summaryrefslogtreecommitdiff
path: root/tools/testing
diff options
context:
space:
mode:
authorAlexei Starovoitov <ast@kernel.org>2023-08-25 09:23:17 -0700
committerAlexei Starovoitov <ast@kernel.org>2023-08-25 09:23:23 -0700
commitec0ded2e02822ee6a7acb655d186af91854112cb (patch)
treee4fd1a875d7929f9195b30285b00640c523c4bae /tools/testing
parent9e3b47abeb8f76c39c570ffc924ac0b35f132274 (diff)
parent312aa5bde8985dd2aef99d3e20abc0889c6f2a3e (diff)
Merge branch 'bpf-refcount-followups-3-bpf_mem_free_rcu-refcounted-nodes'
Dave Marchevsky says: ==================== BPF Refcount followups 3: bpf_mem_free_rcu refcounted nodes This series is the third of three (or more) followups to address issues in the bpf_refcount shared ownership implementation discovered by Kumar. This series addresses the use-after-free scenario described in [0]. The first followup series ([1]) also attempted to address the same use-after-free, but only got rid of the splat without addressing the underlying issue. After this series the underyling issue is fixed and bpf_refcount_acquire can be re-enabled. The main fix here is migration of bpf_obj_drop to use bpf_mem_free_rcu. To understand why this fixes the issue, let us consider the example interleaving provided by Kumar in [0]: CPU 0 CPU 1 n = bpf_obj_new lock(lock1) bpf_rbtree_add(rbtree1, n) m = bpf_rbtree_acquire(n) unlock(lock1) kptr_xchg(map, m) // move to map // at this point, refcount = 2 m = kptr_xchg(map, NULL) lock(lock2) lock(lock1) bpf_rbtree_add(rbtree2, m) p = bpf_rbtree_first(rbtree1) if (!RB_EMPTY_NODE) bpf_obj_drop_impl(m) // A bpf_rbtree_remove(rbtree1, p) unlock(lock1) bpf_obj_drop(p) // B bpf_refcount_acquire(m) // use-after-free ... Before this series, bpf_obj_drop returns memory to the allocator using bpf_mem_free. At this point (B in the example) there might be some non-owning references to that memory which the verifier believes are valid, but where the underlying memory was reused for some other allocation. Commit 7793fc3babe9 ("bpf: Make bpf_refcount_acquire fallible for non-owning refs") attempted to fix this by doing refcount_inc_non_zero on refcount_acquire in instead of refcount_inc under the assumption that preventing erroneous incr-on-0 would be sufficient. This isn't true, though: refcount_inc_non_zero must *check* if the refcount is zero, and the memory it's checking could have been reused, so the check may look at and incr random reused bytes. If we wait to reuse this memory until all non-owning refs that could point to it are gone, there is no possibility of this scenario happening. Migrating bpf_obj_drop to use bpf_mem_free_rcu for refcounted nodes accomplishes this. For such nodes, the validity of their underlying memory is now tied to RCU critical section. This matches MEM_RCU trustedness expectations, so the series takes the opportunity to more explicitly mark this trustedness state. The functional effects of trustedness changes here are rather small. This is largely due to local kptrs having separate verifier handling - with implicit trustedness assumptions - than arbitrary kptrs. Regardless, let's take the opportunity to move towards a world where trustedness is more explicitly handled. Changelog: v1 -> v2: https://lore.kernel.org/bpf/20230801203630.3581291-1-davemarchevsky@fb.com/ Patch 1 ("bpf: Ensure kptr_struct_meta is non-NULL for collection insert and refcount_acquire") * Spent some time experimenting with a better approach as per convo w/ Yonghong on v1's patch. It started getting too complex, so left unchanged for now. Yonghong was fine with this approach being shipped. Patch 2 ("bpf: Consider non-owning refs trusted") * Add Yonghong ack Patch 3 ("bpf: Use bpf_mem_free_rcu when bpf_obj_dropping refcounted nodes") * Add Yonghong ack Patch 4 ("bpf: Reenable bpf_refcount_acquire") * Add Yonghong ack Patch 5 ("bpf: Consider non-owning refs to refcounted nodes RCU protected") * Undo a