summaryrefslogtreecommitdiff
path: root/fs/afs/file.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2025-01-20 09:29:11 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2025-01-20 09:29:11 -0800
commitca56a74a31e26d81a481304ed2f631e65883372b (patch)
treee17f181dbd6be574ef0731cd6729422ed2cd0c09 /fs/afs/file.c
parent91309a70829d94c735c8bb1cc383e78c96127a16 (diff)
parent7a47db23a9f003614e15c687d2a5425c175a9ca8 (diff)
Merge tag 'vfs-6.14-rc1.netfs' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull vfs netfs updates from Christian Brauner: "This contains read performance improvements and support for monolithic single-blob objects that have to be read/written as such (e.g. AFS directory contents). The implementation of the two parts is interwoven as each makes the other possible. - Read performance improvements The read performance improvements are intended to speed up some loss of performance detected in cifs and to a lesser extend in afs. The problem is that we queue too many work items during the collection of read results: each individual subrequest is collected by its own work item, and then they have to interact with each other when a series of subrequests don't exactly align with the pattern of folios that are being read by the overall request. Whilst the processing of the pages covered by individual subrequests as they complete potentially allows folios to be woken in parallel and with minimum delay, it can shuffle wakeups for sequential reads out of order - and that is the most common I/O pattern. The final assessment and cleanup of an operation is then held up until the last I/O completes - and for a synchronous sequential operation, this means the bouncing around of work items just adds latency. Two changes have been made to make this work: (1) All collection is now done in a single "work item" that works progressively through the subrequests as they complete (and also dispatches retries as necessary). (2) For readahead and AIO, this work item be done on a workqueue and can run in parallel with the ultimate consumer of the data; for synchronous direct or unbuffered reads, the collection is run in the application thread and not offloaded. Functions such as smb2_readv_callback() then just tell netfslib that the subrequest has terminated; netfslib does a minimal bit of processing on the spot - stat counting and tracing mostly - and then queues/wakes up the worker. This simplifies the logic as the collector just walks sequentially through the subrequests as they complete and walks through the folios, if buffered, unlocking them as it goes. It also keeps to a minimum the amount of latency injected into the filesystem's low-level I/O handling The way netfs supports filesystems using the deprecated PG_private_2 flag is changed: folios are flagged and added to a write request as they complete and that takes care of scheduling the writes to the cache. The originating read request can then just unlock the pages whatever happens. - Single-blob object support Single-blob objects are files for which the content of the file must be read from or written to the server in a single operation because reading them in parts may yield inconsistent results. AFS directories are an example of this as there exists the possibility that the contents are generated on the fly and would differ between reads or might change due to third party interference. Such objects will be written to and retrieved from the cache if one is present, though we allow/may need to propose multiple subrequests to do so. The important part is that read from/write to the *server* is monolithic. Single blob reading is, for the moment, fully synchronous and does result collection in the application thread and, also for the moment, the API is supplied the buffer in the form of a folio_queue chain rather than using the pagecache. - Related afs changes This series makes a number of changes to the kafs filesystem, primarily in the area of directory handling: - AFS's FetchData RPC reply processing is made partially asynchronous which allows the netfs_io_request's outstanding operation counter to be removed as part of reducing the collection to a single work item. - Directory and symlink reading are plumbed through netfslib using the single-blob object API and are now cacheable with fscache. This also allows the afs_read struct to be eliminated and netfs_io_subrequest to be used directly instead. - Directory and symlink content are now stored in a folio_queue buffer rather than in the pagecache. This means we don't require the RCU read lock and xarray iteration to access it, and folios won't randomly disappear under us because the VM