1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
|
// SPDX-License-Identifier: GPL-2.0
//! Generic devices that are part of the kernel's driver model.
//!
//! C header: [`include/linux/device.h`](srctree/include/linux/device.h)
use crate::{
bindings,
types::{ARef, ForeignOwnable, Opaque},
};
use core::{fmt, marker::PhantomData, ptr};
#[cfg(CONFIG_PRINTK)]
use crate::c_str;
pub mod property;
/// The core representation of a device in the kernel's driver model.
///
/// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either
/// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a
/// certain scope or as [`ARef<Device>`], owning a dedicated reference count.
///
/// # Device Types
///
/// A [`Device`] can represent either a bus device or a class device.
///
/// ## Bus Devices
///
/// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of
/// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific
/// bus type, which facilitates matching devices with appropriate drivers based on IDs or other
/// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`.
///
/// ## Class Devices
///
/// A class device is a [`Device`] that is associated with a logical category of functionality
/// rather than a physical bus. Examples of classes include block devices, network interfaces, sound
/// cards, and input devices. Class devices are grouped under a common class and exposed to
/// userspace via entries in `/sys/class/<class-name>/`.
///
/// # Device Context
///
/// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of
/// a [`Device`].
///
/// As the name indicates, this type state represents the context of the scope the [`Device`]
/// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is
/// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference.
///
/// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`].
///
/// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by
/// itself has no additional requirements.
///
/// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`]
/// type for the corresponding scope the [`Device`] reference is created in.
///
/// All [`DeviceContext`] types other than [`Normal`] are intended to be used with
/// [bus devices](#bus-devices) only.
///
/// # Implementing Bus Devices
///
/// This section provides a guideline to implement bus specific devices, such as [`pci::Device`] or
/// [`platform::Device`].
///
/// A bus specific device should be defined as follows.
///
/// ```ignore
/// #[repr(transparent)]
/// pub struct Device<Ctx: device::DeviceContext = device::Normal>(
/// Opaque<bindings::bus_device_type>,
/// PhantomData<Ctx>,
/// );
/// ```
///
/// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device`
/// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other
/// [`DeviceContext`], since all other device context types are only valid within a certain scope.
///
/// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device
/// implementations should call the [`impl_device_context_deref`] macro as shown below.
///
/// ```ignore
/// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s
/// // generic argument.
/// kernel::impl_device_context_deref!(unsafe { Device });
/// ```
///
/// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement
/// the following macro call.
///
/// ```ignore
/// kernel::impl_device_context_into_aref!(Device);
/// ```
///
/// Bus devices should also implement the following [`AsRef`] implementation, such that users can
/// easily derive a generic [`Device`] reference.
///
/// ```ignore
/// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> {
/// fn as_ref(&self) -> &device::Device<Ctx> {
/// ...
/// }
/// }
/// ```
///
/// # Implementing Class Devices
///
/// Class device implementations require less infrastructure and depend slightly more on the
/// specific subsystem.
///
/// An example implementation for a class device could look like this.
///
/// ```ignore
/// #[repr(C)]
/// pub struct Device<T: class::Driver> {
/// dev: Opaque<bindings::class_device_type>,
/// data: T::Data,
/// }
/// ```
///
/// This class device uses the sub-classing pattern to embed the driver's private data within the
/// allocation of the class device. For this to be possible the class device is generic over the
/// class specific `Driver` trait implementation.
///
/// Just like any device, class devices are reference counted and should hence implement
/// [`AlwaysRefCounted`] for `Device`.
///
/// Class devices should also implement the following [`AsRef`] implementation, such that users can
/// easily derive a generic [`Device`] reference.
///
/// ```ignore
/// impl<T: class::Driver> AsRef<device::Device> for Device<T> {
/// fn as_ref(&self) -> &device::Device {
/// ...
/// }
/// }
/// ```
///
/// An example for a class device implementation is [`drm::Device`].
///
/// # Invariants
///
/// A `Device` instance represents a valid `struct device` created by the C portion of the kernel.
///
/// Instances of this type are always reference-counted, that is, a call to `get_device` ensures
/// that the allocation remains valid at least until the matching call to `put_device`.
///
/// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be
/// dropped from any thread.
