diff options
author | Yu Zhao <yuzhao@google.com> | 2024-12-30 21:35:37 -0700 |
---|---|---|
committer | Andrew Morton <akpm@linux-foundation.org> | 2025-01-25 20:22:39 -0800 |
commit | 4d5d14a01e2c9091b128fb46e1d07475e9a7bb72 (patch) | |
tree | 2385dd6c0eebf80cdeed4d76104f86b047e32e63 /include/linux | |
parent | b1a71694fb00c9a7bad788a0b49198eab20621b3 (diff) |
mm/mglru: rework workingset protection
With the aging feedback no longer considering the distribution of folios
in each generation, rework workingset protection to better distribute
folios across MAX_NR_GENS. This is achieved by reusing PG_workingset and
PG_referenced/LRU_REFS_FLAGS in a slightly different way.
For folios accessed multiple times through file descriptors, make
lru_gen_inc_refs() set additional bits of LRU_REFS_WIDTH in folio->flags
after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all
its bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is
lazily promoted into the second oldest generation in the eviction path.
And when folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that
lru_gen_inc_refs() can start over. For this case, LRU_REFS_MASK is only
valid when PG_referenced is set.
For folios accessed multiple times through page tables, folio_update_gen()
from a page table walk or lru_gen_set_refs() from a rmap walk sets
PG_referenced after the accessed bit is cleared for the first time.
Thereafter, those two paths set PG_workingset and promote folios to the
youngest generation. Like folio_inc_gen(), when folio_update_gen() does
that, it also clears PG_referenced. For this case, LRU_REFS_MASK is not
used.
For both of the cases, after PG_workingset is set on a folio, it remains
until this folio is either reclaimed, or "deactivated" by
lru_gen_clear_refs(). It can be set again if lru_gen_test_recent()
returns true upon a refault.
When adding folios to the LRU lists, lru_gen_folio_seq() distributes
them as follows:
+---------------------------------+---------------------------------+
| Accessed thru page tables | Accessed thru file descriptors |
+---------------------------------+---------------------------------+
| PG_active (set while isolated) | |
+----------------+----------------+----------------+----------------+
| PG_workingset | PG_referenced | PG_workingset | LRU_REFS_FLAGS |
+---------------------------------+---------------------------------+
|<--------- MIN_NR_GENS --------->| |
|<-------------------------- MAX_NR_GENS -------------------------->|
After this patch, some typical client and server workloads showed
improvements under heavy memory pressure. For example, Python TPC-C,
which was used to benchmark a different approach [1] to better detect
refault distances, showed a significant decrease in total refaults:
Before After Change
Time (seconds) 10801 10801 0%
Executed (transactions) 41472 43663 +5%
workingset_nodes 109070 120244 +10%
workingset_refault_anon 5019627 7281831 +45%
workingset_refault_file 1294678786 554855564 -57%
workingset_refault_total 1299698413 562137395 -57%
[1] https://lore.kernel.org/20230920190244.16839-1-ryncsn@gmail.com/
Link: https://lkml.kernel.org/r/20241231043538.4075764-7-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reported-by: Kairui Song <kasong@tencent.com>
Closes: https://lore.kernel.org/CAOUHufahuWcKf5f1Sg3emnqX+cODuR=2TQo7T4Gr-QYLujn4RA@mail.gmail.com/
Tested-by: Kalesh Singh <kaleshsingh@google.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: David Stevens <stevensd@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Diffstat (limited to 'include/linux')
-rw-r--r-- | include/linux/mm_inline.h | 88 | ||||
-rw-r--r-- | include/linux/mmzone.h | 82 |
2 files changed, 94 insertions, 76 deletions
diff --git a/include/linux/mm_inline.h b/include/linux/mm_inline.h index 34e5097182a0..f9157a0c42a5 100644 --- a/include/linux/mm_inline.h +++ b/include/linux/mm_inline.h @@ -133,31 +133,25 @@ static inline int lru_hist_from_seq(unsigned long seq) return seq % NR_HIST_GENS; } -static inline int lru_tier_from_refs(int refs) +static inline int lru_tier_from_refs(int refs, bool workingset) { VM_WARN_ON_ONCE(refs > BIT(LRU_REFS_WIDTH)); - /* see the comment in folio_lru_refs() */ - return order_base_2(refs + 1); + /* see the comment on MAX_NR_TIERS */ + return workingset ? MAX_NR_TIERS - 1 : order_base_2(refs); } static inline int folio_lru_refs(struct folio *folio) { unsigned long flags = READ_ONCE(folio->flags); - bool workingset = flags & BIT(PG_workingset); + if (!