summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Documentation/admin-guide/sysctl/kernel.rst16
-rw-r--r--MAINTAINERS1
-rw-r--r--drivers/char/hw_random/core.c1
-rw-r--r--drivers/char/mem.c2
-rw-r--r--drivers/char/random.c2843
-rw-r--r--drivers/net/wireguard/device.c38
-rw-r--r--drivers/virt/Kconfig11
-rw-r--r--drivers/virt/Makefile1
-rw-r--r--drivers/virt/vmgenid.c100
-rw-r--r--include/linux/cpuhotplug.h2
-rw-r--r--include/linux/hw_random.h2
-rw-r--r--include/linux/mod_devicetable.h2
-rw-r--r--include/linux/random.h43
-rw-r--r--include/trace/events/random.h233
-rw-r--r--kernel/cpu.c11
-rw-r--r--lib/random32.c14
-rw-r--r--lib/vsprintf.c10
17 files changed, 1371 insertions, 1959 deletions
diff --git a/Documentation/admin-guide/sysctl/kernel.rst b/Documentation/admin-guide/sysctl/kernel.rst
index d359bcfadd39..5dd660aac0ae 100644
--- a/Documentation/admin-guide/sysctl/kernel.rst
+++ b/Documentation/admin-guide/sysctl/kernel.rst
@@ -1029,23 +1029,17 @@ This is a directory, with the following entries:
* ``poolsize``: the entropy pool size, in bits;
* ``urandom_min_reseed_secs``: obsolete (used to determine the minimum
- number of seconds between urandom pool reseeding).
+ number of seconds between urandom pool reseeding). This file is
+ writable for compatibility purposes, but writing to it has no effect
+ on any RNG behavior.
* ``uuid``: a UUID generated every time this is retrieved (this can
thus be used to generate UUIDs at will);
* ``write_wakeup_threshold``: when the entropy count drops below this
(as a number of bits), processes waiting to write to ``/dev/random``
- are woken up.
-
-If ``drivers/char/random.c`` is built with ``ADD_INTERRUPT_BENCH``
-defined, these additional entries are present:
-
-* ``add_interrupt_avg_cycles``: the average number of cycles between
- interrupts used to feed the pool;
-
-* ``add_interrupt_avg_deviation``: the standard deviation seen on the
- number of cycles between interrupts used to feed the pool.
+ are woken up. This file is writable for compatibility purposes, but
+ writing to it has no effect on any RNG behavior.
randomize_va_space
diff --git a/MAINTAINERS b/MAINTAINERS
index ac4508914b3a..7940c41f65d5 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -16213,6 +16213,7 @@ M: Jason A. Donenfeld <Jason@zx2c4.com>
T: git https://git.kernel.org/pub/scm/linux/kernel/git/crng/random.git
S: Maintained
F: drivers/char/random.c
+F: drivers/virt/vmgenid.c
RAPIDIO SUBSYSTEM
M: Matt Porter <mporter@kernel.crashing.org>
diff --git a/drivers/char/hw_random/core.c b/drivers/char/hw_random/core.c
index a3db27916256..cfb085de876b 100644
--- a/drivers/char/hw_random/core.c
+++ b/drivers/char/hw_random/core.c
@@ -15,6 +15,7 @@
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/hw_random.h>
+#include <linux/random.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/sched/signal.h>
diff --git a/drivers/char/mem.c b/drivers/char/mem.c
index cc296f0823bd..9f586025dbe6 100644
--- a/drivers/char/mem.c
+++ b/drivers/char/mem.c
@@ -707,7 +707,7 @@ static const struct memdev {
[5] = { "zero", 0666, &zero_fops, FMODE_NOWAIT },
[7] = { "full", 0666, &full_fops, 0 },
[8] = { "random", 0666, &random_fops, 0 },
- [9] = { "urandom", 0666, &urandom_fops, 0 },
+ [9] = { "urandom", 0666, &random_fops, 0 },
#ifdef CONFIG_PRINTK
[11] = { "kmsg", 0644, &kmsg_fops, 0 },
#endif
diff --git a/drivers/char/random.c b/drivers/char/random.c
index 3404a91edf29..0bdefada7453 100644
--- a/drivers/char/random.c
+++ b/drivers/char/random.c
@@ -1,320 +1,28 @@
+// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
/*
- * random.c -- A strong random number generator
- *
* Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
- *
* Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
- *
- * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
- * rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, and the entire permission notice in its entirety,
- * including the disclaimer of warranties.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. The name of the author may not be used to endorse or promote
- * products derived from this software without specific prior
- * written permission.
- *
- * ALTERNATIVELY, this product may be distributed under the terms of
- * the GNU General Public License, in which case the provisions of the GPL are
- * required INSTEAD OF the above restrictions. (This clause is
- * necessary due to a potential bad interaction between the GPL and
- * the restrictions contained in a BSD-style copyright.)
- *
- * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
- * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
- * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
- * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
- * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
- * DAMAGE.
- */
-
-/*
- * (now, with legal B.S. out of the way.....)
- *
- * This routine gathers environmental noise from device drivers, etc.,
- * and returns good random numbers, suitable for cryptographic use.
- * Besides the obvious cryptographic uses, these numbers are also good
- * for seeding TCP sequence numbers, and other places where it is
- * desirable to have numbers which are not only random, but hard to
- * predict by an attacker.
- *
- * Theory of operation
- * ===================
- *
- * Computers are very predictable devices. Hence it is extremely hard
- * to produce truly random numbers on a computer --- as opposed to
- * pseudo-random numbers, which can easily generated by using a
- * algorithm. Unfortunately, it is very easy for attackers to guess
- * the sequence of pseudo-random number generators, and for some
- * applications this is not acceptable. So instead, we must try to
- * gather "environmental noise" from the computer's environment, which
- * must be hard for outside attackers to observe, and use that to
- * generate random numbers. In a Unix environment, this is best done
- * from inside the kernel.
- *
- * Sources of randomness from the environment include inter-keyboard
- * timings, inter-interrupt timings from some interrupts, and other
- * events which are both (a) non-deterministic and (b) hard for an
- * outside observer to measure. Randomness from these sources are
- * added to an "entropy pool", which is mixed using a CRC-like function.
- * This is not cryptographically strong, but it is adequate assuming
- * the randomness is not chosen maliciously, and it is fast enough that
- * the overhead of doing it on every interrupt is very reasonable.
- * As random bytes are mixed into the entropy pool, the routines keep
- * an *estimate* of how many bits of randomness have been stored into
- * the random number generator's internal state.
- *
- * When random bytes are desired, they are obtained by taking the BLAKE2s
- * hash of the contents of the "entropy pool". The BLAKE2s hash avoids
- * exposing the internal state of the entropy pool. It is believed to
- * be computationally infeasible to derive any useful information
- * about the input of BLAKE2s from its output. Even if it is possible to
- * analyze BLAKE2s in some clever way, as long as the amount of data
- * returned from the generator is less than the inherent entropy in
- * the pool, the output data is totally unpredictable. For this
- * reason, the routine decreases its internal estimate of how many
- * bits of "true randomness" are contained in the entropy pool as it
- * outputs random numbers.
- *
- * If this estimate goes to zero, the routine can still generate
- * random numbers; however, an attacker may (at least in theory) be
- * able to infer the future output of the generator from prior
- * outputs. This requires successful cryptanalysis of BLAKE2s, which is
- * not believed to be feasible, but there is a remote possibility.
- * Nonetheless, these numbers should be useful for the vast majority
- * of purposes.
- *
- * Exported interfaces ---- output
- * ===============================
- *
- * There are four exported interfaces; two for use within the kernel,
- * and two for use from userspace.
