summaryrefslogtreecommitdiff
path: root/kexec/arch/ppc64/crashdump-ppc64.c
blob: 50e3853dbdcf8e59c5d7814839a9531248b83d15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
/*
 * kexec: Linux boots Linux
 *
 * Created by: R Sharada (sharada@in.ibm.com)
 * Copyright (C) IBM Corporation, 2005. All rights reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation (version 2 of the License).
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <limits.h>
#include <elf.h>
#include <dirent.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "../../kexec.h"
#include "../../kexec-elf.h"
#include "../../kexec-syscall.h"
#include "../../crashdump.h"
#include "kexec-ppc64.h"
#include "../../fs2dt.h"
#include "crashdump-ppc64.h"

#define DEVTREE_CRASHKERNEL_BASE "/proc/device-tree/chosen/linux,crashkernel-base"
#define DEVTREE_CRASHKERNEL_SIZE "/proc/device-tree/chosen/linux,crashkernel-size"

unsigned int num_of_lmb_sets;
unsigned int is_dyn_mem_v2;
uint64_t lmb_size;

static struct crash_elf_info elf_info64 =
{
	class: ELFCLASS64,
#if BYTE_ORDER == LITTLE_ENDIAN
	data: ELFDATA2LSB,
#else
	data: ELFDATA2MSB,
#endif
	machine: EM_PPC64,
	page_offset: PAGE_OFFSET,
	lowmem_limit: MAXMEM,
};

static struct crash_elf_info elf_info32 =
{
	class: ELFCLASS32,
	data: ELFDATA2MSB,
	machine: EM_PPC64,
	page_offset: PAGE_OFFSET,
	lowmem_limit: MAXMEM,
};

extern struct arch_options_t arch_options;

/* Stores a sorted list of RAM memory ranges for which to create elf headers.
 * A separate program header is created for backup region
 */
static struct memory_range *crash_memory_range = NULL;

/* Define a variable to replace the CRASH_MAX_MEMORY_RANGES macro */
static int crash_max_memory_ranges;

/*
 * Used to save various memory ranges/regions needed for the captured
 * kernel to boot. (lime memmap= option in other archs)
 */
mem_rgns_t usablemem_rgns = {0, NULL};

static unsigned long long cstart, cend;
static int memory_ranges;

/*
 * Exclude the region that lies within crashkernel and above the memory
 * limit which is reflected by mem= kernel option.
 */
static void exclude_crash_region(uint64_t start, uint64_t end)
{
	/* If memory_limit is set then exclude the memory region above it. */
	if (memory_limit) {
		if (start >= memory_limit)
			return;
		if (end > memory_limit)
			end = memory_limit;
	}

	if (cstart < end && cend > start) {
		if (start < cstart && end > cend) {
			crash_memory_range[memory_ranges].start = start;
			crash_memory_range[memory_ranges].end = cstart;
			crash_memory_range[memory_ranges].type = RANGE_RAM;
			memory_ranges++;
			crash_memory_range[memory_ranges].start = cend;
			crash_memory_range[memory_ranges].end = end;
			crash_memory_range[memory_ranges].type = RANGE_RAM;
			memory_ranges++;
		} else if (start < cstart) {
			crash_memory_range[memory_ranges].start = start;
			crash_memory_range[memory_ranges].end = cstart;
			crash_memory_range[memory_ranges].type = RANGE_RAM;
			memory_ranges++;
		} else if (end > cend) {
			crash_memory_range[memory_ranges].start = cend;
			crash_memory_range[memory_ranges].end = end;
			crash_memory_range[memory_ranges].type = RANGE_RAM;
			memory_ranges++;
		}
	} else {
		crash_memory_range[memory_ranges].start = start;
		crash_memory_range[memory_ranges].end  = end;
		crash_memory_range[memory_ranges].type = RANGE_RAM;
		memory_ranges++;
	}
}

static int get_dyn_reconf_crash_memory_ranges(void)
{
	uint64_t start, end;
	uint64_t startrange, endrange;
	uint64_t size;
	char fname[128], buf[32];
	FILE *file;
	unsigned int i;
	int n;
	uint32_t flags;