nonfunctional whitespace change that shouldn't have been included (Yonghong) * Better logging message when complaining about rcu_read_{lock,unlock} in rbtree cb (Alexei) * Don't invalidate_non_owning_refs when processing bpf_rcu_read_unlock (Yonghong, Alexei) Patch 6 ("[RFC] bpf: Allow bpf_spin_{lock,unlock} in sleepable prog's RCU CS") * preempt_{disable,enable} in __bpf_spin_{lock,unlock} (Alexei) * Due to this we can consider spin_lock CS an RCU-sched read-side CS (per RCU/Design/Requirements/Requirements.rst). Modify in_rcu_cs accordingly. * no need to check for !in_rcu_cs before allowing bpf_spin_{lock,unlock} (Alexei) * RFC tag removed and renamed to "bpf: Allow bpf_spin_{lock,unlock} in sleepable progs" Patch 7 ("selftests/bpf: Add tests for rbtree API interaction in sleepable progs") * Remove "no explicit bpf_rcu_read_lock" failure test, add similar success test (Alexei) Summary of patch contents, with sub-bullets being leading questions and comments I think are worth reviewer attention: * Patches 1 and 2 are moreso documententation - and enforcement, in patch 1's case - of existing semantics / expectations * Patch 3 changes bpf_obj_drop behavior for refcounted nodes such that their underlying memory is not reused until RCU grace period elapses * Perhaps it makes sense to move to mem_free_rcu for _all_ non-owning refs in the future, not just refcounted. This might allow custom non-owning ref lifetime + invalidation logic to be entirely subsumed by MEM_RCU handling. IMO this needs a bit more thought and should be tackled outside of a fix series, so it's not attempted here. * Patch 4 re-enables bpf_refcount_acquire as changes in patch 3 fix the remaining use-after-free * One might expect this patch to be last in the series, or last before selftest changes. Patches 5 and 6 don't change verification or runtime behavior for existing BPF progs, though. * Patch 5 brings the verifier's understanding of refcounted node trustedness in line with Patch 4's changes * Patch 6 allows some bpf_spin_{lock, unlock} calls in sleepable progs. Marked RFC for a few reasons: * bpf_spin_{lock,unlock} haven't been usable in sleepable progs since before the introduction of bpf linked list and rbtree. As such this feels more like a new feature that may not belong in this fixes series. * Patch 7 adds tests [0]: https://lore.kernel.org/bpf/atfviesiidev4hu53hzravmtlau3wdodm2vqs7rd7tnwft34e3@xktodqeqevir/ [1]: https://lore.kernel.org/bpf/20230602022647.1571784-1-davemarchevsky@fb.com/ ==================== Link: https://lore.kernel.org/r/20230821193311.3290257-1-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Diffstat (limited to 'tools/testing')
-rw-r--r--tools/testing/selftests/bpf/prog_tests/refcounted_kptr.c26
-rw-r--r--tools/testing/selftests/bpf/progs/refcounted_kptr.c71
-rw-r--r--tools/testing/selftests/bpf/progs/refcounted_kptr_fail.c28
3 files changed, 125 insertions, 0 deletions
diff --git a/tools/testing/selftests/bpf/prog_tests/refcounted_kptr.c b/tools/testing/selftests/bpf/prog_tests/refcounted_kptr.c
index 7423983472c7..d6bd5e16e637 100644
--- a/tools/testing/selftests/bpf/prog_tests/refcounted_kptr.c
+++ b/tools/testing/selftests/bpf/prog_tests/refcounted_kptr.c
@@ -9,12 +9,38 @@
void test_refcounted_kptr(void)
{
+ RUN_TESTS(refcounted_kptr);
}
void test_refcounted_kptr_fail(void)
{
+ RUN_TESTS(refcounted_kptr_fail);
}
void test_refcounted_kptr_wrong_owner(void)
{
+ LIBBPF_OPTS(bpf_test_run_opts, opts,
+ .data_in = &pkt_v4,
+ .data_size_in = sizeof(pkt_v4),
+ .repeat = 1,
+ );
+ struct refcounted_kptr *skel;
+ int ret;
+
+ skel = refcounted_kptr__open_and_load();
+ if (!ASSERT_OK_PTR(skel, "refcounted_kptr__open_and_load"))
+ return;
+
+ ret = bpf_prog_test_run_opts(bpf_program__fd(skel->progs.rbtree_wrong_owner_remove_fail_a1), &opts);
+ ASSERT_OK(ret, "rbtree_wrong_owner_remove_fail_a1");
+ ASSERT_OK(opts.retval, "rbtree_wrong_owner_remove_fail_a1 retval");
