ```
    /// # use core::ptr::{NonNull, from_mut};
    /// # use kernel::{page, prelude::*};
    /// use kernel::alloc::allocator::Vmalloc;
    ///
    /// let mut vbox = VBox::<[u8; page::PAGE_SIZE]>::new_uninit(GFP_KERNEL)?;
    ///
    /// {
    ///     // SAFETY: By the type invariant of `Box` the inner pointer of `vbox` is non-null.
    ///     let ptr = unsafe { NonNull::new_unchecked(from_mut(&mut *vbox)) };
    ///
    ///     // SAFETY:
    ///     // `ptr` is a valid pointer to a `Vmalloc` allocation.
    ///     // `ptr` is valid for the entire lifetime of `page`.
    ///     let page = unsafe { Vmalloc::to_page(ptr.cast()) };
    ///
    ///     // SAFETY: There is no concurrent read or write to the same page.
    ///     unsafe { page.fill_zero_raw(0, page::PAGE_SIZE)? };
    /// }
    /// # Ok::<(), Error>(())
    /// ```
    ///
    /// # Safety
    ///
    /// - `ptr` must be a valid pointer to a [`Vmalloc`] allocation.
    /// - `ptr` must remain valid for the entire duration of `'a`.
    pub unsafe fn to_page<'a>(ptr: NonNull<u8>) -> page::BorrowedPage<'a> {
        // SAFETY: `ptr` is a valid pointer to `Vmalloc` memory.
        let page = unsafe { bindings::vmalloc_to_page(ptr.as_ptr().cast()) };

        // SAFETY: `vmalloc_to_page` returns a valid pointer to a `struct page` for a valid pointer
        // to `Vmalloc` memory.
        let page = unsafe { NonNull::new_unchecked(page) };

        // SAFETY:
        // - `page` is a valid pointer to a `struct page`, given that by the safety requirements of
        //   this function `ptr` is a valid pointer to a `Vmalloc` allocation.
        // - By the safety requirements of this function `ptr` is valid for the entire lifetime of
        //   `'a`.
        unsafe { page::BorrowedPage::from_raw(page) }
    }
}

// SAFETY: `realloc` delegates to `ReallocFunc::call`, which guarantees that
// - memory remains valid until it is explicitly freed,
// - passing a pointer to a valid memory allocation is OK,
// - `realloc` satisfies the guarantees, since `ReallocFunc::call` has the same.
unsafe impl Allocator for Vmalloc {
    const MIN_ALIGN: usize = kernel::page::PAGE_SIZE;

    #[inline]
    unsafe fn realloc(
        ptr: Option<NonNull<u8>>,
        layout: Layout,
        old_layout: Layout,
        flags: Flags,
        nid: NumaNode,
    ) -> Result<NonNull<[u8]>, AllocError> {
        // SAFETY: If not `None`, `ptr` is guaranteed to point to valid memory, which was previously
        // allocated with this `Allocator`.
        unsafe { ReallocFunc::VREALLOC.call(ptr, layout, old_layout, flags, nid) }
    }
}

// SAFETY: `realloc` delegates to `ReallocFunc::call`, which guarantees that
// - memory remains valid until it is explicitly freed,
// - passing a pointer to a valid memory allocation is OK,
// - `realloc` satisfies the guarantees, since `ReallocFunc::call` has the same.
unsafe impl Allocator for KVmalloc {
    const MIN_ALIGN: usize = ARCH_KMALLOC_MINALIGN;

    #[inline]
    unsafe fn realloc(
        ptr: Option<NonNull<u8>>,
        layout: Layout,
        old_layout: Layout,
        flags: Flags,
        nid: NumaNode,
    ) -> Result<NonNull<[u8]>, AllocError> {
        // `KVmalloc` may use the `Kmalloc` backend, hence we have to enforce a `Kmalloc`
        // compatible layout.
        let layout = Kmalloc::aligned_layout(layout);

        // SAFETY: If not `None`, `ptr` is guaranteed to point to valid memory, which was previously
        // allocated with this `Allocator`.
        unsafe { ReallocFunc::KVREALLOC.call(ptr, layout, old_layout, flags, nid) }
    }
}

#[macros::kunit_tests(rust_allocator)]
mod tests {
    use super::*;
    use core::mem::MaybeUninit;
    use kernel::prelude::*;

    #[test]
    fn test_alignment() -> Result {
        const TEST_SIZE: usize = 1024;
        const TEST_LARGE_ALIGN_SIZE: usize = kernel::page::PAGE_SIZE * 4;

        // These two structs are used to test allocating aligned memory.
        // they don't need to be accessed, so they're marked as dead_code.
        #[expect(dead_code)]
        #[repr(align(128))]
        struct Blob([u8; TEST_SIZE]);
        #[expect(dead_code)]
        #[repr(align(8192))]
        struct LargeAlignBlob([u8; TEST_LARGE_ALIGN_SIZE]);

        struct TestAlign<T, A: Allocator>(Box<MaybeUninit<T>, A>);
        impl<T, A: Allocator> TestAlign<T, A> {
            fn new() -> Result<Self> {
                Ok(Self(Box::<_, A>::new_uninit(GFP_KERNEL)?))
            }

            fn is_aligned_to(&self, align: usize) -> bool {
                assert!(align.is_power_of_two());

                let addr = self.0.as_ptr() as usize;
                addr & (align - 1) == 0
            }
        }

        let ta = TestAlign::<Blob, Kmalloc>::new()?;
        assert!(ta.is_aligned_to(128));

        let ta = TestAlign::<LargeAlignBlob, Kmalloc>::new()?;
        assert!(ta.is_aligned_to(8192));

        let ta = TestAlign::<Blob, Vmalloc>::new()?;
        assert!(ta.is_aligned_to(128));

        let ta = TestAlign::<LargeAlignBlob, Vmalloc>::new()?;
        assert!(ta.is_aligned_to(8192));

        let ta = TestAlign::<Blob, KVmalloc>::new()?;
        assert!(ta.is_aligned_to(128));

        let ta = TestAlign::<LargeAlignBlob, KVmalloc>::new()?;
        assert!(ta.is_aligned_to(8192));

        Ok(())
    }
}