///
/// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
/// [`drm::Device`]: kernel::drm::Device
/// [`impl_device_context_deref`]: kernel::impl_device_context_deref
/// [`pci::Device`]: kernel::pci::Device
/// [`platform::Device`]: kernel::platform::Device
#[repr(transparent)]
pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>);
impl Device {
/// Creates a new reference-counted abstraction instance of an existing `struct device` pointer.
///
/// # Safety
///
/// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
/// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
/// can't drop to zero, for the duration of this function call.
///
/// It must also be ensured that `bindings::device::release` can be called from any thread.
/// While not officially documented, this should be the case for any `struct device`.
pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> {
// SAFETY: By the safety requirements ptr is valid
unsafe { Self::from_raw(ptr) }.into()
}
/// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>).
///
/// # Safety
///
/// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>)
/// only lives as long as it can be guaranteed that the [`Device`] is actually bound.
pub unsafe fn as_bound(&self) -> &Device<Bound> {
let ptr = core::ptr::from_ref(self);
// CAST: By the safety requirements the caller is responsible to guarantee that the
// returned reference only lives as long as the device is actually bound.
let ptr = ptr.cast();
// SAFETY:
// - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid.
// - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`.
unsafe { &*ptr }
}
}
impl Device<CoreInternal> {
/// Store a pointer to the bound driver's private data.
pub fn set_drvdata(&self, data: impl ForeignOwnable) {
// SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) }
}
/// Take ownership of the private data stored in this [`Device`].
///
/// # Safety
///
/// - Must only be called once after a preceding call to [`Device::set_drvdata`].
/// - The type `T` must match the type of the `ForeignOwnable` previously stored by
/// [`Device::set_drvdata`].
pub unsafe fn drvdata_obtain<T: ForeignOwnable>(&self) -> T {
// SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
// SAFETY:
// - By the safety requirements of this function, `ptr` comes from a previous call to
// `into_foreign()`.
// - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
// in `into_foreign()`.
unsafe { T::from_foreign(ptr.cast()) }
}
/// Borrow the driver's private data bound to this [`Device`].
///
/// # Safety
///
/// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
/// [`Device::drvdata_obtain`].
/// - The type `T` must match the type of the `ForeignOwnable` previously stored by
/// [`Device::set_drvdata`].
pub unsafe fn drvdata_borrow<T: ForeignOwnable>(&self) -> T::Borrowed<'_> {
// SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
// SAFETY:
// - By the safety requirements of this function, `ptr` comes from a previous call to
// `into_foreign()`.
// - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
// in `into_foreign()`.
unsafe { T::borrow(ptr.cast()) }
}
}
impl<Ctx: DeviceContext> Device<Ctx> {
/// Obtain the raw `struct device *`.
pub(crate) fn as_raw(&self) -> *mut bindings::device {
self.0.get()
}
/// Returns a reference to the parent device, if any.
#[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))]
pub(crate) fn parent(&self) -> Option<&Self> {
// SAFETY:
// - By the type invariant `self.as_raw()` is always valid.
// - The parent device is only ever set at device creation.
let parent = unsafe { (*self.as_raw()).parent };
if parent.is_null() {
None
} else {
// SAFETY:
// - Since `parent` is not NULL, it must be a valid pointer to a `struct device`.
// - `parent` is valid for the lifetime of `self`, since a `struct device` holds a
// reference count of its parent.
Some(unsafe { Self::from_raw(parent) })
}
}
/// Convert a raw C `struct device` pointer to a `&'a Device`.
///
/// # Safety
///
/// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
/// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
/// can't drop to zero, for the duration of this function call and the entire duration when the
/// returned reference exists.
pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self {
// SAFETY: Guaranteed by the safety requirements of the function.
unsafe { &*ptr.cast() }
}
/// Prints an emergency-level message (level 0) prefixed with device information.
///
/// More details are available from [`dev_emerg`].
///
/// [`dev_emerg`]: crate::dev_emerg
pub fn pr_emerg(&self, args: fmt::Arguments<'_>) {
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
unsafe { self.printk(bindings::KERN_EMERG, args) };
}
/// Prints an alert-level message (level 1) prefixed with device information.
///
/// More details are available from [`dev_alert`].