- *
- * Exported interfaces ---- userspace output
- * -----------------------------------------
- *
- * The userspace interfaces are two character devices /dev/random and
- * /dev/urandom. /dev/random is suitable for use when very high
- * quality randomness is desired (for example, for key generation or
- * one-time pads), as it will only return a maximum of the number of
- * bits of randomness (as estimated by the random number generator)
- * contained in the entropy pool.
- *
- * The /dev/urandom device does not have this limit, and will return
- * as many bytes as are requested. As more and more random bytes are
- * requested without giving time for the entropy pool to recharge,
- * this will result in random numbers that are merely cryptographically
- * strong. For many applications, however, this is acceptable.
- *
- * Exported interfaces ---- kernel output
- * --------------------------------------
- *
- * The primary kernel interface is
- *
- * void get_random_bytes(void *buf, int nbytes);
- *
- * This interface will return the requested number of random bytes,
- * and place it in the requested buffer. This is equivalent to a
- * read from /dev/urandom.
- *
- * For less critical applications, there are the functions:
- *
- * u32 get_random_u32()
- * u64 get_random_u64()
- * unsigned int get_random_int()
- * unsigned long get_random_long()
- *
- * These are produced by a cryptographic RNG seeded from get_random_bytes,
- * and so do not deplete the entropy pool as much. These are recommended
- * for most in-kernel operations *if the result is going to be stored in
- * the kernel*.
- *
- * Specifically, the get_random_int() family do not attempt to do
- * "anti-backtracking". If you capture the state of the kernel (e.g.
- * by snapshotting the VM), you can figure out previous get_random_int()
- * return values. But if the value is stored in the kernel anyway,
- * this is not a problem.
- *
- * It *is* safe to expose get_random_int() output to attackers (e.g. as
- * network cookies); given outputs 1..n, it's not feasible to predict
- * outputs 0 or n+1. The only concern is an attacker who breaks into
- * the kernel later; the get_random_int() engine is not reseeded as
- * often as the get_random_bytes() one.
- *
- * get_random_bytes() is needed for keys that need to stay secret after
- * they are erased from the kernel. For example, any key that will
- * be wrapped and stored encrypted. And session encryption keys: we'd
- * like to know that after the session is closed and the keys erased,
- * the plaintext is unrecoverable to someone who recorded the ciphertext.
- *
- * But for network ports/cookies, stack canaries, PRNG seeds, address
- * space layout randomization, session *authentication* keys, or other
- * applications where the sensitive data is stored in the kernel in
- * plaintext for as long as it's sensitive, the get_random_int() family
- * is just fine.
- *
- * Consider ASLR. We want to keep the address space secret from an
- * outside attacker while the process is running, but once the address
- * space is torn down, it's of no use to an attacker any more. And it's
- * stored in kernel data structures as long as it's alive, so worrying
- * about an attacker's ability to extrapolate it from the get_random_int()
- * CRNG is silly.
- *
- * Even some cryptographic keys are safe to generate with get_random_int().
- * In particular, keys for SipHash are generally fine. Here, knowledge
- * of the key authorizes you to do something to a kernel object (inject
- * packets to a network connection, or flood a hash table), and the
- * key is stored with the object being protected. Once it goes away,
- * we no longer care if anyone knows the key.
- *
- * prandom_u32()
- * -------------
- *
- * For even weaker applications, see the pseudorandom generator
- * prandom_u32(), prandom_max(), and prandom_bytes(). If the random
- * numbers aren't security-critical at all, these are *far* cheaper.
- * Useful for self-tests, random error simulation, randomized backoffs,
- * and any other application where you trust that nobody is trying to
- * maliciously mess with you by guessing the "random" numbers.
- *
- * Exported interfaces ---- input
- * ==============================
- *
- * The current exported interfaces for gathering environmental noise
- * from the devices are:
- *
- * void add_device_randomness(const void *buf, unsigned int size);
- * void add_input_randomness(unsigned int type, unsigned int code,
- * unsigned int value);
- * void add_interrupt_randomness(int irq);
- * void add_disk_randomness(struct gendisk *disk);
- * void add_hwgenerator_randomness(const char *buffer, size_t count,
- * size_t entropy);
- * void add_bootloader_randomness(const void *buf, unsigned int size);
- *
- * add_device_randomness() is for adding data to the random pool that
- * is likely to differ between two devices (or possibly even per boot).
- * This would be things like MAC addresses or serial numbers, or the
- * read-out of the RTC. This does *not* add any actual entropy to the
- * pool, but it initializes the pool to different values for devices
- * that might otherwise be identical and have very little entropy
- * available to them (particularly common in the embedded world).
- *
- * add_input_randomness() uses the input layer interrupt timing, as well as
- * the event type information from the hardware.
- *
- * add_interrupt_randomness() uses the interrupt timing as random
- * inputs to the entropy pool. Using the cycle counters and the irq source
- * as inputs, it feeds the randomness roughly once a second.
- *
- * add_disk_randomness() uses what amounts to the seek time of block
- * layer request events, on a per-disk_devt basis, as input to the
- * entropy pool. Note that high-speed solid state drives with very low
- * seek times do not make for good sources of entropy, as their seek
- * times are usually fairly consistent.
- *
- * All of these routines try to estimate how many bits of randomness a
- * particular randomness source. They do this by keeping track of the
- * first and second order deltas of the event timings.
- *
- * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
- * entropy as specified by the caller. If the entropy pool is full it will
- * block until more entropy is needed.
- *
- * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
- * add_device_randomness(), depending on whether or not the configuration
- * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
- *
- * Ensuring unpredictability at system startup
- * ============================================
- *
- * When any operating system starts up, it will go through a sequence
- * of actions that are fairly predictable by an adversary, especially
- * if the start-up does not involve interaction with a human operator.
- * This reduces the actual number of bits of unpredictability in the
- * entropy pool below the value in entropy_count. In order to
- * counteract this effect, it helps to carry information in the
- * entropy pool across shut-downs and start-ups. To do this, put the
- * following lines an appropriate script which is run during the boot
- * sequence:
- *
- * echo "Initializing random number generator..."
- * random_seed=/var/run/random-seed
- * # Carry a random seed from start-up to start-up
- * # Load and then save the whole entropy pool
- * if [ -f $random_seed ]; then
- * cat $random_seed >/dev/urandom
- * else
- * touch $random_seed
- * fi
- * chmod 600 $random_seed
- * dd if=/dev/urandom of=$random_seed count=1 bs=512
- *
- * and the following lines in an appropriate script which is run as
- * the system is shutdown:
- *
- * # Carry a random seed from shut-down to start-up
- * # Save the whole entropy pool
- * echo "Saving random seed..."
- * random_seed=/var/run/random-seed
- * touch $random_seed
- * chmod 600 $random_seed
- * dd if=/dev/urandom of=$random_seed count=1 bs=512
- *
- * For example, on most modern systems using the System V init
- * scripts, such code fragments would be found in
- * /etc/rc.d/init.d/random. On older Linux systems, the correct script
- * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
- *
- * Effectively, these commands cause the contents of the entropy pool
- * to be saved at shut-down time and reloaded into the entropy pool at
- * start-up. (The 'dd' in the addition to the bootup script is to
- * make sure that /etc/random-seed is different for every start-up,
- * even if the system crashes without executing rc.0.) Even with
- * complete knowledge of the start-up activities, predicting the state
- * of the entropy pool requires knowledge of the previous history of
- * the system.
- *
- * Configuring the /dev/random driver under Linux
- * ==============================================
- *
- * The /dev/random driver under Linux uses minor numbers 8 and 9 of
- * the /dev/mem major number (#1). So if your system does not have
- * /dev/random and /dev/urandom created already, they can be created
- * by using the commands:
- *
- * mknod /dev/random c 1 8
- * mknod /dev/urandom c 1 9
- *
- * Acknowledgements:
- * =================
- *
- * Ideas for constructing this random number generator were derived
- * from Pretty Good Privacy's random number generator, and from private
- * discussions with Phil Karn. Colin Plumb provided a faster random
- * number generator, which speed up the mixing function of the entropy
- * pool, taken from PGPfone. Dale Worley has also contributed many
- * useful ideas and suggestions to improve this driver.
