summaryrefslogtreecommitdiff
path: root/rust/kernel/maple_tree.rs
blob: e72eec56bf5772ada09239f47748cd649212d8b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
// SPDX-License-Identifier: GPL-2.0

//! Maple trees.
//!
//! C header: [`include/linux/maple_tree.h`](srctree/include/linux/maple_tree.h)
//!
//! Reference: <https://docs.kernel.org/core-api/maple_tree.html>

use core::{
    marker::PhantomData,
    ops::{Bound, RangeBounds},
    ptr,
};

use kernel::{
    alloc::Flags,
    error::to_result,
    prelude::*,
    types::{ForeignOwnable, Opaque},
};

/// A maple tree optimized for storing non-overlapping ranges.
///
/// # Invariants
///
/// Each range in the maple tree owns an instance of `T`.
#[pin_data(PinnedDrop)]
#[repr(transparent)]
pub struct MapleTree<T: ForeignOwnable> {
    #[pin]
    tree: Opaque<bindings::maple_tree>,
    _p: PhantomData<T>,
}

/// A maple tree with `MT_FLAGS_ALLOC_RANGE` set.
///
/// All methods on [`MapleTree`] are also accessible on this type.
#[pin_data]
#[repr(transparent)]
pub struct MapleTreeAlloc<T: ForeignOwnable> {
    #[pin]
    tree: MapleTree<T>,
}

// Make MapleTree methods usable on MapleTreeAlloc.
impl<T: ForeignOwnable> core::ops::Deref for MapleTreeAlloc<T> {
    type Target = MapleTree<T>;

    #[inline]
    fn deref(&self) -> &MapleTree<T> {
        &self.tree
    }
}

#[inline]
fn to_maple_range(range: impl RangeBounds<usize>) -> Option<(usize, usize)> {
    let first = match range.start_bound() {
        Bound::Included(start) => *start,
        Bound::Excluded(start) => start.checked_add(1)?,
        Bound::Unbounded => 0,
    };

    let last = match range.end_bound() {
        Bound::Included(end) => *end,
        Bound::Excluded(end) => end.checked_sub(1)?,
        Bound::Unbounded => usize::MAX,
    };

    if last < first {
        return None;
    }

    Some((first, last))
}

impl<T: ForeignOwnable> MapleTree<T> {
    /// Create a new maple tree.
    ///
    /// The tree will use the regular implementation with a higher branching factor, rather than
    /// the allocation tree.
    #[inline]
    pub fn new() -> impl PinInit<Self> {
        pin_init!(MapleTree {
            // SAFETY: This initializes a maple tree into a pinned slot. The maple tree will be
            // destroyed in Drop before the memory location becomes invalid.
            tree <- Opaque::ffi_init(|slot| unsafe { bindings::mt_init_flags(slot, 0) }),
            _p: PhantomData,
        })
    }

    /// Insert the value at the given index.
    ///
    /// # Errors
    ///
    /// If the maple tree already contains a range using the given index, then this call will
    /// return an [`InsertErrorKind::Occupied`]. It may also fail if memory allocation fails.
    ///
    /// # Examples
    ///
    /// ```
    /// use kernel::maple_tree::{InsertErrorKind, MapleTree};
    ///
    /// let tree = KBox::pin_init(MapleTree::<KBox<i32>>::new(), GFP_KERNEL)?;
    ///
    /// let ten = KBox::new(10, GFP_KERNEL)?;
    /// let twenty = KBox::new(20, GFP_KERNEL)?;
    /// let the_answer = KBox::new(42, GFP_KERNEL)?;
    ///
    /// // These calls will succeed.
    /// tree.insert(100, ten, GFP_KERNEL)?;
    /// tree.insert(101, twenty, GFP_KERNEL)?;
    ///
    /// // This will fail because the index is already in use.
    /// assert_eq!(
    ///     tree.insert(100, the_answer, GFP_KERNEL).unwrap_err().cause,
    ///     InsertErrorKind::Occupied,
    /// );
    /// # Ok::<_, Error>(())
    /// ```
    #[inline]
    pub fn insert(&self, index: usize, value: T, gfp: Flags) -> Result<(), InsertError<T>> {
        self.insert_range(index..=index, value, gfp)
    }