wants them back. - The vnode operation lock is changed from a mutex struct to a private lock implementation. The problem is that the lock now needs to be dropped in a separate thread and mutexes don't permit that. - When a new directory or symlink is created, we now initialise it locally and mark it valid rather than downloading it (we know what it's likely to look like). - We now use the in-directory hashtable to reduce the number of entries we need to scan when doing a lookup. The edit routines have to maintain the hash chains. - Cancellation (e.g. by signal) of an async call after the rxrpc_call has been set up is now offloaded to the worker thread as there will be a notification from rxrpc upon completion. This avoids a double cleanup. - A "rolling buffer" implementation is created to abstract out the two separate folio_queue chaining implementations I had (one for read and one for write). - Functions are provided to create/extend a buffer in a folio_queue chain and tear it down again. This is used to handle AFS directories, but could also be used to create bounce buffers for content crypto and transport crypto. - The was_async argument is dropped from netfs_read_subreq_terminated() Instead we wake the read collection work item by either queuing it or waking up the app thread. - We don't need to use BH-excluding locks when communicating between the issuing thread and the collection thread as neither of them now run in BH context. - Also included are a number of new tracepoints; a split of the netfslib write collection code to put retrying into its own file (it gets more complicated with content encryption). - There are also some minor fixes AFS included, including fixing the AFS directory format struct layout, reducing some directory over-invalidation and making afs_mkdir() translate EEXIST to ENOTEMPY (which is not available on all systems the servers support). - Finally, there's a patch to try and detect entry into the folio unlock function with no folio_queue structs in the buffer (which isn't allowed in the cases that can get there). This is a debugging patch, but should be minimal overhead" * tag 'vfs-6.14-rc1.netfs' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (31 commits) netfs: Report on NULL folioq in netfs_writeback_unlock_folios() afs: Add a tracepoint for afs_read_receive() afs: Locally initialise the contents of a new symlink on creation afs: Use the contained hashtable to search a directory afs: Make afs_mkdir() locally initialise a new directory's content netfs: Change the read result collector to only use one work item afs: Make {Y,}FS.FetchData an asynchronous operation afs: Fix cleanup of immediately failed async calls afs: Eliminate afs_read afs: Use netfslib for symlinks, allowing them to be cached afs: Use netfslib for directories afs: Make afs_init_request() get a key if not given a file netfs: Add support for caching single monolithic objects such as AFS dirs netfs: Add functions to build/clean a buffer in a folio_queue afs: Add more tracepoints to do with tracking validity cachefiles: Add auxiliary data trace cachefiles: Add some subrequest tracepoints netfs: Remove some extraneous directory invalidations afs: Fix directory format encoding struct afs: Fix EEXIST error returned from afs_rmdir() to be ENOTEMPTY ...
Diffstat (limited to 'fs/afs/file.c')
-rw-r--r--fs/afs/file.c260
1 files changed, 148 insertions, 112 deletions
diff --git a/fs/afs/file.c b/fs/afs/file.c
index 6762eff97517..fc15497608c6 100644
--- a/fs/afs/file.c
+++ b/fs/afs/file.c
@@ -20,7 +20,6 @@
#include "internal.h"
static int afs_file_mmap(struct file *file, struct vm_area_struct *vma);
-static int afs_symlink_read_folio(struct file *file, struct folio *folio);
static ssize_t afs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter);
static ssize_t afs_file_splice_read(struct file *in, loff_t *ppos,
@@ -61,13 +60,6 @@ const struct address_space_operations afs_file_aops = {
.writepages = afs_writepages,
};
-const struct address_space_operations afs_symlink_aops = {
- .read_folio = afs_symlink_read_folio,
- .release_folio = netfs_release_folio,
- .invalidate_folio = netfs_invalidate_folio,
- .migrate_folio = filemap_migrate_folio,
-};
-
static const struct vm_operations_struct afs_vm_ops = {
.open = afs_vm_open,
.close = afs_vm_close,
@@ -208,49 +200,12 @@ int afs_release(struct inode *inode, struct file *file)
return ret;
}
-/*
- * Allocate a new read record.
- */
-struct afs_read *afs_alloc_read(gfp_t gfp)
-{
- struct afs_read *req;
-
- req = kzalloc(sizeof(struct afs_read), gfp);
- if (req)
- refcount_set(&req->usage, 1);
-
- return req;
-}
-
-/*
- * Dispose of a ref to a read record.