- *
- * Any flaws in the design are solely my responsibility, and should
- * not be attributed to the Phil, Colin, or any of authors of PGP.
- *
- * Further background information on this topic may be obtained from
- * RFC 1750, "Randomness Recommendations for Security", by Donald
- * Eastlake, Steve Crocker, and Jeff Schiller.
+ * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
+ *
+ * This driver produces cryptographically secure pseudorandom data. It is divided
+ * into roughly six sections, each with a section header:
+ *
+ * - Initialization and readiness waiting.
+ * - Fast key erasure RNG, the "crng".
+ * - Entropy accumulation and extraction routines.
+ * - Entropy collection routines.
+ * - Userspace reader/writer interfaces.
+ * - Sysctl interface.
+ *
+ * The high level overview is that there is one input pool, into which
+ * various pieces of data are hashed. Some of that data is then "credited" as
+ * having a certain number of bits of entropy. When enough bits of entropy are
+ * available, the hash is finalized and handed as a key to a stream cipher that
+ * expands it indefinitely for various consumers. This key is periodically
+ * refreshed as the various entropy collectors, described below, add data to the
+ * input pool and credit it. There is currently no Fortuna-like scheduler
+ * involved, which can lead to malicious entropy sources causing a premature
+ * reseed, and the entropy estimates are, at best, conservative guesses.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
@@ -344,744 +52,937 @@
#include <linux/syscalls.h>
#include <linux/completion.h>
#include <linux/uuid.h>
+#include <linux/uaccess.h>
#include <crypto/chacha.h>
#include <crypto/blake2s.h>
-
#include <asm/processor.h>
-#include <linux/uaccess.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <asm/io.h>
-#define CREATE_TRACE_POINTS
-#include <trace/events/random.h>
-
-/* #define ADD_INTERRUPT_BENCH */
-
-/*
- * If the entropy count falls under this number of bits, then we
- * should wake up processes which are selecting or polling on write
- * access to /dev/random.
- */
-static int random_write_wakeup_bits = 28 * (1 << 5);
-
-/*
- * Originally, we used a primitive polynomial of degree .poolwords
- * over GF(2). The taps for various sizes are defined below. They
- * were chosen to be evenly spaced except for the last tap, which is 1
- * to get the twisting happening as fast as possible.
- *
- * For the purposes of better mixing, we use the CRC-32 polynomial as
- * well to make a (modified) twisted Generalized Feedback Shift
- * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
- * generators. ACM Transactions on Modeling and Computer Simulation
- * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
- * GFSR generators II. ACM Transactions on Modeling and Computer
- * Simulation 4:254-266)
+/*********************************************************************
*
- * Thanks to Colin Plumb for suggesting this.
+ * Initialization and readiness waiting.
*
- * The mixing operation is much less sensitive than the output hash,
- * where we use BLAKE2s. All that we want of mixing operation is that
- * it be a good non-cryptographic hash; i.e. it not produce collisions
- * when fed "random" data of the sort we expect to see. As long as
- * the pool state differs for different inputs, we have preserved the
- * input entropy and done a good job. The fact that an intelligent
- * attacker can construct inputs that will produce controlled
- * alterations to the pool's state is not important because we don't
- * consider such inputs to contribute any randomness. The only
- * property we need with respect to them is that the attacker can't
- * increase his/her knowledge of the pool's state. Since all
- * additions are reversible (knowing the final state and the input,
- * you can reconstruct the initial state), if an attacker has any
- * uncertainty about the initial state, he/she can only shuffle that
- * uncertainty about, but never cause any collisions (which would
- * decrease the uncertainty).
+ * Much of the RNG infrastructure is devoted to various dependencies
+ * being able to wait until the RNG has collected enough entropy and
+ * is ready for safe consumption.
*
- * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
- * Videau in their paper, "The Linux Pseudorandom Number Generator
- * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
- * paper, they point out that we are not using a true Twisted GFSR,
- * since Matsumoto & Kurita used a trinomial feedback polynomial (that
- * is, with only three taps, instead of the six that we are using).
- * As a result, the resulting polynomial is neither primitive nor
- * irreducible, and hence does not have a maximal period over
- * GF(2**32). They suggest a slight change to the generator
- * polynomial which improves the resulting TGFSR polynomial to be
- * irreducible, which we have made here.
- */
-enum poolinfo {
- POOL_WORDS = 128,
- POOL_WORDMASK = POOL_WORDS - 1,
- POOL_BYTES = POOL_WORDS * sizeof(u32),
- POOL_BITS = POOL_BYTES * 8,
- POOL_BITSHIFT = ilog2(POOL_BITS),
-
- /* To allow fractional bits to be tracked, the entropy_count field is
- * denominated in units of 1/8th bits. */
- POOL_ENTROPY_SHIFT = 3,
-#define POOL_ENTROPY_BITS() (input_pool.entropy_count >> POOL_ENTROPY_SHIFT)
- POOL_FRACBITS = POOL_BITS << POOL_ENTROPY_SHIFT,
-
- /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
- POOL_TAP1 = 104,
- POOL_TAP2 = 76,
- POOL_TAP3 = 51,
- POOL_TAP4 = 25,
- POOL_TAP5 = 1,
-
- EXTRACT_SIZE = BLAKE2S_HASH_SIZE / 2
-};
-
-/*
- * Static global variables
- */
-static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
-static struct fasync_struct *fasync;
-
-static DEFINE_SPINLOCK(random_ready_list_lock);
-static LIST_HEAD(random_ready_list);
-
-struct crng_state {
- u32 state[16];
- unsigned long init_time;
- spinlock_t lock;
-};
-
-static struct crng_state primary_crng = {
- .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
- .state[0] = CHACHA_CONSTANT_EXPA,
- .state[1] = CHACHA_CONSTANT_ND_3,
- .state[2] = CHACHA_CONSTANT_2_BY,
- .state[3] = CHACHA_CONSTANT_TE_K,
-};
+ *********************************************************************/
/*
* crng_init = 0 --> Uninitialized
* 1 --> Initialized
* 2 --> Initialized from input_pool
*
- * crng_init is protected by primary_crng->lock, and only increases
+ * crng_init is protected by base_crng->lock, and only increases
* its value (from 0->1->2).
*/
static int crng_init = 0;
-static bool crng_need_final_init = false;
#define crng_ready() (likely(crng_init > 1))
-static int crng_init_cnt = 0;
-static unsigned long crng_global_init_time = 0;
-#define CRNG_INIT_CNT_THRESH (2 * CHACHA_KEY_SIZE)
-static void _extract_crng(struct crng_state *crng, u8 out[CHACHA_BLOCK_SIZE]);
-static void _crng_backtrack_protect(struct crng_state *crng,
- u8 tmp[CHACHA_BLOCK_SIZE], int used);
-static void process_random_ready_list(void);
-static void _get_random_bytes(void *buf, int nbytes);
+/* Various types of waiters for crng_init->2 transition. */
+static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
+static struct fasync_struct *fasync;
+static DEFINE_SPINLOCK(random_ready_chain_lock);
+static RAW_NOTIFIER_HEAD(random_ready_chain);
+/* Control how we warn userspace. */
static struct ratelimit_state unseeded_warning =
RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
-static struct ratelimit_state urandom_warning =
- RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
-
static int ratelimit_disable __read_mostly;
-
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
-/**********************************************************************
- *
- * OS independent entropy store. Here are the functions which handle
- * storing entropy in an entropy pool.
+/*
+ * Returns whether or not the input pool has been seeded and thus guaranteed
+ * to supply cryptographically secure random numbers. This applies to
+ * get_random_bytes() and get_random_{u32,u64,int,long}().