	strcpy(fname, "/proc/device-tree/");
	strcat(fname, "ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory");
	if (is_dyn_mem_v2)
		strcat(fname, "-v2");
	if ((file = fopen(fname, "r")) == NULL) {
		perror(fname);
		return -1;
	}

	fseek(file, 4, SEEK_SET);
	startrange = endrange = 0;
	size = lmb_size;
	for (i = 0; i < num_of_lmb_sets; i++) {
		if ((n = fread(buf, 1, LMB_ENTRY_SIZE, file)) < 0) {
			perror(fname);
			fclose(file);
			return -1;
		}
		if (memory_ranges >= (max_memory_ranges + 1)) {
			/* No space to insert another element. */
				fprintf(stderr,
				"Error: Number of crash memory ranges"
				" excedeed the max limit\n");
			return -1;
		}

		/*
		 * If the property is ibm,dynamic-memory-v2, the first 4 bytes
		 * tell the number of sequential LMBs in this entry.
		 */
		if (is_dyn_mem_v2)
			size = be32_to_cpu(((unsigned int *)buf)[0]) * lmb_size;

		start = be64_to_cpu(*((uint64_t *)&buf[DRCONF_ADDR]));
		end = start + size;
		if (start == 0 && end >= (BACKUP_SRC_END + 1))
			start = BACKUP_SRC_END + 1;

		flags = be32_to_cpu((*((uint32_t *)&buf[DRCONF_FLAGS])));
		/* skip this block if the reserved bit is set in flags (0x80)
		   or if the block is not assigned to this partition (0x8) */
		if ((flags & 0x80) || !(flags & 0x8))
			continue;

		if (start != endrange) {
			if (startrange != endrange)
				exclude_crash_region(startrange, endrange);
			startrange = start;
		}
		endrange = end;
	}
	if (startrange != endrange)
		exclude_crash_region(startrange, endrange);

	fclose(file);
	return 0;
}

/*
 * For a given memory node, check if it is mapped to system RAM or
 * to onboard memory on accelerator device like GPU card or such.
 */
static int is_coherent_device_mem(const char *fname)
{
	char fpath[PATH_LEN];
	char buf[32];
	DIR *dmem;
	FILE *file;
	struct dirent *mentry;
	int cnt, ret = 0;

	strcpy(fpath, fname);
	if ((dmem = opendir(fpath)) == NULL) {
		perror(fpath);
		return -1;
	}

	while ((mentry = readdir(dmem)) != NULL) {
		if (strcmp(mentry->d_name, "compatible"))
			continue;

		strcat(fpath, "/compatible");
		if ((file = fopen(fpath, "r")) == NULL) {
			perror(fpath);
			ret = -1;
			break;
		}
		if ((cnt = fread(buf, 1, 32, file)) < 0) {
			perror(fpath);
			fclose(file);
			ret = -1;
			break;
		}
		if (!strncmp(buf, "ibm,coherent-device-memory", 26)) {
			fclose(file);
			ret = 1;
			break;
		}
		fclose(file);
	}

	closedir(dmem);
	return ret;
}


/* Reads the appropriate file and retrieves the SYSTEM RAM regions for whom to
 * create Elf headers. Keeping it separate from get_memory_ranges() as
 * requirements are different in the case of normal kexec and crashdumps.
 *
 * Normal kexec needs to look at all of available physical memory irrespective
 * of the fact how much of it is being used by currently running kernel.
 * Crashdumps need to have access to memory regions actually being used by
 * running  kernel. Expecting a different file/data structure than /proc/iomem
 * to look into down the line. May be something like /proc/kernelmem or may
 * be zone data structures exported from kernel.
 */
static int get_crash_memory_ranges(struct memory_range **range, int *ranges)
{

	char device_tree[256] = "/proc/device-tree/";
	char fname[PATH_LEN];
	char buf[MAXBYTES];
	DIR *dir, *dmem;
	FILE *file;
	struct dirent *dentry, *mentry;
	int n, ret, crash_rng_len = 0;
	unsigned long long start, end;
	int page_size;

	crash_max_memory_ranges = max_memory_ranges + 6;
	crash_rng_len = sizeof(struct memory_range) * crash_max_memory_ranges;

	crash_memory_range = (struct memory_range *) malloc(crash_rng_len);
	if (!crash_memory_range) {
		fprintf(stderr, "Allocation for crash memory range failed\n");
		return -1;
	}
	memset(crash_memory_range, 0, crash_rng_len);