- */
-void afs_put_read(struct afs_read *req)
-{
- if (refcount_dec_and_test(&req->usage)) {
- if (req->cleanup)
- req->cleanup(req);
- key_put(req->key);
- kfree(req);
- }
-}
-
static void afs_fetch_data_notify(struct afs_operation *op)
{
- struct afs_read *req = op->fetch.req;
- struct netfs_io_subrequest *subreq = req->subreq;
- int error = afs_op_error(op);
-
- req->error = error;
- if (subreq) {
- subreq->rreq->i_size = req->file_size;
- if (req->pos + req->actual_len >= req->file_size)
- __set_bit(NETFS_SREQ_HIT_EOF, &subreq->flags);
- netfs_read_subreq_terminated(subreq, error, false);
- req->subreq = NULL;
- } else if (req->done) {
- req->done(req);
- }
+ struct netfs_io_subrequest *subreq = op->fetch.subreq;
+
+ subreq->error = afs_op_error(op);
+ netfs_read_subreq_terminated(subreq);
}
static void afs_fetch_data_success(struct afs_operation *op)
@@ -260,7 +215,7 @@ static void afs_fetch_data_success(struct afs_operation *op)
_enter("op=%08x", op->debug_id);
afs_vnode_commit_status(op, &op->file[0]);
afs_stat_v(vnode, n_fetches);
- atomic_long_add(op->fetch.req->actual_len, &op->net->n_fetch_bytes);
+ atomic_long_add(op->fetch.subreq->transferred, &op->net->n_fetch_bytes);
afs_fetch_data_notify(op);
}
@@ -270,107 +225,188 @@ static void afs_fetch_data_aborted(struct afs_operation *op)
afs_fetch_data_notify(op);
}
-static void afs_fetch_data_put(struct afs_operation *op)
-{
- op->fetch.req->error = afs_op_error(op);
- afs_put_read(op->fetch.req);
-}
-
-static const struct afs_operation_ops afs_fetch_data_operation = {
+const struct afs_operation_ops afs_fetch_data_operation = {
.issue_afs_rpc = afs_fs_fetch_data,
.issue_yfs_rpc = yfs_fs_fetch_data,
.success = afs_fetch_data_success,
.aborted = afs_fetch_data_aborted,
.failed = afs_fetch_data_notify,
- .put = afs_fetch_data_put,
};
+static void afs_issue_read_call(struct afs_operation *op)
+{
+ op->call_responded = false;
+ op->call_error = 0;
+ op->call_abort_code = 0;
+ if (test_bit(AFS_SERVER_FL_IS_YFS, &op->server->flags))
+ yfs_fs_fetch_data(op);
+ else
+ afs_fs_fetch_data(op);
+}
+
+static void afs_end_read(struct afs_operation *op)
+{
+ if (op->call_responded && op->server)
+ set_bit(AFS_SERVER_FL_RESPONDING, &op->server->flags);
+
+ if (!afs_op_error(op))
+ afs_fetch_data_success(op);
+ else if (op->cumul_error.aborted)
+ afs_fetch_data_aborted(op);
+ else
+ afs_fetch_data_notify(op);
+
+ afs_end_vnode_operation(op);
+ afs_put_operation(op);
+}
+
+/*
+ * Perform I/O processing on an asynchronous call. The work item carries a ref
+ * to the call struct that we either need to release or to pass on.
+ */
+static void afs_read_receive(struct afs_call *call)
+{
+ struct afs_operation *op = call->op;
+ enum afs_call_state state;
+
+ _enter("");
+
+ state = READ_ONCE(call->state);
+ if (state == AFS_CALL_COMPLETE)
+ return;
+ trace_afs_read_recv(op, call);
+
+ while (state < AFS_CALL_COMPLETE && READ_ONCE(call->need_attention)) {
+ WRITE_ONCE(call->need_attention, false);
+ afs_deliver_to_call(call);
+ state = READ_ONCE(call->state);
+ }
+
+ if (state < AFS_CALL_COMPLETE) {
+ netfs_read_subreq_progress(op->fetch.subreq);
+ if (rxrpc_kernel_check_life(call->net->socket, call->rxcall))
+ return;
+ /* rxrpc terminated the call. */
+ afs_set_call_complete(call, call->error, call->abort_code);
+ }
+
+ op->call_abort_code = call->abort_code;
+ op->call_error = call->error;
+ op->call_responded = call->responded;
+ op->call = NULL;
+ call->op = NULL;
+ afs_put_call(call);
+
+ /* If the call failed, then we need to crank the server rotation
+ * handle and try the next.
+ */
+ if (afs_select_fileserver(op)) {
+ afs_issue_read_call(op);
+ return;
+ }
+
+ afs_end_read(op);
+}
+
+void afs_fetch_data_async_rx(struct work_struct *work)
+{
+ struct afs_call *call = container_of(work, struct afs_call, async_work);
+
+ afs_read_receive(call);
+ afs_put_call(call);
+}
+
+void afs_fetch_data_immediate_cancel(struct afs_call *call)
+{
+ if (call->async) {
+ afs_get_call(call, afs_call_trace_wake);
+ if (!queue_work(afs_async_calls, &call->async_work))
+ afs_deferred_put_call(call);
+ flush_work(&call->async_work);
+ }
+}
+
/*
* Fetch file data from the volume.