*
- **********************************************************************/
-
-static u32 input_pool_data[POOL_WORDS] __latent_entropy;
-
-static struct {
- spinlock_t lock;
- u16 add_ptr;
- u16 input_rotate;
- int entropy_count;
-} input_pool = {
- .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
-};
+ * Returns: true if the input pool has been seeded.
+ * false if the input pool has not been seeded.
+ */
+bool rng_is_initialized(void)
+{
+ return crng_ready();
+}
+EXPORT_SYMBOL(rng_is_initialized);
-static ssize_t extract_entropy(void *buf, size_t nbytes, int min);
-static ssize_t _extract_entropy(void *buf, size_t nbytes);
+/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
+static void try_to_generate_entropy(void);
-static void crng_reseed(struct crng_state *crng, bool use_input_pool);
+/*
+ * Wait for the input pool to be seeded and thus guaranteed to supply
+ * cryptographically secure random numbers. This applies to
+ * get_random_bytes() and get_random_{u32,u64,int,long}(). Using any
+ * of these functions without first calling this function means that
+ * the returned numbers might not be cryptographically secure.
+ *
+ * Returns: 0 if the input pool has been seeded.
+ * -ERESTARTSYS if the function was interrupted by a signal.
+ */
+int wait_for_random_bytes(void)
+{
+ while (!crng_ready()) {
+ int ret;
-static const u32 twist_table[8] = {
- 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
- 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
+ try_to_generate_entropy();
+ ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
+ if (ret)
+ return ret > 0 ? 0 : ret;
+ }
+ return 0;
+}
+EXPORT_SYMBOL(wait_for_random_bytes);
/*
- * This function adds bytes into the entropy "pool". It does not
- * update the entropy estimate. The caller should call
- * credit_entropy_bits if this is appropriate.
+ * Add a callback function that will be invoked when the input
+ * pool is initialised.
*
- * The pool is stirred with a primitive polynomial of the appropriate
- * degree, and then twisted. We twist by three bits at a time because
- * it's cheap to do so and helps slightly in the expected case where
- * the entropy is concentrated in the low-order bits.
+ * returns: 0 if callback is successfully added
+ * -EALREADY if pool is already initialised (callback not called)
*/
-static void _mix_pool_bytes(const void *in, int nbytes)
+int register_random_ready_notifier(struct notifier_block *nb)
{
- unsigned long i;
- int input_rotate;
- const u8 *bytes = in;
- u32 w;
-
- input_rotate = input_pool.input_rotate;
- i = input_pool.add_ptr;
-
- /* mix one byte at a time to simplify size handling and churn faster */
- while (nbytes--) {
- w = rol32(*bytes++, input_rotate);
- i = (i - 1) & POOL_WORDMASK;
-
- /* XOR in the various taps */
- w ^= input_pool_data[i];
- w ^= input_pool_data[(i + POOL_TAP1) & POOL_WORDMASK];
- w ^= input_pool_data[(i + POOL_TAP2) & POOL_WORDMASK];
- w ^= input_pool_data[(i + POOL_TAP3) & POOL_WORDMASK];
- w ^= input_pool_data[(i + POOL_TAP4) & POOL_WORDMASK];
- w ^= input_pool_data[(i + POOL_TAP5) & POOL_WORDMASK];
-
- /* Mix the result back in with a twist */
- input_pool_data[i] = (w >> 3) ^ twist_table[w & 7];
+ unsigned long flags;
+ int ret = -EALREADY;
- /*
- * Normally, we add 7 bits of rotation to the pool.
- * At the beginning of the pool, add an extra 7 bits
- * rotation, so that successive passes spread the
- * input bits across the pool evenly.
- */
- input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
- }
+ if (crng_ready())
+ return ret;
- input_pool.input_rotate = input_rotate;
- input_pool.add_ptr = i;
+ spin_lock_irqsave(&random_ready_chain_lock, flags);
+ if (!crng_ready())
+ ret = raw_notifier_chain_register(&random_ready_chain, nb);
+ spin_unlock_irqrestore(&random_ready_chain_lock, flags);
+ return ret;
}
-static void __mix_pool_bytes(const void *in, int nbytes)
+/*
+ * Delete a previously registered readiness callback function.
+ */
+int unregister_random_ready_notifier(struct notifier_block *nb)
{
- trace_mix_pool_bytes_nolock(nbytes, _RET_IP_);
- _mix_pool_bytes(in, nbytes);
+ unsigned long flags;
+ int ret;
+
+ spin_lock_irqsave(&random_ready_chain_lock, flags);
+ ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
+ spin_unlock_irqrestore(&random_ready_chain_lock, flags);
+ return ret;
}
-static void mix_pool_bytes(const void *in, int nbytes)
+static void process_random_ready_list(void)
{
unsigned long flags;
- trace_mix_pool_bytes(nbytes, _RET_IP_);
- spin_lock_irqsave(&input_pool.lock, flags);
- _mix_pool_bytes(in, nbytes);
- spin_unlock_irqrestore(&input_pool.lock, flags);
+ spin_lock_irqsave(&random_ready_chain_lock, flags);
+ raw_notifier_call_chain(&random_ready_chain, 0, NULL);
+ spin_unlock_irqrestore(&random_ready_chain_lock, flags);
}
-struct fast_pool {
- u32 pool[4];
- unsigned long last;
- u16 reg_idx;
- u8 count;
-};
+#define warn_unseeded_randomness(previous) \
+ _warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))
-/*
- * This is a fast mixing routine used by the interrupt randomness
- * collector. It's hardcoded for an 128 bit pool and assumes that any
- * locks that might be needed are taken by the caller.
- */
-static void fast_mix(struct fast_pool *f)
+static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
{
- u32 a = f->pool[0], b = f->pool[1];
- u32 c = f->pool[2], d = f->pool[3];
+#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
+ const bool print_once = false;
+#else
+ static bool print_once __read_mostly;
+#endif
+
+ if (print_once || crng_ready() ||
+ (previous && (caller == READ_ONCE(*previous))))
+ return;
+ WRITE_ONCE(*previous, caller);
+#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
+ print_once = true;
+#endif
+ if (__ratelimit(&unseeded_warning))
+ printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
+ func_name, caller, crng_init);
+}
+
- a += b; c += d;
- b = rol32(b, 6); d = rol32(d, 27);
- d ^= a; b ^= c;
+/*********************************************************************
+ *
+ * Fast key erasure RNG, the "crng".
+ *
+ * These functions expand entropy from the entropy extractor into
+ * long streams for external consumption using the "fast key erasure"
+ * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
+ *
+ * There are a few exported interfaces for use by other drivers:
+ *
+ * void get_random_bytes(void *buf, size_t nbytes)
+ * u32 get_random_u32()
+ * u64 get_random_u64()
+ * unsigned int get_random_int()
+ * unsigned long get_random_long()
+ *
+ * These interfaces will return the requested number of random bytes
+ * into the given buffer or as a return value. The returned numbers are
+ * the same as those of getrandom(0). The integer family of functions may
+ * be higher performance for one-off random integers, because they do a
+ * bit of buffering and do not invoke reseeding.
+ *
+ *********************************************************************/
- a += b; c += d;
- b = rol32(b, 16); d = rol32(d, 14);
- d ^= a; b ^= c;
+enum {
+ CRNG_RESEED_INTERVAL = 300 * HZ,
+ CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE
+};
- a += b; c += d;
- b = rol32(b, 6); d = rol32(d, 27);
- d ^= a; b ^= c;
+static struct {
+ u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
+ unsigned long birth;
+ unsigned long generation;
+ spinlock_t lock;
+} base_crng = {
+ .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
+};
- a += b; c += d;
- b = rol32(b, 16); d = rol32(d, 14);
- d ^= a; b ^= c;
+struct crng {
+ u8 key[CHACHA_KEY_SIZE];
+ unsigned long generation;
+ local_lock_t lock;
+};
- f->pool[0] = a; f->pool[1] = b;
- f->pool[2] = c; f->pool[3] = d;
- f->count++;
-}
+static DEFINE_PER_CPU(struct crng, crngs) = {
+ .generation = ULONG_MAX,
+ .lock = INIT_LOCAL_LOCK(crngs.lock),
+};
-static void process_random_ready_list(void)
+/* Used by crng_reseed() to extract a new seed from the input pool. */
+static bool drain_entropy(void *buf, size_t nbytes, bool force);
+
+/*
+ * This extracts a new crng key from the input pool, but only if there is a
+ * sufficient amount of entropy available or force is true, in order to
+ * mitigate bruteforcing of newly added bits.