	/* create a separate program header for the backup region */
	crash_memory_range[0].start = BACKUP_SRC_START;
	crash_memory_range[0].end = BACKUP_SRC_END + 1;
	crash_memory_range[0].type = RANGE_RAM;
	memory_ranges++;

	if ((dir = opendir(device_tree)) == NULL) {
		perror(device_tree);
		goto err;
	}

	cstart = crash_base;
	cend = crash_base + crash_size;

	while ((dentry = readdir(dir)) != NULL) {
		if (!strncmp(dentry->d_name,
				"ibm,dynamic-reconfiguration-memory", 35)){
			get_dyn_reconf_crash_memory_ranges();
			continue;
		}
		if (strncmp(dentry->d_name, "memory@", 7) &&
			strcmp(dentry->d_name, "memory"))
			continue;
		strcpy(fname, device_tree);
		strcat(fname, dentry->d_name);

		ret = is_coherent_device_mem(fname);
		if (ret == -1) {
			closedir(dir);
			goto err;
		} else if (ret == 1) {
			/*
			 * Avoid adding this memory region as it is not
			 * mapped to system RAM.
			 */
			continue;
		}

		if ((dmem = opendir(fname)) == NULL) {
			perror(fname);
			closedir(dir);
			goto err;
		}
		while ((mentry = readdir(dmem)) != NULL) {
			if (strcmp(mentry->d_name, "reg"))
				continue;
			strcat(fname, "/reg");
			if ((file = fopen(fname, "r")) == NULL) {
				perror(fname);
				closedir(dmem);
				closedir(dir);
				goto err;
			}
			if ((n = fread(buf, 1, MAXBYTES, file)) < 0) {
				perror(fname);
				fclose(file);
				closedir(dmem);
				closedir(dir);
				goto err;
			}
			if (memory_ranges >= (max_memory_ranges + 1)) {
				/* No space to insert another element. */
				fprintf(stderr,
					"Error: Number of crash memory ranges"
					" excedeed the max limit\n");
				goto err;
			}

			start = be64_to_cpu(((unsigned long long *)buf)[0]);
			end = start +
				be64_to_cpu(((unsigned long long *)buf)[1]);
			if (start == 0 && end >= (BACKUP_SRC_END + 1))
				start = BACKUP_SRC_END + 1;

			exclude_crash_region(start, end);
			fclose(file);
		}
		closedir(dmem);
	}
	closedir(dir);

	/*
	 * If RTAS region is overlapped with crashkernel, need to create ELF
	 * Program header for the overlapped memory.
	 */
	if (crash_base < rtas_base + rtas_size &&
		rtas_base < crash_base + crash_size) {
		page_size = getpagesize();
		cstart = rtas_base;
		cend = rtas_base + rtas_size;
		if (cstart < crash_base)
			cstart = crash_base;
		if (cend > crash_base + crash_size)
			cend = crash_base + crash_size;
		/*
		 * The rtas section created here is formed by reading rtas-base
		 * and rtas-size from /proc/device-tree/rtas.  Unfortunately
		 * rtas-size is not required to be a multiple of PAGE_SIZE
		 * The remainder of the page it ends on is just garbage, and is
		 * safe to read, its just not accounted in rtas-size.  Since
		 * we're creating an elf section here though, lets round it up
		 * to the next page size boundary though, so makedumpfile can
		 * read it safely without going south on us.
		 */
		cend = _ALIGN(cend, page_size);

		crash_memory_range[memory_ranges].start = cstart;
		crash_memory_range[memory_ranges++].end = cend;
	}

