summaryrefslogtreecommitdiff
path: root/mm
diff options
context:
space:
mode:
authorRyan Roberts <ryan.roberts@arm.com>2024-03-06 14:03:56 +0000
committerAndrew Morton <akpm@linux-foundation.org>2024-03-06 13:04:19 -0800
commit82b1c07a0af603e3c47b906c8e991dc96f01688e (patch)
tree80d99bb8dd064d0b4158b9645d5ab636a21b880d /mm
parentc05995b7ec2a73bf813a8944978e175f8e4ec3ac (diff)
mm: swap: fix race between free_swap_and_cache() and swapoff()
There was previously a theoretical window where swapoff() could run and teardown a swap_info_struct while a call to free_swap_and_cache() was running in another thread. This could cause, amongst other bad possibilities, swap_page_trans_huge_swapped() (called by free_swap_and_cache()) to access the freed memory for swap_map. This is a theoretical problem and I haven't been able to provoke it from a test case. But there has been agreement based on code review that this is possible (see link below). Fix it by using get_swap_device()/put_swap_device(), which will stall swapoff(). There was an extra check in _swap_info_get() to confirm that the swap entry was not free. This isn't present in get_swap_device() because it doesn't make sense in general due to the race between getting the reference and swapoff. So I've added an equivalent check directly in free_swap_and_cache(). Details of how to provoke one possible issue (thanks to David Hildenbrand for deriving this): --8<----- __swap_entry_free() might be the last user and result in "count == SWAP_HAS_CACHE". swapoff->try_to_unuse() will stop as soon as soon as si->inuse_pages==0. So the question is: could someone reclaim the folio and turn si->inuse_pages==0, before we completed swap_page_trans_huge_swapped(). Imagine the following: 2 MiB folio in the swapcache. Only 2 subpages are still references by swap entries. Process 1 still references subpage 0 via swap entry. Process 2 still references subpage 1 via swap entry. Process 1 quits. Calls free_swap_and_cache(). -> count == SWAP_HAS_CACHE [then, preempted in the hypervisor etc.] Process 2 quits. Calls free_swap_and_cache(). -> count == SWAP_HAS_CACHE Process 2 goes ahead, passes swap_page_trans_huge_swapped(), and calls __try_to_reclaim_swap(). __try_to_reclaim_swap()->folio_free_swap()->delete_from_swap_cache()-> put_swap_folio()->free_swap_slot()->swapcache_free_entries()-> swap_entry_free()->swap_range_free()-> ... WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); What stops swapoff to succeed after process 2 reclaimed the swap cache but before process1 finished its call to swap_page_trans_huge_swapped()? --8<----- Link: https://lkml.kernel.org/r/20240306140356.3974886-1-ryan.roberts@arm.com Fixes: 7c00bafee87c ("mm/swap: free swap slots in batch") Closes: https://lore.kernel.org/linux-mm/65a66eb9-41f8-4790-8db2-0c70ea15979f@redhat.com/ Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Diffstat (limited to 'mm')
-rw-r--r--mm/swapfile.c13
1 files changed, 12 insertions, 1 deletions
diff --git a/mm/swapfile.c b/mm/swapfile.c
index 2b3a2d85e350..1155a6304119 100644
--- a/mm/swapfile.c
+++ b/mm/swapfile.c
@@ -1232,6 +1232,11 @@ static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
* with get_swap_device() and put_swap_device(), unless the swap
* functions call get/put_swap_device() by themselves.
*
+ * Note that when only holding the PTL, swapoff might succeed immediately
+ * after freeing a swap entry. Therefore, immediately after
+ * __swap_entry_free(), the swap info might become stale and should not
+ * be touched without a prior get_swap_device().
+ *
* Check whether swap entry is valid in the swap device. If so,
* return pointer to swap_info_struct, and keep the swap entry valid
* via preventing the swap device from being swapoff, until
@@ -1609,13 +1614,19 @@ int free_swap_and_cache(swp_entry_t entry)
if (non_swap_entry(entry))
return 1;
- p = _swap_info_get(entry);
+ p = get_swap_device(entry);
if (p) {
+ if (WARN_ON(data_race(!p->swap_map[swp_offset(entry)]))) {
+ put_swap_device(p);
+ return 0;
+ }
+
count = __swap_entry_free(p, entry);
if (count == SWAP_HAS_CACHE &&
!swap_page_trans_huge_swapped(p, entry))
__try_to_reclaim_swap(p, swp_offset(entry),
TTRS_UNMAPPED | TTRS_FULL);
+ put_swap_device(p);
}
return p != NULL;
}