+ */
+static void crng_reseed(bool force)
{
unsigned long flags;
- struct random_ready_callback *rdy, *tmp;
+ unsigned long next_gen;
+ u8 key[CHACHA_KEY_SIZE];
+ bool finalize_init = false;
- spin_lock_irqsave(&random_ready_list_lock, flags);
- list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
- struct module *owner = rdy->owner;
+ /* Only reseed if we can, to prevent brute forcing a small amount of new bits. */
+ if (!drain_entropy(key, sizeof(key), force))
+ return;
- list_del_init(&rdy->list);
- rdy->func(rdy);
- module_put(owner);
+ /*
+ * We copy the new key into the base_crng, overwriting the old one,
+ * and update the generation counter. We avoid hitting ULONG_MAX,
+ * because the per-cpu crngs are initialized to ULONG_MAX, so this
+ * forces new CPUs that come online to always initialize.
+ */
+ spin_lock_irqsave(&base_crng.lock, flags);
+ memcpy(base_crng.key, key, sizeof(base_crng.key));
+ next_gen = base_crng.generation + 1;
+ if (next_gen == ULONG_MAX)
+ ++next_gen;
+ WRITE_ONCE(base_crng.generation, next_gen);
+ WRITE_ONCE(base_crng.birth, jiffies);
+ if (!crng_ready()) {
+ crng_init = 2;
+ finalize_init = true;
+ }
+ spin_unlock_irqrestore(&base_crng.lock, flags);
+ memzero_explicit(key, sizeof(key));
+ if (finalize_init) {
+ process_random_ready_list();
+ wake_up_interruptible(&crng_init_wait);
+ kill_fasync(&fasync, SIGIO, POLL_IN);
+ pr_notice("crng init done\n");
+ if (unseeded_warning.missed) {
+ pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
+ unseeded_warning.missed);
+ unseeded_warning.missed = 0;
+ }
}
- spin_unlock_irqrestore(&random_ready_list_lock, flags);
}
/*
- * Credit (or debit) the entropy store with n bits of entropy.
- * Use credit_entropy_bits_safe() if the value comes from userspace
- * or otherwise should be checked for extreme values.
+ * This generates a ChaCha block using the provided key, and then
+ * immediately overwites that key with half the block. It returns
+ * the resultant ChaCha state to the user, along with the second
+ * half of the block containing 32 bytes of random data that may
+ * be used; random_data_len may not be greater than 32.
*/
-static void credit_entropy_bits(int nbits)
+static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
+ u32 chacha_state[CHACHA_STATE_WORDS],
+ u8 *random_data, size_t random_data_len)
{
- int entropy_count, entropy_bits, orig;
- int nfrac = nbits << POOL_ENTROPY_SHIFT;
+ u8 first_block[CHACHA_BLOCK_SIZE];
- /* Ensure that the multiplication can avoid being 64 bits wide. */
- BUILD_BUG_ON(2 * (POOL_ENTROPY_SHIFT + POOL_BITSHIFT) > 31);
+ BUG_ON(random_data_len > 32);
- if (!nbits)
- return;
+ chacha_init_consts(chacha_state);
+ memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
+ memset(&chacha_state[12], 0, sizeof(u32) * 4);
+ chacha20_block(chacha_state, first_block);
-retry:
- entropy_count = orig = READ_ONCE(input_pool.entropy_count);
- if (nfrac < 0) {
- /* Debit */
- entropy_count += nfrac;
- } else {
- /*
- * Credit: we have to account for the possibility of
- * overwriting already present entropy. Even in the
- * ideal case of pure Shannon entropy, new contributions
- * approach the full value asymptotically:
- *
- * entropy <- entropy + (pool_size - entropy) *
- * (1 - exp(-add_entropy/pool_size))
- *
- * For add_entropy <= pool_size/2 then
- * (1 - exp(-add_entropy/pool_size)) >=
- * (add_entropy/pool_size)*0.7869...
- * so we can approximate the exponential with
- * 3/4*add_entropy/pool_size and still be on the
- * safe side by adding at most pool_size/2 at a time.
- *
- * The use of pool_size-2 in the while statement is to
- * prevent rounding artifacts from making the loop
- * arbitrarily long; this limits the loop to log2(pool_size)*2
- * turns no matter how large nbits is.
- */
- int pnfrac = nfrac;
- const int s = POOL_BITSHIFT + POOL_ENTROPY_SHIFT + 2;
- /* The +2 corresponds to the /4 in the denominator */
-
- do {
- unsigned int anfrac = min(pnfrac, POOL_FRACBITS / 2);
- unsigned int add =
- ((POOL_FRACBITS - entropy_count) * anfrac * 3) >> s;
-
- entropy_count += add;
- pnfrac -= anfrac;
- } while (unlikely(entropy_count < POOL_FRACBITS - 2 && pnfrac));
- }
-
- if (WARN_ON(entropy_count < 0)) {
- pr_warn("negative entropy/overflow: count %d\n", entropy_count);
- entropy_count = 0;
- } else if (entropy_count > POOL_FRACBITS)
- entropy_count = POOL_FRACBITS;
- if (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig)
- goto retry;
-
- trace_credit_entropy_bits(nbits, entropy_count >> POOL_ENTROPY_SHIFT, _RET_IP_);
+ memcpy(key, first_block, CHACHA_KEY_SIZE);
+ memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
+ memzero_explicit(first_block, sizeof(first_block));
+}
- entropy_bits = entropy_count >> POOL_ENTROPY_SHIFT;
- if (crng_init < 2 && entropy_bits >= 128)
- crng_reseed(&primary_crng, true);
+/*
+ * Return whether the crng seed is considered to be sufficiently
+ * old that a reseeding might be attempted. This happens if the last
+ * reseeding was CRNG_RESEED_INTERVAL ago, or during early boot, at
+ * an interval proportional to the uptime.
+ */
+static bool crng_has_old_seed(void)
+{
+ static bool early_boot = true;
+ unsigned long interval = CRNG_RESEED_INTERVAL;
+
+ if (unlikely(READ_ONCE(early_boot))) {
+ time64_t uptime = ktime_get_seconds();
+ if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
+ WRITE_ONCE(early_boot, false);
+ else
+ interval = max_t(unsigned int, 5 * HZ,
+ (unsigned int)uptime / 2 * HZ);
+ }
+ return time_after(jiffies, READ_ONCE(base_crng.birth) + interval);
}
-static int credit_entropy_bits_safe(int nbits)
+/*
+ * This function returns a ChaCha state that you may use for generating
+ * random data. It also returns up to 32 bytes on its own of random data
+ * that may be used; random_data_len may not be greater than 32.
+ */
+static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
+ u8 *random_data, size_t random_data_len)
{
- if (nbits < 0)
- return -EINVAL;
+ unsigned long flags;
+ struct crng *crng;
- /* Cap the value to avoid overflows */
- nbits = min(nbits, POOL_BITS);
+ BUG_ON(random_data_len > 32);
- credit_entropy_bits(nbits);
- return 0;
-}
+ /*
+ * For the fast path, we check whether we're ready, unlocked first, and
+ * then re-check once locked later. In the case where we're really not
+ * ready, we do fast key erasure with the base_crng directly, because
+ * this is what crng_pre_init_inject() mutates during early init.