*/
-int afs_fetch_data(struct afs_vnode *vnode, struct afs_read *req)
+static void afs_issue_read(struct netfs_io_subrequest *subreq)
{
struct afs_operation *op;
+ struct afs_vnode *vnode = AFS_FS_I(subreq->rreq->inode);
+ struct key *key = subreq->rreq->netfs_priv;
_enter("%s{%llx:%llu.%u},%x,,,",
vnode->volume->name,
vnode->fid.vid,
vnode->fid.vnode,
vnode->fid.unique,
- key_serial(req->key));
+ key_serial(key));
- op = afs_alloc_operation(req->key, vnode->volume);
+ op = afs_alloc_operation(key, vnode->volume);
if (IS_ERR(op)) {
- if (req->subreq)
- netfs_read_subreq_terminated(req->subreq, PTR_ERR(op), false);
- return PTR_ERR(op);
+ subreq->error = PTR_ERR(op);
+ netfs_read_subreq_terminated(subreq);
+ return;
}
afs_op_set_vnode(op, 0, vnode);
- op->fetch.req = afs_get_read(req);
+ op->fetch.subreq = subreq;
op->ops = &afs_fetch_data_operation;
- return afs_do_sync_operation(op);
-}
-
-static void afs_read_worker(struct work_struct *work)
-{
- struct netfs_io_subrequest *subreq = container_of(work, struct netfs_io_subrequest, work);
- struct afs_vnode *vnode = AFS_FS_I(subreq->rreq->inode);
- struct afs_read *fsreq;
-
- fsreq = afs_alloc_read(GFP_NOFS);
- if (!fsreq)
- return netfs_read_subreq_terminated(subreq, -ENOMEM, false);
-
- fsreq->subreq = subreq;
- fsreq->pos = subreq->start + subreq->transferred;
- fsreq->len = subreq->len - subreq->transferred;
- fsreq->key = key_get(subreq->rreq->netfs_priv);
- fsreq->vnode = vnode;
- fsreq->iter = &subreq->io_iter;
trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
- afs_fetch_data(fsreq->vnode, fsreq);
- afs_put_read(fsreq);
-}
-
-static void afs_issue_read(struct netfs_io_subrequest *subreq)
-{
- INIT_WORK(&subreq->work, afs_read_worker);
- queue_work(system_long_wq, &subreq->work);
-}
-static int afs_symlink_read_folio(struct file *file, struct folio *folio)
-{
- struct afs_vnode *vnode = AFS_FS_I(folio->mapping->host);
- struct afs_read *fsreq;
- int ret;
+ if (subreq->rreq->origin == NETFS_READAHEAD ||
+ subreq->rreq->iocb) {
+ op->flags |= AFS_OPERATION_ASYNC;
- fsreq = afs_alloc_read(GFP_NOFS);
- if (!fsreq)
- return -ENOMEM;
+ if (!afs_begin_vnode_operation(op)) {
+ subreq->error = afs_put_operation(op);
+ netfs_read_subreq_terminated(subreq);
+ return;
+ }
- fsreq->pos = folio_pos(folio);
- fsreq->len = folio_size(folio);
- fsreq->vnode = vnode;
- fsreq->iter = &fsreq->def_iter;
- iov_iter_xarray(&fsreq->def_iter, ITER_DEST, &folio->mapping->i_pages,
- fsreq->pos, fsreq->len);
+ if (!afs_select_fileserver(op)) {
+ afs_end_read(op);
+ return;
+ }
- ret = afs_fetch_data(fsreq->vnode, fsreq);
- if (ret == 0)
- folio_mark_uptodate(folio);
- folio_unlock(folio);
- return ret;
+ afs_issue_read_call(op);
+ } else {
+ afs_do_sync_operation(op);
+ }
}
static int afs_init_request(struct netfs_io_request *rreq, struct file *file)
{
+ struct afs_vnode *vnode = AFS_FS_I(rreq->inode);
+
if (file)
rreq->netfs_priv = key_get(afs_file_key(file));
rreq->rsize = 256 * 1024;
rreq->wsize = 256 * 1024 * 1024;
+
+ switch (rreq->origin) {
+ case NETFS_READ_SINGLE:
+ if (!file) {
+ struct key *key = afs_request_key(vnode->volume->cell);
+
+ if (IS_ERR(key))
+ return PTR_ERR(key);
+ rreq->netfs_priv = key;
+ }
+ break;
+ case NETFS_WRITEBACK:
+ case NETFS_WRITETHROUGH:
+ case NETFS_UNBUFFERED_WRITE:
+ case NETFS_DIO_WRITE:
+ if (S_ISREG(rreq->inode->i_mode))
+ rreq->io_streams[0].avail = true;
+ break;
+ case NETFS_WRITEBACK_SINGLE:
+ default:
+ break;
+ }
return 0;
}