    /// Insert a value to the specified range, failing on overlap.
    ///
    /// This accepts the usual types of Rust ranges using the `..` and `..=` syntax for exclusive
    /// and inclusive ranges respectively. The range must not be empty, and must not overlap with
    /// any existing range.
    ///
    /// # Errors
    ///
    /// If the maple tree already contains an overlapping range, then this call will return an
    /// [`InsertErrorKind::Occupied`]. It may also fail if memory allocation fails or if the
    /// requested range is invalid (e.g. empty).
    ///
    /// # Examples
    ///
    /// ```
    /// use kernel::maple_tree::{InsertErrorKind, MapleTree};
    ///
    /// let tree = KBox::pin_init(MapleTree::<KBox<i32>>::new(), GFP_KERNEL)?;
    ///
    /// let ten = KBox::new(10, GFP_KERNEL)?;
    /// let twenty = KBox::new(20, GFP_KERNEL)?;
    /// let the_answer = KBox::new(42, GFP_KERNEL)?;
    /// let hundred = KBox::new(100, GFP_KERNEL)?;
    ///
    /// // Insert the value 10 at the indices 100 to 499.
    /// tree.insert_range(100..500, ten, GFP_KERNEL)?;
    ///
    /// // Insert the value 20 at the indices 500 to 1000.
    /// tree.insert_range(500..=1000, twenty, GFP_KERNEL)?;
    ///
    /// // This will fail due to overlap with the previous range on index 1000.
    /// assert_eq!(
    ///     tree.insert_range(1000..1200, the_answer, GFP_KERNEL).unwrap_err().cause,
    ///     InsertErrorKind::Occupied,
    /// );
    ///
    /// // When using .. to specify the range, you must be careful to ensure that the range is
    /// // non-empty.
    /// assert_eq!(
    ///     tree.insert_range(72..72, hundred, GFP_KERNEL).unwrap_err().cause,
    ///     InsertErrorKind::InvalidRequest,
    /// );
    /// # Ok::<_, Error>(())
    /// ```
    pub fn insert_range<R>(&self, range: R, value: T, gfp: Flags) -> Result<(), InsertError<T>>
    where
        R: RangeBounds<usize>,
    {
        let Some((first, last)) = to_maple_range(range) else {
            return Err(InsertError {
                value,
                cause: InsertErrorKind::InvalidRequest,
            });
        };

        let ptr = T::into_foreign(value);

        // SAFETY: The tree is valid, and we are passing a pointer to an owned instance of `T`.
        let res = to_result(unsafe {
            bindings::mtree_insert_range(self.tree.get(), first, last, ptr, gfp.as_raw())
        });

        if let Err(err) = res {
            // SAFETY: As `mtree_insert_range` failed, it is safe to take back ownership.
            let value = unsafe { T::from_foreign(ptr) };

            let cause = if err == ENOMEM {
                InsertErrorKind::AllocError(kernel::alloc::AllocError)
            } else if err == EEXIST {
                InsertErrorKind::Occupied
            } else {
                InsertErrorKind::InvalidRequest
            };
            Err(InsertError { value, cause })
        } else {
            Ok(())
        }
    }