+ */
+ if (!crng_ready()) {
+ bool ready;
+
+ spin_lock_irqsave(&base_crng.lock, flags);
+ ready = crng_ready();
+ if (!ready)
+ crng_fast_key_erasure(base_crng.key, chacha_state,
+ random_data, random_data_len);
+ spin_unlock_irqrestore(&base_crng.lock, flags);
+ if (!ready)
+ return;
+ }
-/*********************************************************************
- *
- * CRNG using CHACHA20
- *
- *********************************************************************/
+ /*
+ * If the base_crng is old enough, we try to reseed, which in turn
+ * bumps the generation counter that we check below.
+ */
+ if (unlikely(crng_has_old_seed()))
+ crng_reseed(false);
-#define CRNG_RESEED_INTERVAL (300 * HZ)
+ local_lock_irqsave(&crngs.lock, flags);
+ crng = raw_cpu_ptr(&crngs);
-static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
+ /*
+ * If our per-cpu crng is older than the base_crng, then it means
+ * somebody reseeded the base_crng. In that case, we do fast key
+ * erasure on the base_crng, and use its output as the new key
+ * for our per-cpu crng. This brings us up to date with base_crng.
+ */
+ if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
+ spin_lock(&base_crng.lock);
+ crng_fast_key_erasure(base_crng.key, chacha_state,
+ crng->key, sizeof(crng->key));
+ crng->generation = base_crng.generation;
+ spin_unlock(&base_crng.lock);
+ }
+
+ /*
+ * Finally, when we've made it this far, our per-cpu crng has an up
+ * to date key, and we can do fast key erasure with it to produce
+ * some random data and a ChaCha state for the caller. All other
+ * branches of this function are "unlikely", so most of the time we
+ * should wind up here immediately.
+ */
+ crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
+ local_unlock_irqrestore(&crngs.lock, flags);
+}
/*
- * Hack to deal with crazy userspace progams when they are all trying
- * to access /dev/urandom in parallel. The programs are almost
- * certainly doing something terribly wrong, but we'll work around
- * their brain damage.
+ * This function is for crng_init == 0 only. It loads entropy directly
+ * into the crng's key, without going through the input pool. It is,
+ * generally speaking, not very safe, but we use this only at early
+ * boot time when it's better to have something there rather than
+ * nothing.
+ *
+ * If account is set, then the crng_init_cnt counter is incremented.
+ * This shouldn't be set by functions like add_device_randomness(),
+ * where we can't trust the buffer passed to it is guaranteed to be
+ * unpredictable (so it might not have any entropy at all).
+ *
+ * Returns the number of bytes processed from input, which is bounded
+ * by CRNG_INIT_CNT_THRESH if account is true.
*/
-static struct crng_state **crng_node_pool __read_mostly;
+static size_t crng_pre_init_inject(const void *input, size_t len, bool account)
+{
+ static int crng_init_cnt = 0;
+ struct blake2s_state hash;
+ unsigned long flags;
-static void invalidate_batched_entropy(void);
-static void numa_crng_init(void);
+ blake2s_init(&hash, sizeof(base_crng.key));
-static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
-static int __init parse_trust_cpu(char *arg)
-{
- return kstrtobool(arg, &trust_cpu);
-}
-early_param("random.trust_cpu", parse_trust_cpu);
+ spin_lock_irqsave(&base_crng.lock, flags);
+ if (crng_init != 0) {
+ spin_unlock_irqrestore(&base_crng.lock, flags);
+ return 0;
+ }
-static bool crng_init_try_arch(struct crng_state *crng)
-{
- int i;
- bool arch_init = true;
- unsigned long rv;
+ if (account)
+ len = min_t(size_t, len, CRNG_INIT_CNT_THRESH - crng_init_cnt);
- for (i = 4; i < 16; i++) {
- if (!arch_get_random_seed_long(&rv) &&
- !arch_get_random_long(&rv)) {
- rv = random_get_entropy();
- arch_init = false;
+ blake2s_update(&hash, base_crng.key, sizeof(base_crng.key));
+ blake2s_update(&hash, input, len);
+ blake2s_final(&hash, base_crng.key);
+
+ if (account) {
+ crng_init_cnt += len;
+ if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
+ ++base_crng.generation;
+ crng_init = 1;
}
- crng->state[i] ^= rv;
}
- return arch_init;
+ spin_unlock_irqrestore(&base_crng.lock, flags);
+
+ if (crng_init == 1)
+ pr_notice("fast init done\n");
+
+ return len;
}
-static bool __init crng_init_try_arch_early(void)
+static void _get_random_bytes(void *buf, size_t nbytes)
{
- int i;
- bool arch_init = true;
- unsigned long rv;
+ u32 chacha_state[CHACHA_STATE_WORDS];
+ u8 tmp[CHACHA_BLOCK_SIZE];
+ size_t len;
- for (i = 4; i < 16; i++) {
- if (!arch_get_random_seed_long_early(&rv) &&
- !arch_get_random_long_early(&rv)) {
- rv = random_get_entropy();
- arch_init = false;
+ if (!nbytes)
+ return;
+
+ len = min_t(size_t, 32, nbytes);
+ crng_make_state(chacha_state, buf, len);
+ nbytes -= len;
+ buf += len;
+
+ while (nbytes) {
+ if (nbytes < CHACHA_BLOCK_SIZE) {
+ chacha20_block(chacha_state, tmp);
+ memcpy(buf, tmp, nbytes);
+ memzero_explicit(tmp, sizeof(tmp));
+ break;
}
- primary_crng.state[i] ^= rv;
+
+ chacha20_block(chacha_state, buf);
+ if (unlikely(chacha_state[12] == 0))
+ ++chacha_state[13];
+ nbytes -= CHACHA_BLOCK_SIZE;
+ buf += CHACHA_BLOCK_SIZE;
}
- return arch_init;
+ memzero_explicit(chacha_state, sizeof(chacha_state));
}
-static void crng_initialize_secondary(struct crng_state *crng)
+/*
+ * This function is the exported kernel interface. It returns some
+ * number of good random numbers, suitable for key generation, seeding
+ * TCP sequence numbers, etc. It does not rely on the hardware random
+ * number generator. For random bytes direct from the hardware RNG
+ * (when available), use get_random_bytes_arch(). In order to ensure
+ * that the randomness provided by this function is okay, the function
+ * wait_for_random_bytes() should be called and return 0 at least once
+ * at any point prior.