///
/// [`dev_alert`]: crate::dev_alert
pub fn pr_alert(&self, args: fmt::Arguments<'_>) {
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
unsafe { self.printk(bindings::KERN_ALERT, args) };
}
/// Prints a critical-level message (level 2) prefixed with device information.
///
/// More details are available from [`dev_crit`].
///
/// [`dev_crit`]: crate::dev_crit
pub fn pr_crit(&self, args: fmt::Arguments<'_>) {
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
unsafe { self.printk(bindings::KERN_CRIT, args) };
}
/// Prints an error-level message (level 3) prefixed with device information.
///
/// More details are available from [`dev_err`].
///
/// [`dev_err`]: crate::dev_err
pub fn pr_err(&self, args: fmt::Arguments<'_>) {
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
unsafe { self.printk(bindings::KERN_ERR, args) };
}
/// Prints a warning-level message (level 4) prefixed with device information.
///
/// More details are available from [`dev_warn`].
///
/// [`dev_warn`]: crate::dev_warn
pub fn pr_warn(&self, args: fmt::Arguments<'_>) {
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
unsafe { self.printk(bindings::KERN_WARNING, args) };
}
/// Prints a notice-level message (level 5) prefixed with device information.
///
/// More details are available from [`dev_notice`].
///
/// [`dev_notice`]: crate::dev_notice
pub fn pr_notice(&self, args: fmt::Arguments<'_>) {
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
unsafe { self.printk(bindings::KERN_NOTICE, args) };
}
/// Prints an info-level message (level 6) prefixed with device information.
///
/// More details are available from [`dev_info`].
///
/// [`dev_info`]: crate::dev_info
pub fn pr_info(&self, args: fmt::Arguments<'_>) {
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
unsafe { self.printk(bindings::KERN_INFO, args) };
}
/// Prints a debug-level message (level 7) prefixed with device information.
///
/// More details are available from [`dev_dbg`].
///
/// [`dev_dbg`]: crate::dev_dbg
pub fn pr_dbg(&self, args: fmt::Arguments<'_>) {
if cfg!(debug_assertions) {
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
unsafe { self.printk(bindings::KERN_DEBUG, args) };
}
}
/// Prints the provided message to the console.
///
/// # Safety
///
/// Callers must ensure that `klevel` is null-terminated; in particular, one of the
/// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc.
#[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) {
// SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw`
// is valid because `self` is valid. The "%pA" format string expects a pointer to
// `fmt::Arguments`, which is what we're passing as the last argument.
#[cfg(CONFIG_PRINTK)]
unsafe {
bindings::_dev_printk(
klevel.as_ptr().cast::<crate::ffi::c_char>(),
self.as_raw(),
c_str!("%pA").as_char_ptr(),
core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(),
)
};
}
/// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`].
pub fn fwnode(&self) -> Option<&property::FwNode> {
// SAFETY: `self` is valid.
let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) };
if fwnode_handle.is_null() {
return None;
}
// SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We
// return a reference instead of an `ARef<FwNode>` because `dev_fwnode()`
// doesn't increment the refcount. It is safe to cast from a
// `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is
// defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`.
Some(unsafe { &*fwnode_handle.cast() })
}
}
// SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic
// argument.
kernel::impl_device_context_deref!(unsafe { Device });
kernel::impl_device_context_into_aref!(Device);
// SAFETY: Instances of `Device` are always reference-counted.
unsafe impl crate::types::AlwaysRefCounted for Device {
fn inc_ref(&self) {
// SAFETY: The existence of a shared reference guarantees that the refcount is non-zero.
unsafe { bindings::get_device(self.as_raw()) };
}
unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
// SAFETY: The safety requirements guarantee that the refcount is non-zero.
unsafe { bindings::put_device(obj.cast().as_ptr()) }
}
}
// SAFETY: As by the type invariant `Device` can be sent to any thread.
unsafe impl Send for Device {}
// SAFETY: `Device` can be shared among threads because all immutable methods are protected by the
// synchronization in `struct device`.
unsafe impl Sync for Device {}
/// Marker trait for the context or scope of a bus specific device.
///
/// [`DeviceContext`] is a marker trait for types representing the context of a bus specific
/// [`Device`].
///
/// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`].