    /// Erase the range containing the given index.
    ///
    /// # Examples
    ///
    /// ```
    /// use kernel::maple_tree::MapleTree;
    ///
    /// let tree = KBox::pin_init(MapleTree::<KBox<i32>>::new(), GFP_KERNEL)?;
    ///
    /// let ten = KBox::new(10, GFP_KERNEL)?;
    /// let twenty = KBox::new(20, GFP_KERNEL)?;
    ///
    /// tree.insert_range(100..500, ten, GFP_KERNEL)?;
    /// tree.insert(67, twenty, GFP_KERNEL)?;
    ///
    /// assert_eq!(tree.erase(67).map(|v| *v), Some(20));
    /// assert_eq!(tree.erase(275).map(|v| *v), Some(10));
    ///
    /// // The previous call erased the entire range, not just index 275.
    /// assert!(tree.erase(127).is_none());
    /// # Ok::<_, Error>(())
    /// ```
    #[inline]
    pub fn erase(&self, index: usize) -> Option<T> {
        // SAFETY: `self.tree` contains a valid maple tree.
        let ret = unsafe { bindings::mtree_erase(self.tree.get(), index) };

        // SAFETY: If the pointer is not null, then we took ownership of a valid instance of `T`
        // from the tree.
        unsafe { T::try_from_foreign(ret) }
    }

    /// Lock the internal spinlock.
    #[inline]
    pub fn lock(&self) -> MapleGuard<'_, T> {
        // SAFETY: It's safe to lock the spinlock in a maple tree.
        unsafe { bindings::spin_lock(self.ma_lock()) };

        // INVARIANT: We just took the spinlock.
        MapleGuard(self)
    }

    #[inline]
    fn ma_lock(&self) -> *mut bindings::spinlock_t {
        // SAFETY: This pointer offset operation stays in-bounds.
        let lock_ptr = unsafe { &raw mut (*self.tree.get()).__bindgen_anon_1.ma_lock };
        lock_ptr.cast()
    }

    /// Free all `T` instances in this tree.
    ///
    /// # Safety
    ///
    /// This frees Rust data referenced by the maple tree without removing it from the maple tree,
    /// leaving it in an invalid state. The caller must ensure that this invalid state cannot be
    /// observed by the end-user.
    unsafe fn free_all_entries(self: Pin<&mut Self>) {
        // SAFETY: The caller provides exclusive access to the entire maple tree, so we have
        // exclusive access to the entire maple tree despite not holding the lock.
        let mut ma_state = unsafe { MaState::new_raw(self.into_ref().get_ref(), 0, usize::MAX) };

        loop {
            // This uses the raw accessor because we're destroying pointers without removing them
            // from the maple tree, which is only valid because this is the destructor.
            let ptr = ma_state.mas_find_raw(usize::MAX);
            if ptr.is_null() {
                break;
            }
            // SAFETY: By the type invariants, this pointer references a valid value of type `T`.
            // By the safety requirements, it is okay to free it without removing it from the maple
            // tree.
            drop(unsafe { T::from_foreign(ptr) });
        }
    }
}

#[pinned_drop]
impl<T: ForeignOwnable> PinnedDrop for MapleTree<T> {
    #[inline]
    fn drop(mut self: Pin<&mut Self>) {
        // We only iterate the tree if the Rust value has a destructor.
        if core::mem::needs_drop::<T>() {
            // SAFETY: Other than the below `mtree_destroy` call, the tree will not be accessed
            // after this call.
            unsafe { self.as_mut().free_all_entries() };
        }

        // SAFETY: The tree is valid, and will not be accessed after this call.
        unsafe { bindings::mtree_destroy(self.tree.get()) };
    }
}

/// A reference to a [`MapleTree`] that owns the inner lock.
///
/// # Invariants
///
/// This guard owns the inner spinlock.
#[must_use = "if unused, the lock will be immediately unlocked"]
pub struct MapleGuard<'tree, T: ForeignOwnable>(&'tree MapleTree<T>);

impl<'tree, T: ForeignOwnable> Drop for MapleGuard<'tree, T> {
    #[inline]
    fn drop(&mut self) {
        // SAFETY: By the type invariants, we hold this spinlock.
        unsafe { bindings::spin_unlock(self.0.ma_lock()) };
    }
}

impl<'tree, T: ForeignOwnable> MapleGuard<'tree, T> {
    /// Create a [`MaState`] protected by this lock guard.
    pub fn ma_state(&mut self, first: usize, end: usize) -> MaState<'_, T> {
        // SAFETY: The `MaState` borrows this `MapleGuard`, so it can also borrow the `MapleGuard`s
        // read/write permissions to the maple tree.
        unsafe { MaState::new_raw(self.0, first, end) }
    }

