diff options
author | David S. Miller <davem@davemloft.net> | 2014-12-30 18:30:00 -0500 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2014-12-30 18:30:00 -0500 |
commit | 5115ec9654f87ba0d9508569f91fe1f444ffbf58 (patch) | |
tree | c4b176d1e40eecb2caa00952eae95ecb2b2a046b /kernel/time/timecounter.c | |
parent | 2c90331cf5ed1d648a711b9483e173aaaf2c4a9b (diff) | |
parent | 2eebdde6528a722fbf8e2cffcf7aa52cbb4c2de0 (diff) |
Merge branch 'timecounter'
Richard Cochran says:
====================
Time Counter fixes and improvements
Several PTP Hardware Clock (PHC) drivers implement the clock in
software using the timecounter/cyclecounter code. This series adds one
simple improvement and one more subtle fix to the shared timecounter
facility. Credit for this series goes to Janusz Użycki, who pointed
the issues out to me off list.
Patch #1 simply move the timecounter code into its own file. When
working on this series, it was really annoying to see half the kernel
recompile after every tweak to the timecounter stuff. There is no
reason to keep this together with the clocksource code.
Patch #2 implements an improved adjtime() method, and patches 3-10
convert all of the drivers over to the new method.
Patch #11 fixes a subtle but important issue with the timecounter WRT
frequency adjustment. As it stands now, a timecounter based PHC will
exhibit a variable frequency resolution (and variable time error)
depending on how often the clock is read.
In timecounter_read_delta(), the expression
(delta * cc->mult) >> cc->shift;
can lose resolution from the adjusted value of 'mult'. If the value
of 'delta' is too small, then small changes in 'mult' have no effect.
However, if the delta value is large enough, then small changes in
'mult' will have an effect.
Reading the clock too often means smaller 'delta' values which in turn
will spoil the fine adjustments made to 'mult'. Up until now, this
effect did not show up in my testing. The following example explains
why.
The CPTS has an input clock of 250 MHz, and the clock source uses
mult=0x80000000 and shift=29, making the ticks to nanoseconds
conversion like this:
ticks * 2^31
------------
2^29
Imagine what happens if the clock is read every 10 milliseconds. Ten
milliseconds are about 2500000 ticks, which corresponds to about 21
bits. The product in the numerator has then 52 bits. After the shift
operation, 23 bits are preserved. This results in a frequency
adjustment resolution of about 0.1 ppm (not _too_ bad.)
A frequency resolution of 1 ppm requires 20 bits.
A frequency resolution of 1 ppb requires 30 bits.
For the 250 MHz CPTS clock, reading every 4 seconds yields a 1 ppb
resolution (which is the finest that our API allows).
However, the error can be much higher if the clock is read too often
or if time stamps occur close in time to read operations. In general
it is really not acceptable to allow the rate of clock readings to
influence the clock accuracy.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'kernel/time/timecounter.c')
-rw-r--r-- | kernel/time/timecounter.c | 112 |
1 files changed, 112 insertions, 0 deletions
diff --git a/kernel/time/timecounter.c b/kernel/time/timecounter.c new file mode 100644 index 000000000000..4687b3104bae --- /dev/null +++ b/kernel/time/timecounter.c @@ -0,0 +1,112 @@ +/* + * linux/kernel/time/timecounter.c + * + * based on code that migrated away from + * linux/kernel/time/clocksource.c + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include <linux/export.h> +#include <linux/timecounter.h> + +void timecounter_init(struct timecounter *tc, + const struct cyclecounter *cc, + u64 start_tstamp) +{ + tc->cc = cc; + tc->cycle_last = cc->read(cc); + tc->nsec = start_tstamp; + tc->mask = (1ULL << cc->shift) - 1; + tc->frac = 0; +} +EXPORT_SYMBOL_GPL(timecounter_init); + +/** + * timecounter_read_delta - get nanoseconds since last call of this function + * @tc: Pointer to time counter + * + * When the underlying cycle counter runs over, this will be handled + * correctly as long as it does not run over more than once between + * calls. + * + * The first call to this function for a new time counter initializes + * the time tracking and returns an undefined result. + */ +static u64 timecounter_read_delta(struct timecounter *tc) +{ + cycle_t cycle_now, cycle_delta; + u64 ns_offset; + + /* read cycle counter: */ + cycle_now = tc->cc->read(tc->cc); + + /* calculate the delta since the last timecounter_read_delta(): */ + cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask; + + /* convert to nanoseconds: */ + ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta, + tc->mask, &tc->frac); + + /* update time stamp of timecounter_read_delta() call: */ + tc->cycle_last = cycle_now; + + return ns_offset; +} + +u64 timecounter_read(struct timecounter *tc) +{ + u64 nsec; + + /* increment time by nanoseconds since last call */ + nsec = timecounter_read_delta(tc); + nsec += tc->nsec; + tc->nsec = nsec; + + return nsec; +} +EXPORT_SYMBOL_GPL(timecounter_read); + +/* + * This is like cyclecounter_cyc2ns(), but it is used for computing a + * time previous to the time stored in the cycle counter. + */ +static u64 cc_cyc2ns_backwards(const struct cyclecounter *cc, + cycle_t cycles, u64 mask, u64 frac) +{ + u64 ns = (u64) cycles; + + ns = ((ns * cc->mult) - frac) >> cc->shift; + + return ns; +} + +u64 timecounter_cyc2time(struct timecounter *tc, + cycle_t cycle_tstamp) +{ + u64 delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask; + u64 nsec = tc->nsec, frac = tc->frac; + + /* + * Instead of always treating cycle_tstamp as more recent + * than tc->cycle_last, detect when it is too far in the + * future and treat it as old time stamp instead. + */ + if (delta > tc->cc->mask / 2) { + delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask; + nsec -= cc_cyc2ns_backwards(tc->cc, delta, tc->mask, frac); + } else { + nsec += cyclecounter_cyc2ns(tc->cc, delta, tc->mask, &frac); + } + + return nsec; +} +EXPORT_SYMBOL_GPL(timecounter_cyc2time); |