+
+ ret = bpf_prog_test_run_opts(bpf_program__fd(skel->progs.rbtree_wrong_owner_remove_fail_b), &opts);
+ ASSERT_OK(ret, "rbtree_wrong_owner_remove_fail_b");
+ ASSERT_OK(opts.retval, "rbtree_wrong_owner_remove_fail_b retval");
+
+ ret = bpf_prog_test_run_opts(bpf_program__fd(skel->progs.rbtree_wrong_owner_remove_fail_a2), &opts);
+ ASSERT_OK(ret, "rbtree_wrong_owner_remove_fail_a2");
+ ASSERT_OK(opts.retval, "rbtree_wrong_owner_remove_fail_a2 retval");
+ refcounted_kptr__destroy(skel);
}
diff --git a/tools/testing/selftests/bpf/progs/refcounted_kptr.c b/tools/testing/selftests/bpf/progs/refcounted_kptr.c
index c55652fdc63a..893a4fdb4b6e 100644
--- a/tools/testing/selftests/bpf/progs/refcounted_kptr.c
+++ b/tools/testing/selftests/bpf/progs/refcounted_kptr.c
@@ -8,6 +8,9 @@
#include "bpf_misc.h"
#include "bpf_experimental.h"
+extern void bpf_rcu_read_lock(void) __ksym;
+extern void bpf_rcu_read_unlock(void) __ksym;
+
struct node_data {
long key;
long list_data;
@@ -497,4 +500,72 @@ long rbtree_wrong_owner_remove_fail_a2(void *ctx)
return 0;
}
+SEC("?fentry.s/bpf_testmod_test_read")
+__success
+int BPF_PROG(rbtree_sleepable_rcu,
+ struct file *file, struct kobject *kobj,
+ struct bin_attribute *bin_attr, char *buf, loff_t off, size_t len)
+{
+ struct bpf_rb_node *rb;
+ struct node_data *n, *m = NULL;
+
+ n = bpf_obj_new(typeof(*n));
+ if (!n)
+ return 0;
+
+ bpf_rcu_read_lock();
+ bpf_spin_lock(&lock);
+ bpf_rbtree_add(&root, &n->r, less);
+ rb = bpf_rbtree_first(&root);
+ if (!rb)
+ goto err_out;
+
+ rb = bpf_rbtree_remove(&root, rb);
+ if (!rb)
+ goto err_out;
+
+ m = container_of(rb, struct node_data, r);
+
+err_out:
+ bpf_spin_unlock(&lock);
+ bpf_rcu_read_unlock();
+ if (m)
+ bpf_obj_drop(m);
+ return 0;
+}
+
+SEC("?fentry.s/bpf_testmod_test_read")
+__success
+int BPF_PROG(rbtree_sleepable_rcu_no_explicit_rcu_lock,
+ struct file *file, struct kobject *kobj,
+ struct bin_attribute *bin_attr, char *buf, loff_t off, size_t len)
+{
+ struct bpf_rb_node *rb;
+ struct node_data *n, *m = NULL;
+
+ n = bpf_obj_new(typeof(*n));
+ if (!n)
+ return 0;
+
+ /* No explicit bpf_rcu_read_lock */
+ bpf_spin_lock(&lock);
+ bpf_rbtree_add(&root, &n->r, less);
+ rb = bpf_rbtree_first(&root);
+ if (!rb)
+ goto err_out;
+
+ rb = bpf_rbtree_remove(&root, rb);
+ if (!rb)
+ goto err_out;
+
+ m = container_of(rb, struct node_data, r);
+
+err_out:
+ bpf_spin_unlock(&lock);
+ /* No explicit bpf_rcu_read_unlock */
+ if (m)
+ bpf_obj_drop(m);
+ return 0;
+}
+
char _license[] SEC("license") = "GPL";
diff --git a/tools/testing/selftests/bpf/progs/refcounted_kptr_fail.c b/tools/testing/selftests/bpf/progs/refcounted_kptr_fail.c
index 0b09e5c915b1..1ef07f6ee580 100644
--- a/tools/testing/selftests/bpf/progs/refcounted_kptr_fail.c
+++ b/tools/testing/selftests/bpf/progs/refcounted_kptr_fail.c
@@ -13,6 +13,9 @@ struct node_acquire {
struct bpf_refcount refcount;
};
+extern void bpf_rcu_read_lock(void) __ksym;
+extern void bpf_rcu_read_unlock(void) __ksym;
+
#define private(name) SEC(".data." #name) __hidden __attribute__((aligned(8)))
private(A) struct bpf_spin_lock glock;
private(A) struct bpf_rb_root groot __contains(node_acquire, node);
@@ -71,4 +74,29 @@ long rbtree_refcounted_node_ref_escapes_owning_input(void *ctx)
return 0;
}
+SEC("?fentry.s/bpf_testmod_test_read")
+__failure __msg("function calls are not allowed while holding a lock")
+int BPF_PROG(rbtree_fail_sleepable_lock_across_rcu,
+ struct file *file, struct kobject *kobj,
+ struct bin_attribute *bin_attr, char *buf, loff_t off, size_t len)
+{
+ struct node_acquire *n;
+
+ n = bpf_obj_new(typeof(*n));
+ if (!n)
+ return 0;
+
+ /* spin_{lock,unlock} are in different RCU CS */
+ bpf_rcu_read_lock();
+ bpf_spin_lock(&glock);
+ bpf_rbtree_add(&groot, &n->node, less);
+ bpf_rcu_read_unlock();
+
+ bpf_rcu_read_lock();
+ bpf_spin_unlock(&glock);
+ bpf_rcu_read_unlock();
+
+ return 0;
+}
+
char _license[] SEC("license") = "GPL";