    /// Load the value at the given index.
    ///
    /// # Examples
    ///
    /// Read the value while holding the spinlock.
    ///
    /// ```
    /// use kernel::maple_tree::MapleTree;
    ///
    /// let tree = KBox::pin_init(MapleTree::<KBox<i32>>::new(), GFP_KERNEL)?;
    ///
    /// let ten = KBox::new(10, GFP_KERNEL)?;
    /// let twenty = KBox::new(20, GFP_KERNEL)?;
    /// tree.insert(100, ten, GFP_KERNEL)?;
    /// tree.insert(200, twenty, GFP_KERNEL)?;
    ///
    /// let mut lock = tree.lock();
    /// assert_eq!(lock.load(100).map(|v| *v), Some(10));
    /// assert_eq!(lock.load(200).map(|v| *v), Some(20));
    /// assert_eq!(lock.load(300).map(|v| *v), None);
    /// # Ok::<_, Error>(())
    /// ```
    ///
    /// Increment refcount under the lock, to keep value alive afterwards.
    ///
    /// ```
    /// use kernel::maple_tree::MapleTree;
    /// use kernel::sync::Arc;
    ///
    /// let tree = KBox::pin_init(MapleTree::<Arc<i32>>::new(), GFP_KERNEL)?;
    ///
    /// let ten = Arc::new(10, GFP_KERNEL)?;
    /// let twenty = Arc::new(20, GFP_KERNEL)?;
    /// tree.insert(100, ten, GFP_KERNEL)?;
    /// tree.insert(200, twenty, GFP_KERNEL)?;
    ///
    /// // Briefly take the lock to increment the refcount.
    /// let value = tree.lock().load(100).map(Arc::from);
    ///
    /// // At this point, another thread might remove the value.
    /// tree.erase(100);
    ///
    /// // But we can still access it because we took a refcount.
    /// assert_eq!(value.map(|v| *v), Some(10));
    /// # Ok::<_, Error>(())
    /// ```
    #[inline]
    pub fn load(&mut self, index: usize) -> Option<T::BorrowedMut<'_>> {
        // SAFETY: `self.tree` contains a valid maple tree.
        let ret = unsafe { bindings::mtree_load(self.0.tree.get(), index) };
        if ret.is_null() {
            return None;
        }

        // SAFETY: If the pointer is not null, then it references a valid instance of `T`. It is
        // safe to borrow the instance mutably because the signature of this function enforces that
        // the mutable borrow is not used after the spinlock is dropped.
        Some(unsafe { T::borrow_mut(ret) })
    }
}

impl<T: ForeignOwnable> MapleTreeAlloc<T> {
    /// Create a new allocation tree.
    pub fn new() -> impl PinInit<Self> {
        let tree = pin_init!(MapleTree {
            // SAFETY: This initializes a maple tree into a pinned slot. The maple tree will be
            // destroyed in Drop before the memory location becomes invalid.
            tree <- Opaque::ffi_init(|slot| unsafe {
                bindings::mt_init_flags(slot, bindings::MT_FLAGS_ALLOC_RANGE)
            }),
            _p: PhantomData,
        });