	/*
	 * If OPAL region is overlapped with crashkernel, need to create ELF
	 * Program header for the overlapped memory.
	 */
	if (crash_base < opal_base + opal_size &&
		opal_base < crash_base + crash_size) {
		page_size = getpagesize();
		cstart = opal_base;
		cend = opal_base + opal_size;
		if (cstart < crash_base)
			cstart = crash_base;
		if (cend > crash_base + crash_size)
			cend = crash_base + crash_size;
		/*
		 * The opal section created here is formed by reading opal-base
		 * and opal-size from /proc/device-tree/ibm,opal.  Unfortunately
		 * opal-size is not required to be a multiple of PAGE_SIZE
		 * The remainder of the page it ends on is just garbage, and is
		 * safe to read, its just not accounted in opal-size.  Since
		 * we're creating an elf section here though, lets round it up
		 * to the next page size boundary though, so makedumpfile can
		 * read it safely without going south on us.
		 */
		cend = _ALIGN(cend, page_size);

		crash_memory_range[memory_ranges].start = cstart;
		crash_memory_range[memory_ranges++].end = cend;
	}
	*range = crash_memory_range;
	*ranges = memory_ranges;

	int j;
	dbgprintf("CRASH MEMORY RANGES\n");
	for(j = 0; j < *ranges; j++) {
		start = crash_memory_range[j].start;
		end = crash_memory_range[j].end;
		dbgprintf("%016Lx-%016Lx\n", start, end);
	}

	return 0;

err:
	if (crash_memory_range)
		free(crash_memory_range);
	return -1;
}

/* Converts unsigned long to ascii string. */
static void ultoa(uint64_t i, char *str)
{
	int j = 0, k;
	char tmp;

	do {
		str[j++] = i % 10 + '0';
	} while ((i /=10) > 0);
	str[j] = '\0';

	/* Reverse the string. */
	for (j = 0, k = strlen(str) - 1; j < k; j++, k--) {
		tmp = str[k];
		str[k] = str[j];
		str[j] = tmp;
	}
}

static int add_cmdline_param(char *cmdline, uint64_t addr, char *cmdstr,
				char *byte)
{
	int cmdline_size, cmdlen, len, align = 1024;
	char str[COMMAND_LINE_SIZE], *ptr;

	/* Passing in =xxxK / =xxxM format. Saves space required in cmdline.*/
	switch (byte[0]) {
		case 'K':
			if (addr%align)
				return -1;
			addr = addr/align;
			break;
		case 'M':
			addr = addr/(align *align);
			break;
	}
	ptr = str;
	strcpy(str, cmdstr);
	ptr += strlen(str);
	ultoa(addr, ptr);
	strcat(str, byte);
	len = strlen(str);
	cmdlen = strlen(cmdline) + len;
	cmdline_size = (kernel_version() < KERNEL_VERSION(3, 15, 0) ?
			512 : COMMAND_LINE_SIZE);
	if (cmdlen > (cmdline_size - 1))
		die("Command line overflow\n");
	strcat(cmdline, str);
	dbgprintf("Command line after adding elfcorehdr: %s\n", cmdline);
	return 0;
}

/* Loads additional segments in case of a panic kernel is being loaded.
 * One segment for backup region, another segment for storing elf headers
 * for crash memory image.
 */
int load_crashdump_segments(struct kexec_info *info, char* mod_cmdline,
				uint64_t max_addr, unsigned long min_base)
{
	void *tmp;
	unsigned long sz;
	uint64_t elfcorehdr;
	int nr_ranges, align = 1024, i;
	unsigned long long end;
	struct memory_range *mem_range;

	if (get_crash_memory_ranges(&mem_range, &nr_ranges) < 0)
		return -1;

	info->backup_src_start = BACKUP_SRC_START;
	info->backup_src_size = BACKUP_SRC_SIZE;
	/* Create a backup region segment to store backup data*/
	sz = _ALIGN(BACKUP_SRC_SIZE, align);
	tmp = xmalloc(sz);
	memset(tmp, 0, sz);
	info->backup_start = add_buffer(info, tmp, sz, sz, align,
					0, max_addr, 1);
	reserve(info->backup_start, sz);

	/* On ppc64 memory ranges in device-tree is denoted as start
	 * and size rather than start and end, as is the case with
	 * other architectures like i386 . Because of this when loading
	 * the memory ranges in crashdump-elf.c the filesz calculation
	 * [ end - start + 1 ] goes for a toss.
	 *
	 * To be in sync with other archs adjust the end value for
	 * every crash memory range before calling the generic function
	 */

	for (i = 0; i < nr_ranges; i++) {
		end = crash_memory_range[i].end - 1;
		crash_memory_range[i].end = end;
	}