+ */
+void get_random_bytes(void *buf, size_t nbytes)
{
- chacha_init_consts(crng->state);
- _get_random_bytes(&crng->state[4], sizeof(u32) * 12);
- crng_init_try_arch(crng);
- crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
-}
+ static void *previous;
-static void __init crng_initialize_primary(void)
-{
- _extract_entropy(&primary_crng.state[4], sizeof(u32) * 12);
- if (crng_init_try_arch_early() && trust_cpu && crng_init < 2) {
- invalidate_batched_entropy();
- numa_crng_init();
- crng_init = 2;
- pr_notice("crng init done (trusting CPU's manufacturer)\n");
- }
- primary_crng.init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
+ warn_unseeded_randomness(&previous);
+ _get_random_bytes(buf, nbytes);
}
+EXPORT_SYMBOL(get_random_bytes);
-static void crng_finalize_init(void)
+static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes)
{
- if (!system_wq) {
- /* We can't call numa_crng_init until we have workqueues,
- * so mark this for processing later. */
- crng_need_final_init = true;
- return;
- }
+ bool large_request = nbytes > 256;
+ ssize_t ret = 0;
+ size_t len;
+ u32 chacha_state[CHACHA_STATE_WORDS];
+ u8 output[CHACHA_BLOCK_SIZE];
- invalidate_batched_entropy();
- numa_crng_init();
- crng_init = 2;
- crng_need_final_init = false;
- process_random_ready_list();
- wake_up_interruptible(&crng_init_wait);
- kill_fasync(&fasync, SIGIO, POLL_IN);
- pr_notice("crng init done\n");
- if (unseeded_warning.missed) {
- pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
- unseeded_warning.missed);
- unseeded_warning.missed = 0;
- }
- if (urandom_warning.missed) {
- pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
- urandom_warning.missed);
- urandom_warning.missed = 0;
- }
-}
+ if (!nbytes)
+ return 0;
-static void do_numa_crng_init(struct work_struct *work)
-{
- int i;
- struct crng_state *crng;
- struct crng_state **pool;
-
- pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL | __GFP_NOFAIL);
- for_each_online_node(i) {
- crng = kmalloc_node(sizeof(struct crng_state),
- GFP_KERNEL | __GFP_NOFAIL, i);
- spin_lock_init(&crng->lock);
- crng_initialize_secondary(crng);
- pool[i] = crng;
- }
- /* pairs with READ_ONCE() in select_crng() */
- if (cmpxchg_release(&crng_node_pool, NULL, pool) != NULL) {
- for_each_node(i)
- kfree(pool[i]);
- kfree(pool);
- }
-}
+ len = min_t(size_t, 32, nbytes);
+ crng_make_state(chacha_state, output, len);
-static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
+ if (copy_to_user(buf, output, len))
+ return -EFAULT;
+ nbytes -= len;
+ buf += len;
+ ret += len;
-static void numa_crng_init(void)
-{
- if (IS_ENABLED(CONFIG_NUMA))
- schedule_work(&numa_crng_init_work);
-}
+ while (nbytes) {
+ if (large_request && need_resched()) {
+ if (signal_pending(current))
+ break;
+ schedule();
+ }
-static struct crng_state *select_crng(void)
-{
- if (IS_ENABLED(CONFIG_NUMA)) {
- struct crng_state **pool;
- int nid = numa_node_id();
-
- /* pairs with cmpxchg_release() in do_numa_crng_init() */
- pool = READ_ONCE(crng_node_pool);
- if (pool && pool[nid])
- return pool[nid];
+ chacha20_block(chacha_state, output);
+ if (unlikely(chacha_state[12] == 0))
+ ++chacha_state[13];
+
+ len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE);
+ if (copy_to_user(buf, output, len)) {
+ ret = -EFAULT;
+ break;
+ }
+
+ nbytes -= len;
+ buf += len;
+ ret += len;
}
- return &primary_crng;
+ memzero_explicit(chacha_state, sizeof(chacha_state));
+ memzero_explicit(output, sizeof(output));
+ return ret;
}
/*
- * crng_fast_load() can be called by code in the interrupt service
- * path. So we can't afford to dilly-dally. Returns the number of
- * bytes processed from cp.
+ * Batched entropy returns random integers. The quality of the random
+ * number is good as /dev/urandom. In order to ensure that the randomness
+ * provided by this function is okay, the function wait_for_random_bytes()
+ * should be called and return 0 at least once at any point prior.
*/
-static size_t crng_fast_load(const u8 *cp, size_t len)
+struct batched_entropy {
+ union {
+ /*
+ * We make this 1.5x a ChaCha block, so that we get the
+ * remaining 32 bytes from fast key erasure, plus one full
+ * block from the detached ChaCha state. We can increase
+ * the size of this later if needed so long as we keep the
+ * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
+ */
+ u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
+ u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
+ };
+ local_lock_t lock;
+ unsigned long generation;
+ unsigned int position;
+};
+
+
+static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
+ .lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
+ .position = UINT_MAX
+};
+
+u64 get_random_u64(void)
{
+ u64 ret;
unsigned long flags;
- u8 *p;
- size_t ret = 0;
+ struct batched_entropy *batch;
+ static void *previous;
+ unsigned long next_gen;
- if (!spin_trylock_irqsave(&primary_crng.lock, flags))
- return 0;
- if (crng_init != 0) {
- spin_unlock_irqrestore(&primary_crng.lock, flags);
- return 0;
- }
- p = (u8 *)&primary_crng.state[4];
- while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
- p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
- cp++; crng_init_cnt++; len--; ret++;
- }
- spin_unlock_irqrestore(&primary_crng.lock, flags);
- if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
- invalidate_batched_entropy();
- crng_init = 1;
- pr_notice("fast init done\n");
+ warn_unseeded_randomness(&previous);
+
+ local_lock_irqsave(&batched_entropy_u64.lock, flags);
+ batch = raw_cpu_ptr(&batched_entropy_u64);
+
+ next_gen = READ_ONCE(base_crng.generation);
+ if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
+ next_gen != batch->generation) {
+ _get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
+ batch->position = 0;
+ batch->generation = next_gen;
}
+
+ ret = batch->entropy_u64[batch->position];
+ batch->entropy_u64[batch->position] = 0;
+ ++batch->position;
+ local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
return ret;
}
+EXPORT_SYMBOL(get_random_u64);
-/*
- * crng_slow_load() is called by add_device_randomness, which has two
- * attributes. (1) We can't trust the buffer passed to it is
- * guaranteed to be unpredictable (so it might not have any entropy at
- * all), and (2) it doesn't have the performance constraints of
- * crng_fast_load().
- *
- * So we do something more comprehensive which is guaranteed to touch
- * all of the primary_crng's state, and which uses a LFSR with a
- * period of 255 as part of the mixing algorithm. Finally, we do
- * *not* advance crng_init_cnt since buffer we may get may be something
- * like a fixed DMI table (for example), which might very well be
- * unique to the machine, but is otherwise unvarying.
- */
-static int crng_slow_load(const u8 *cp, size_t len)
+static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
+ .lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
+ .position = UINT_MAX
+};
+
+u32 get_random_u32(void)
{
+ u32 ret;
unsigned long flags;
- static u8 lfsr = 1;
- u8 tmp;
- unsigned int i, max = CHACHA_KEY_SIZE;
- const u8 *src_buf = cp;
- u8 *dest_buf = (u8 *)&primary_crng.state[4];
+ struct batched_entropy *batch;
+ static void *previous;
+ unsigned long next_gen;
- if (!spin_trylock_irqsave(&primary_crng.lock, flags))
- return 0;
- if (crng_init != 0) {
- spin_unlock_irqrestore(&primary_crng.lock, flags);
- return 0;
- }
- if (len > max)
- max = len;
-
- for (i = 0; i < max; i++) {
- tmp = lfsr;
- lfsr >>= 1;
- if (tmp & 1)
- lfsr ^= 0xE1;
- tmp = dest_buf[i % CHACHA_KEY_SIZE];
- dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
- lfsr += (tmp << 3) | (tmp >> 5);
+ warn_unseeded_randomness(&previous);
+
+ local_lock_irqsave(&batched_entropy_u32.lock, flags);
+ batch = raw_cpu_ptr(&batched_entropy_u32);
+
+ next_gen = READ_ONCE(base_crng.generation);
+ if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
+ next_gen != batch->generation) {
+ _get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
+ batch->position = 0;
+ batch->generation = next_gen;
}
- spin_unlock_irqrestore(&primary_crng.lock, flags);
- return 1;
+
+ ret = batch->entropy_u32[batch->position];
+ batch->entropy_u32[batch->position] = 0;
+ ++batch->position;
+ local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
+ return ret;
}
+EXPORT_SYMBOL(get_random_u32);
-static void crng_reseed(struct crng_state *crng, bool use_input_pool)
+#ifdef CONFIG_SMP
+/*
+ * This function is called when the CPU is coming up, with entry
+ * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
+ */
+int random_prepare_cpu(unsigned int cpu)
{
- unsigned long flags;
- int i, num;
- union {
- u8 block[CHACHA_BLOCK_SIZE];
- u32 key[8];
- } buf;
+ /*
+ * When the cpu comes back online, immediately invalidate both
+ * the per-cpu crng and all batches, so that we serve fresh
+ * randomness.