///
/// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that
/// defines which [`DeviceContext`] type can be derived from another. For instance, any
/// [`Device<Core>`] can dereference to a [`Device<Bound>`].
///
/// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types.
///
/// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`]
///
/// Bus devices can automatically implement the dereference hierarchy by using
/// [`impl_device_context_deref`].
///
/// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes
/// from the specific scope the [`Device`] reference is valid in.
///
/// [`impl_device_context_deref`]: kernel::impl_device_context_deref
pub trait DeviceContext: private::Sealed {}
/// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`].
///
/// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid
/// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement
/// [`AlwaysRefCounted`] for.
///
/// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
pub struct Normal;
/// The [`Core`] context is the context of a bus specific device when it appears as argument of
/// any bus specific callback, such as `probe()`.
///
/// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus
/// callback it appears in. It is intended to be used for synchronization purposes. Bus device
/// implementations can implement methods for [`Device<Core>`], such that they can only be called
/// from bus callbacks.
pub struct Core;
/// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus
/// abstraction.
///
/// The internal core context is intended to be used in exactly the same way as the [`Core`]
/// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus
/// abstraction.
///
/// This context mainly exists to share generic [`Device`] infrastructure that should only be called
/// from bus callbacks with bus abstractions, but without making them accessible for drivers.
pub struct CoreInternal;
/// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to
/// be bound to a driver.
///
/// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`]
/// reference, the [`Device`] is guaranteed to be bound to a driver.
///
/// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound,
/// which can be proven with the [`Bound`] device context.
///
/// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should
/// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit
/// from optimizations for accessing device resources, see also [`Devres::access`].
///
/// [`Devres`]: kernel::devres::Devres
/// [`Devres::access`]: kernel::devres::Devres::access
/// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation
pub struct Bound;
mod private {
pub trait Sealed {}
impl Sealed for super::Bound {}
impl Sealed for super::Core {}
impl Sealed for super::CoreInternal {}
impl Sealed for super::Normal {}
}
impl DeviceContext for Bound {}
impl DeviceContext for Core {}
impl DeviceContext for CoreInternal {}
impl DeviceContext for Normal {}
/// # Safety
///
/// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
/// generic argument of `$device`.
#[doc(hidden)]
#[macro_export]
macro_rules! __impl_device_context_deref {
(unsafe { $device:ident, $src:ty => $dst:ty }) => {
impl ::core::ops::Deref for $device<$src> {
type Target = $device<$dst>;
fn deref(&self) -> &Self::Target {
let ptr: *const Self = self;
// CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the
// safety requirement of the macro.
let ptr = ptr.cast::<Self::Target>();
// SAFETY: `ptr` was derived from `&self`.
unsafe { &*ptr }
}
}
};
}
/// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus
/// specific) device.
///
/// # Safety
///
/// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
/// generic argument of `$device`.
#[macro_export]
macro_rules! impl_device_context_deref {
(unsafe { $device:ident }) => {
// SAFETY: This macro has the exact same safety requirement as
// `__impl_device_context_deref!`.
::kernel::__impl_device_context_deref!(unsafe {
$device,
$crate::device::CoreInternal => $crate::device::Core
});
// SAFETY: This macro has the exact same safety requirement as
// `__impl_device_context_deref!`.
::kernel::__impl_device_context_deref!(unsafe {
$device,
$crate::device::Core => $crate::device::Bound
});
// SAFETY: This macro has the exact same safety requirement as
// `__impl_device_context_deref!`.
::kernel::__impl_device_context_deref!(unsafe {
$device,
$crate::device::Bound => $crate::device::Normal
});
};
}
#[doc(hidden)]
#[macro_export]
macro_rules! __impl_device_context_into_aref {
($src:ty, $device:tt) => {
impl ::core::convert::From<&$device<$src>> for $crate::types::ARef<$device> {
fn from(dev: &$device<$src>) -> Self {
(&**dev).into()
}
}
};
}
/// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an
/// `ARef<Device>`.
#[macro_export]
macro_rules! impl_device_context_into_aref {
($device:tt) => {
::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device);
::kernel::__impl_device_context_into_aref!($crate::device::Core, $device);
::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device);
};
}
#[doc(hidden)]
#[macro_export]
macro_rules! dev_printk {
($method:ident, $dev:expr, $($f:tt)*) => {
{
($dev).$method(::core::format_args!($($f)*));
}
}
}
/// Prints an emergency-level message (level 0) prefixed with device information.