	/* Create elf header segment and store crash image data. */
	if (arch_options.core_header_type == CORE_TYPE_ELF64) {
		if (crash_create_elf64_headers(info, &elf_info64,
					       crash_memory_range, nr_ranges,
					       &tmp, &sz,
					       ELF_CORE_HEADER_ALIGN) < 0)
			return -1;
	}
	else {
		if (crash_create_elf32_headers(info, &elf_info32,
					       crash_memory_range, nr_ranges,
					       &tmp, &sz,
					       ELF_CORE_HEADER_ALIGN) < 0)
			return -1;
	}

	elfcorehdr = add_buffer(info, tmp, sz, sz, align, min_base,
				max_addr, 1);
	reserve(elfcorehdr, sz);
	/* modify and store the cmdline in a global array. This is later
	 * read by flatten_device_tree and modified if required
	 */
	add_cmdline_param(mod_cmdline, elfcorehdr, " elfcorehdr=", "K");
	return 0;
}

/*
 * Used to save various memory regions needed for the captured kernel.
 */

void add_usable_mem_rgns(unsigned long long base, unsigned long long size)
{
	unsigned int i;
	unsigned long long end = base + size;
	unsigned long long ustart, uend;

	base = _ALIGN_DOWN(base, getpagesize());
	end = _ALIGN_UP(end, getpagesize());

	for (i=0; i < usablemem_rgns.size; i++) {
		ustart = usablemem_rgns.ranges[i].start;
		uend = usablemem_rgns.ranges[i].end;
		if (base < uend && end > ustart) {
			if ((base >= ustart) && (end <= uend))
				return;
			if (base < ustart && end > uend) {
				usablemem_rgns.ranges[i].start = base;
				usablemem_rgns.ranges[i].end = end;
#ifdef DEBUG
				fprintf(stderr, "usable memory rgn %u: new base:%llx new size:%llx\n",
					i, base, size);
#endif
				return;
			} else if (base < ustart) {
				usablemem_rgns.ranges[i].start = base;
#ifdef DEBUG
				fprintf(stderr, "usable memory rgn %u: new base:%llx new size:%llx",
					i, base, usablemem_rgns.ranges[i].end - base);
#endif
				return;
			} else if (end > uend){
				usablemem_rgns.ranges[i].end = end;
#ifdef DEBUG
				fprintf(stderr, "usable memory rgn %u: new end:%llx, new size:%llx",
					i, end, end - usablemem_rgns.ranges[i].start);
#endif
				return;
			}
		}
	}
	usablemem_rgns.ranges[usablemem_rgns.size].start = base;
	usablemem_rgns.ranges[usablemem_rgns.size++].end = end;

	dbgprintf("usable memory rgns size:%u base:%llx size:%llx\n",
		usablemem_rgns.size, base, size);
}

int get_crash_kernel_load_range(uint64_t *start, uint64_t *end)
{
	unsigned long long value;

	if (!get_devtree_value(DEVTREE_CRASHKERNEL_BASE, &value))
		*start = value;
	else
		return -1;

	if (!get_devtree_value(DEVTREE_CRASHKERNEL_SIZE, &value))
		*end = *start + value - 1;
	else
		return -1;

	return 0;
}

int is_crashkernel_mem_reserved(void)
{
	int fd;

	fd = open(DEVTREE_CRASHKERNEL_BASE, O_RDONLY);
	if (fd < 0)
		return 0;
	close(fd);
	return 1;
}

#if 0
static int sort_regions(mem_rgns_t *rgn)
{
	int i, j;
	unsigned long long tstart, tend;
	for (i = 0; i < rgn->size; i++) {
		for (j = 0; j < rgn->size - i - 1; j++) {
			if (rgn->ranges[j].start > rgn->ranges[j+1].start) {
				tstart = rgn->ranges[j].start;
				tend = rgn->ranges[j].end;
				rgn->ranges[j].start = rgn->ranges[j+1].start;
				rgn->ranges[j].end = rgn->ranges[j+1].end;
				rgn->ranges[j+1].start = tstart;
				rgn->ranges[j+1].end = tend;
			}
		}
	}
	return 0;

}
#endif