(flags & BIT(PG_referenced))) + return 0; /* - * Return the number of accesses beyond PG_referenced, i.e., N-1 if the - * total number of accesses is N>1, since N=0,1 both map to the first - * tier. lru_tier_from_refs() will account for this off-by-one. Also see - * the comment on MAX_NR_TIERS. + * Return the total number of accesses including PG_referenced. Also see + * the comment on LRU_REFS_FLAGS. */ - return ((flags & LRU_REFS_MASK) >> LRU_REFS_PGOFF) + workingset; -} - -static inline void folio_clear_lru_refs(struct folio *folio) -{ - set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); + return ((flags & LRU_REFS_MASK) >> LRU_REFS_PGOFF) + 1; } static inline int folio_lru_gen(struct folio *folio) @@ -223,11 +217,43 @@ static inline void lru_gen_update_size(struct lruvec *lruvec, struct folio *foli VM_WARN_ON_ONCE(lru_gen_is_active(lruvec, old_gen) && !lru_gen_is_active(lruvec, new_gen)); } +static inline unsigned long lru_gen_folio_seq(struct lruvec *lruvec, struct folio *folio, + bool reclaiming) +{ + int gen; + int type = folio_is_file_lru(folio); + struct lru_gen_folio *lrugen = &lruvec->lrugen; + + /* + * +-----------------------------------+-----------------------------------+ + * | Accessed through page tables and | Accessed through file descriptors | + * | promoted by folio_update_gen() | and protected by folio_inc_gen() | + * +-----------------------------------+-----------------------------------+ + * | PG_active (set while isolated) | | + * +-----------------+-----------------+-----------------+-----------------+ + * | PG_workingset | PG_referenced | PG_workingset | LRU_REFS_FLAGS | + * +-----------------------------------+-----------------------------------+ + * |<---------- MIN_NR_GENS ---------->| | + * |<---------------------------- MAX_NR_GENS ---------------------------->| + */ + if (folio_test_active(folio)) + gen = MIN_NR_GENS - folio_test_workingset(folio); + else if (reclaiming) + gen = MAX_NR_GENS; + else if ((!folio_is_file_lru(folio) && !folio_test_swapcache(folio)) || + (folio_test_reclaim(folio) && + (folio_test_dirty(folio) || folio_test_writeback(folio)))) + gen = MIN_NR_GENS; + else + gen = MAX_NR_GENS - folio_test_workingset(folio); + + return max(READ_ONCE(lrugen->max_seq) - gen + 1, READ_ONCE(lrugen->min_seq[type])); +} + static inline bool lru_gen_add_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming) { unsigned long seq; unsigned long flags; - unsigned long mask; int gen = folio_lru_gen(folio); int type = folio_is_file_lru(folio); int zone = folio_zonenum(folio); @@ -237,40 +263,12 @@ static inline bool lru_gen_add_folio(struct lruvec *lruvec, struct folio *folio, if (folio_test_unevictable(folio) || !lrugen->enabled) return false; - /* - * There are four common cases for this page: - * 1. If it's hot, i.e., freshly faulted in, add it to the youngest - * generation, and it's protected over the rest below. - * 2. If it can't be evicted immediately, i.e., a dirty page pending - * writeback, add it to the second youngest generation. - * 3. If it should be evicted first, e.g., cold and clean from - * folio_rotate_reclaimable(), add it to the oldest generation. - * 4. Everything else falls between 2 & 3 above and is added to the - * second oldest generation if it's considered inactive, or the - * oldest generation otherwise. See lru_gen_is_active(). - */ - if (folio_test_active(folio)) - seq = lrugen->max_seq; - else if ((type == LRU_GEN_ANON && !folio_test_swapcache(folio)) || - (folio_test_reclaim(folio) && - (folio_test_dirty(folio) || folio_test_writeback(folio)))) - seq = lrugen->max_seq - 1; - else if (reclaiming || lrugen->min_seq[type] + MIN_NR_GENS >= lrugen->max_seq) - seq = lrugen->min_seq[type]; - else - seq = lrugen->min_seq[type] + 1; + seq = lru_gen_folio_seq(lruvec, folio, reclaiming); gen = lru_gen_from_seq(seq); flags = (gen + 1UL) << LRU_GEN_PGOFF; /* see the comment on MIN_NR_GENS about PG_active */ - mask = LRU_GEN_MASK; - /* - * Don't clear PG_workingset here because it can affect PSI accounting - * if the activation is due to workingset refault. - */ - if (folio_test_active(folio)) - mask |= LRU_REFS_MASK | BIT(PG_referenced) | BIT(PG_active); - set_mask_bits(&folio->flags, mask, flags); + set_mask_bits(&folio->flags, LRU_GEN_MASK | BIT(PG_active), flags); lru_gen_update_size(lruvec, folio, -1, gen); /* for folio_rotate_reclaimable() */ diff --git a/include/linux/mmzone.h b/include/linux/mmzone.h index 8245ecb0400b..9540b41894da 100644 --- a/include/linux/mmzone.h +++ b/include/linux/mmzone.h @@ -332,66 +332,88 @@ enum lruvec_flags { #endif /* !__GENERATING_BOUNDS_H */ /* - * Evictable pages are divided into multiple generations. The youngest and the + * Evictable folios are divided into multiple generations. The youngest and the * oldest generation numbers, max_seq and min_seq, are monotonically increasing. * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the * corresponding generation. The gen counter in folio->flags stores gen+1 while - * a page is on one of lrugen->folios[]. Otherwise it stores 0. + * a folio is on one of lrugen->folios[]. Otherwise it stores 0. * - * A page is added to the youngest generation on faulting. The aging needs to - * check the accessed bit at least twice before handing this page over to the - * eviction. The first check takes care of the accessed bit set on the initial - * fault; the second check makes sure this page hasn't been used since then. - * This process, AKA second chance, requires a minimum of two generations, - * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive - * LRU, e.g., /proc/vmstat, these two generations are considered active; the - * rest of generations, if they exist, are considered inactive. See - * lru_gen_is_active(). + * After a folio is faulted in, the aging needs to check the accessed bit at + * least twice before handing this folio over to the eviction. The first check + * clears the accessed bit from the initial fault; the second check makes sure + * this folio hasn't been used since then. This process, AKA second chance, + * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI + * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two + * generations are considered active; the rest of generations, if they exist, + * are considered inactive. See lru_gen_is_active(). * - * PG_active is always cleared while a page is on one of lrugen->folios[] so - * that the aging needs not to worry about it. And it's set again when a page - * considered active is isolated for non-reclaiming purposes, e.g., migration. - * See lru_gen_add_folio() and lru_gen_del_folio(). + * PG_active is always cleared while a folio is on one of lrugen->folios[] so + * that the sliding window needs not to worry about it. And it's set again when + * a folio considered active is isolated for non-reclaiming purposes, e.g., + * migration. See lru_gen_add_folio() and lru_gen_del_folio(). * * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the * number of categories of the active/inactive LRU when keeping track of * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits - * in folio->flags. + * in folio->flags, masked by LRU_GEN_MASK. */ #define MIN_NR_GENS 2U #define MAX_NR_GENS 4U /* - * Each generation is divided into multiple tiers. A page accessed N times - * through file descriptors is in tier order_base_2(N). A page in the first tier - * (N=0,1) is marked by PG_referenced unless it was faulted in through page - * tables or read ahead. A page in any other tier (N>1) is marked by - * PG_referenced and PG_workingset. This implies a minimum of two tiers is - * supported without using additional bits in folio->flags. + * Each generation is divided into multiple tiers. A folio accessed N times + * through file descriptors is in tier order_base_2(N). A folio in the first + * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page + * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by + * PG_workingset. A folio in any other tier (1<N<5) between the first and last + * is marked by additional bits of LRU_REFS_WIDTH in folio->flags. * * In contrast to moving across generations which requires the LRU lock, moving * across tiers only involves atomic operations on folio->flags and therefore * has a negligible cost in the buffered access path. In the eviction path, - * comparisons of refaulted/(evicted+protected) from the first tier and the - * rest infer whether pages accessed multiple times through file descriptors - * are statistically hot and thus worth protecting. + * comparisons of refaulted/(evicted+protected) from the first tier and the rest + * infer whether folios accessed multiple times through file descriptors are + * statistically hot and thus worth protecting. * * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the * number of categories of the active/inactive LRU when keeping track of * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in - * folio->flags. + * folio->flags, masked by LRU_REFS_MASK. */ #define MAX_NR_TIERS 4U #ifndef __GENERATING_BOUNDS_H -struct lruvec; -struct page_vma_mapped_walk; - #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) +/* + * For folios accessed multiple times through file descriptors, + * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags + * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its + * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily + * promoted into the second oldest generation in the eviction path. And when + * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that + * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is + * only valid when PG_referenced is set. + * + * For folios accessed multiple times through page tables, folio_update_gen() + * from a page table walk or lru_gen_set_refs() from a rmap walk sets + * PG_referenced after the accessed bit is cleared for the first time. + * Thereafter, those two paths set PG_workingset and promote folios to the + * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears + * PG_referenced. Note that for this case, LRU_REFS_MASK is not used. + * + * For both cases above, after PG_workingset is set on a folio, it remains until + * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It + * can be set again if lru_gen_test_recent() returns true upon a refault. + */ +#define LRU_REFS_FLAGS (LRU_REFS_MASK | BIT(PG_referenced)) + +struct lruvec; +struct page_vma_mapped_walk; + #ifdef CONFIG_LRU_GEN enum { @@ -406,8 +428,6 @@ enum { NR_LRU_GEN_CAPS }; -#define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) - #define MIN_LRU_BATCH BITS_PER_LONG #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) |