        pin_init!(MapleTreeAlloc { tree <- tree })
    }

    /// Insert an entry with the given size somewhere in the given range.
    ///
    /// The maple tree will search for a location in the given range where there is space to insert
    /// the new range. If there is not enough available space, then an error will be returned.
    ///
    /// The index of the new range is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use kernel::maple_tree::{MapleTreeAlloc, AllocErrorKind};
    ///
    /// let tree = KBox::pin_init(MapleTreeAlloc::<KBox<i32>>::new(), GFP_KERNEL)?;
    ///
    /// let ten = KBox::new(10, GFP_KERNEL)?;
    /// let twenty = KBox::new(20, GFP_KERNEL)?;
    /// let thirty = KBox::new(30, GFP_KERNEL)?;
    /// let hundred = KBox::new(100, GFP_KERNEL)?;
    ///
    /// // Allocate three ranges.
    /// let idx1 = tree.alloc_range(100, ten, ..1000, GFP_KERNEL)?;
    /// let idx2 = tree.alloc_range(100, twenty, ..1000, GFP_KERNEL)?;
    /// let idx3 = tree.alloc_range(100, thirty, ..1000, GFP_KERNEL)?;
    ///
    /// assert_eq!(idx1, 0);
    /// assert_eq!(idx2, 100);
    /// assert_eq!(idx3, 200);
    ///
    /// // This will fail because the remaining space is too small.
    /// assert_eq!(
    ///     tree.alloc_range(800, hundred, ..1000, GFP_KERNEL).unwrap_err().cause,
    ///     AllocErrorKind::Busy,
    /// );
    /// # Ok::<_, Error>(())
    /// ```
    pub fn alloc_range<R>(
        &self,
        size: usize,
        value: T,
        range: R,
        gfp: Flags,
    ) -> Result<usize, AllocError<T>>
    where
        R: RangeBounds<usize>,
    {
        let Some((min, max)) = to_maple_range(range) else {
            return Err(AllocError {
                value,
                cause: AllocErrorKind::InvalidRequest,
            });
        };

        let ptr = T::into_foreign(value);
        let mut index = 0;

        // SAFETY: The tree is valid, and we are passing a pointer to an owned instance of `T`.
        let res = to_result(unsafe {
            bindings::mtree_alloc_range(
                self.tree.tree.get(),
                &mut index,
                ptr,
                size,
                min,
                max,
                gfp.as_raw(),
            )
        });

        if let Err(err) = res {
            // SAFETY: As `mtree_alloc_range` failed, it is safe to take back ownership.
            let value = unsafe { T::from_foreign(ptr) };

            let cause = if err == ENOMEM {
                AllocErrorKind::AllocError(kernel::alloc::AllocError)
            } else if err == EBUSY {
                AllocErrorKind::Busy
            } else {
                AllocErrorKind::InvalidRequest
            };
            Err(AllocError { value, cause })
        } else {
            Ok(index)
        }
    }
}

/// A helper type used for navigating a [`MapleTree`].
///
/// # Invariants
///
/// For the duration of `'tree`:
///
/// * The `ma_state` references a valid `MapleTree<T>`.
/// * The `ma_state` has read/write access to the tree.
pub struct MaState<'tree, T: ForeignOwnable> {
    state: bindings::ma_state,
    _phantom: PhantomData<&'tree mut MapleTree<T>>,
}

impl<'tree, T: ForeignOwnable> MaState<'tree, T> {
    /// Initialize a new `MaState` with the given tree.
    ///
    /// # Safety
    ///
    /// The caller must ensure that this `MaState` has read/write access to the maple tree.
    #[inline]
    unsafe fn new_raw(mt: &'tree MapleTree<T>, first: usize, end: usize) -> Self {
        // INVARIANT:
        // * Having a reference ensures that the `MapleTree<T>` is valid for `'tree`.
        // * The caller ensures that we have read/write access.
        Self {
            state: bindings::ma_state {
                tree: mt.tree.get(),
                index: first,
                last: end,
                node: ptr::null_mut(),
                status: bindings::maple_status_ma_start,
                min: 0,
                max: usize::MAX,
                alloc: ptr::null_mut(),
                mas_flags: 0,
                store_type: bindings::store_type_wr_invalid,
                ..Default::default()
            },
            _phantom: PhantomData,
        }
    }

    #[inline]
    fn as_raw(&mut self) -> *mut bindings::ma_state {
        &raw mut self.state
    }