///
/// This level should be used if the system is unusable.
///
/// Equivalent to the kernel's `dev_emerg` macro.
///
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
/// [`core::fmt`] and [`std::format!`].
///
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
///
/// # Examples
///
/// ```
/// # use kernel::device::Device;
///
/// fn example(dev: &Device) {
/// dev_emerg!(dev, "hello {}\n", "there");
/// }
/// ```
#[macro_export]
macro_rules! dev_emerg {
($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); }
}
/// Prints an alert-level message (level 1) prefixed with device information.
///
/// This level should be used if action must be taken immediately.
///
/// Equivalent to the kernel's `dev_alert` macro.
///
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
/// [`core::fmt`] and [`std::format!`].
///
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
///
/// # Examples
///
/// ```
/// # use kernel::device::Device;
///
/// fn example(dev: &Device) {
/// dev_alert!(dev, "hello {}\n", "there");
/// }
/// ```
#[macro_export]
macro_rules! dev_alert {
($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); }
}
/// Prints a critical-level message (level 2) prefixed with device information.
///
/// This level should be used in critical conditions.
///
/// Equivalent to the kernel's `dev_crit` macro.
///
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
/// [`core::fmt`] and [`std::format!`].
///
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
///
/// # Examples
///
/// ```
/// # use kernel::device::Device;
///
/// fn example(dev: &Device) {
/// dev_crit!(dev, "hello {}\n", "there");
/// }
/// ```
#[macro_export]
macro_rules! dev_crit {
($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); }
}
/// Prints an error-level message (level 3) prefixed with device information.
///
/// This level should be used in error conditions.
///
/// Equivalent to the kernel's `dev_err` macro.
///
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
/// [`core::fmt`] and [`std::format!`].
///
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
///
/// # Examples
///
/// ```
/// # use kernel::device::Device;
///
/// fn example(dev: &Device) {
/// dev_err!(dev, "hello {}\n", "there");
/// }
/// ```
#[macro_export]
macro_rules! dev_err {
($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); }
}
/// Prints a warning-level message (level 4) prefixed with device information.
///
/// This level should be used in warning conditions.
///
/// Equivalent to the kernel's `dev_warn` macro.
///
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
/// [`core::fmt`] and [`std::format!`].
///
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
///
/// # Examples
///
/// ```
/// # use kernel::device::Device;
///
/// fn example(dev: &Device) {
/// dev_warn!(dev, "hello {}\n", "there");
/// }
/// ```
#[macro_export]
macro_rules! dev_warn {
($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); }
}
/// Prints a notice-level message (level 5) prefixed with device information.
///
/// This level should be used in normal but significant conditions.
///
/// Equivalent to the kernel's `dev_notice` macro.
///
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
/// [`core::fmt`] and [`std::format!`].
///
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
///
/// # Examples
///
/// ```
/// # use kernel::device::Device;
///
/// fn example(dev: &Device) {
/// dev_notice!(dev, "hello {}\n", "there");
/// }
/// ```
#[macro_export]
macro_rules! dev_notice {
($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); }
}
/// Prints an info-level message (level 6) prefixed with device information.
///
/// This level should be used for informational messages.
///
/// Equivalent to the kernel's `dev_info` macro.
///
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
/// [`core::fmt`] and [`std::format!`].
///
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
///
/// # Examples
///
/// ```
/// # use kernel::device::Device;
///
/// fn example(dev: &Device) {
/// dev_info!(dev, "hello {}\n", "there");
/// }
/// ```
#[macro_export]
macro_rules! dev_info {
($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); }
}
/// Prints a debug-level message (level 7) prefixed with device information.
///
/// This level should be used for debug messages.
///
/// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet.
///
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
/// [`core::fmt`] and [`std::format!`].
///
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
///
/// # Examples
///
/// ```
/// # use kernel::device::Device;
///
/// fn example(dev: &Device) {
/// dev_dbg!(dev, "hello {}\n", "there");
/// }
/// ```
#[macro_export]
macro_rules! dev_dbg {
($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); }
}
|