    #[inline]
    fn mas_find_raw(&mut self, max: usize) -> *mut c_void {
        // SAFETY: By the type invariants, the `ma_state` is active and we have read/write access
        // to the tree.
        unsafe { bindings::mas_find(self.as_raw(), max) }
    }

    /// Find the next entry in the maple tree.
    ///
    /// # Examples
    ///
    /// Iterate the maple tree.
    ///
    /// ```
    /// use kernel::maple_tree::MapleTree;
    /// use kernel::sync::Arc;
    ///
    /// let tree = KBox::pin_init(MapleTree::<Arc<i32>>::new(), GFP_KERNEL)?;
    ///
    /// let ten = Arc::new(10, GFP_KERNEL)?;
    /// let twenty = Arc::new(20, GFP_KERNEL)?;
    /// tree.insert(100, ten, GFP_KERNEL)?;
    /// tree.insert(200, twenty, GFP_KERNEL)?;
    ///
    /// let mut ma_lock = tree.lock();
    /// let mut iter = ma_lock.ma_state(0, usize::MAX);
    ///
    /// assert_eq!(iter.find(usize::MAX).map(|v| *v), Some(10));
    /// assert_eq!(iter.find(usize::MAX).map(|v| *v), Some(20));
    /// assert!(iter.find(usize::MAX).is_none());
    /// # Ok::<_, Error>(())
    /// ```
    #[inline]
    pub fn find(&mut self, max: usize) -> Option<T::BorrowedMut<'_>> {
        let ret = self.mas_find_raw(max);
        if ret.is_null() {
            return None;
        }

        // SAFETY: If the pointer is not null, then it references a valid instance of `T`. It's
        // safe to access it mutably as the returned reference borrows this `MaState`, and the
        // `MaState` has read/write access to the maple tree.
        Some(unsafe { T::borrow_mut(ret) })
    }
}

/// Error type for failure to insert a new value.
pub struct InsertError<T> {
    /// The value that could not be inserted.
    pub value: T,
    /// The reason for the failure to insert.
    pub cause: InsertErrorKind,
}

/// The reason for the failure to insert.
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub enum InsertErrorKind {
    /// There is already a value in the requested range.
    Occupied,
    /// Failure to allocate memory.
    AllocError(kernel::alloc::AllocError),
    /// The insertion request was invalid.
    InvalidRequest,
}

impl From<InsertErrorKind> for Error {
    #[inline]
    fn from(kind: InsertErrorKind) -> Error {
        match kind {
            InsertErrorKind::Occupied => EEXIST,
            InsertErrorKind::AllocError(kernel::alloc::AllocError) => ENOMEM,
            InsertErrorKind::InvalidRequest => EINVAL,
        }
    }
}

impl<T> From<InsertError<T>> for Error {
    #[inline]
    fn from(insert_err: InsertError<T>) -> Error {
        Error::from(insert_err.cause)
    }
}

/// Error type for failure to insert a new value.
pub struct AllocError<T> {
    /// The value that could not be inserted.
    pub value: T,
    /// The reason for the failure to insert.
    pub cause: AllocErrorKind,
}

/// The reason for the failure to insert.
#[derive(PartialEq, Eq, Copy, Clone)]
pub enum AllocErrorKind {
    /// There is not enough space for the requested allocation.
    Busy,
    /// Failure to allocate memory.
    AllocError(kernel::alloc::AllocError),
    /// The insertion request was invalid.
    InvalidRequest,
}

impl From<AllocErrorKind> for Error {
    #[inline]
    fn from(kind: AllocErrorKind) -> Error {
        match kind {
            AllocErrorKind::Busy => EBUSY,
            AllocErrorKind::AllocError(kernel::alloc::AllocError) => ENOMEM,
            AllocErrorKind::InvalidRequest => EINVAL,
        }
    }
}

impl<T> From<AllocError<T>> for Error {
    #[inline]
    fn from(insert_err: AllocError<T>) -> Error {
        Error::from(insert_err.cause)
    }
}