+ */
+ per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
+ per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
+ per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
+ return 0;
+}
+#endif
- if (use_input_pool) {
- num = extract_entropy(&buf, 32, 16);
- if (num == 0)
- return;
- } else {
- _extract_crng(&primary_crng, buf.block);
- _crng_backtrack_protect(&primary_crng, buf.block,
- CHACHA_KEY_SIZE);
- }
- spin_lock_irqsave(&crng->lock, flags);
- for (i = 0; i < 8; i++) {
- unsigned long rv;
- if (!arch_get_random_seed_long(&rv) &&
- !arch_get_random_long(&rv))
- rv = random_get_entropy();
- crng->state[i + 4] ^= buf.key[i] ^ rv;
+/**
+ * randomize_page - Generate a random, page aligned address
+ * @start: The smallest acceptable address the caller will take.
+ * @range: The size of the area, starting at @start, within which the
+ * random address must fall.
+ *
+ * If @start + @range would overflow, @range is capped.
+ *
+ * NOTE: Historical use of randomize_range, which this replaces, presumed that
+ * @start was already page aligned. We now align it regardless.
+ *
+ * Return: A page aligned address within [start, start + range). On error,
+ * @start is returned.
+ */
+unsigned long randomize_page(unsigned long start, unsigned long range)
+{
+ if (!PAGE_ALIGNED(start)) {
+ range -= PAGE_ALIGN(start) - start;
+ start = PAGE_ALIGN(start);
}
- memzero_explicit(&buf, sizeof(buf));
- WRITE_ONCE(crng->init_time, jiffies);
- spin_unlock_irqrestore(&crng->lock, flags);
- if (crng == &primary_crng && crng_init < 2)
- crng_finalize_init();
+
+ if (start > ULONG_MAX - range)
+ range = ULONG_MAX - start;
+
+ range >>= PAGE_SHIFT;
+
+ if (range == 0)
+ return start;
+
+ return start + (get_random_long() % range << PAGE_SHIFT);
}
-static void _extract_crng(struct crng_state *crng, u8 out[CHACHA_BLOCK_SIZE])
+/*
+ * This function will use the architecture-specific hardware random
+ * number generator if it is available. It is not recommended for
+ * use. Use get_random_bytes() instead. It returns the number of
+ * bytes filled in.
+ */
+size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes)
{
- unsigned long flags, init_time;
+ size_t left = nbytes;
+ u8 *p = buf;
- if (crng_ready()) {
- init_time = READ_ONCE(crng->init_time);
- if (time_after(READ_ONCE(crng_global_init_time), init_time) ||
- time_after(jiffies, init_time + CRNG_RESEED_INTERVAL))
- crng_reseed(crng, crng == &primary_crng);
+ while (left) {
+ unsigned long v;
+ size_t chunk = min_t(size_t, left, sizeof(unsigned long));
+
+ if (!arch_get_random_long(&v))
+ break;
+
+ memcpy(p, &v, chunk);
+ p += chunk;
+ left -= chunk;
}
- spin_lock_irqsave(&crng->lock, flags);
- chacha20_block(&crng->state[0], out);
- if (crng->state[12] == 0)
- crng->state[13]++;
- spin_unlock_irqrestore(&crng->lock, flags);
+
+ return nbytes - left;
}
+EXPORT_SYMBOL(get_random_bytes_arch);
+
+
+/**********************************************************************
+ *
+ * Entropy accumulation and extraction routines.
+ *
+ * Callers may add entropy via:
+ *
+ * static void mix_pool_bytes(const void *in, size_t nbytes)
+ *
+ * After which, if added entropy should be credited:
+ *
+ * static void credit_entropy_bits(size_t nbits)
+ *
+ * Finally, extract entropy via these two, with the latter one
+ * setting the entropy count to zero and extracting only if there
+ * is POOL_MIN_BITS entropy credited prior or force is true:
+ *
+ * static void extract_entropy(void *buf, size_t nbytes)
+ * static bool drain_entropy(void *buf, size_t nbytes, bool force)
+ *
+ **********************************************************************/
+
+enum {
+ POOL_BITS = BLAKE2S_HASH_SIZE * 8,
+ POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */
+};
+
+/* For notifying userspace should write into /dev/random. */
+static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
+
+static struct {
+ struct blake2s_state hash;
+ spinlock_t lock;
+ unsigned int entropy_count;
+} input_pool = {
+ .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
+ BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
+ BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
+ .hash.outlen = BLAKE2S_HASH_SIZE,
+ .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
+};
-static void extract_crng(u8 out[CHACHA_BLOCK_SIZE])
+static void _mix_pool_bytes(const void *in, size_t nbytes)
{
- _extract_crng(select_crng(), out);
+ blake2s_update(&input_pool.hash, in, nbytes);
}
/*
- * Use the leftover bytes from the CRNG block output (if there is
- * enough) to mutate the CRNG key to provide backtracking protection.
+ * This function adds bytes into the entropy "pool". It does not
+ * update the entropy estimate. The caller should call
+ * credit_entropy_bits if this is appropriate.
*/
-static void _crng_backtrack_protect(struct crng_state *crng,
- u8 tmp[CHACHA_BLOCK_SIZE], int used)
+static void mix_pool_bytes(const void *in, size_t nbytes)
{
unsigned long flags;
- u32 *s, *d;
- int i;
- used = round_up(used, sizeof(u32));
- if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
- extract_crng(tmp);
- used = 0;
- }
- spin_lock_irqsave(&crng->lock, flags);
- s = (u32 *)&tmp[used];
- d = &crng->state[4];
- for (i = 0; i < 8; i++)
- *d++ ^= *s++;
- spin_unlock_irqrestore(&crng->lock, flags);
+ spin_lock_irqsave(&input_pool.lock, flags);
+ _mix_pool_bytes(in, nbytes);
+ spin_unlock_irqrestore(&input_pool.lock, flags);
}
-static void crng_backtrack_protect(u8 tmp[CHACHA_BLOCK_SIZE], int used)
+static void credit_entropy_bits(size_t nbits)
{
- _crng_backtrack_protect(select_crng(), tmp, used);
+ unsigned int entropy_count, orig, add;
+
+ if (!nbits)
+ return;
+
+ add = min_t(size_t, nbits, POOL_BITS);
+
+ do {
+ orig = READ_ONCE(input_pool.entropy_count);
+ entropy_count = min_t(unsigned int, POOL_BITS, orig + add);
+ } while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig);
+
+ if (!crng_ready() && entropy_count >= POOL_MIN_BITS)
+ crng_reseed(false);
}
-static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
+/*
+ * This is an HKDF-like construction for using the hashed collected entropy
+ * as a PRF key, that's then expanded block-by-block.
+ */
+static void extract_entropy(void *buf, size_t nbytes)
{
- ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
- u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
- int large_request = (nbytes > 256);
+ unsigned long flags;
+ u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
+ struct {
+ unsigned long rdseed[32 / sizeof(long)];
+ size_t counter;
+ } block;
+ size_t i;
+
+ for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
+ if (!arch_get_random_seed_long(&block.rdseed[i]) &&
+ !arch_get_random_long(&block.rdseed[i]))
+ block.rdseed[i] = random_get_entropy();
+ }
- while (nbytes) {
- if (large_request && need_resched()) {
- if (signal_pending(current)) {
- if (ret == 0)
- ret = -ERESTARTSYS;
- break;
- }
- schedule();
- }
+ spin_lock_irqsave(&input_pool.lock, flags);
- extract_crng(tmp);
- i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
- if (copy_to_user(buf, tmp, i)) {
- ret = -EFAULT;
- break;
- }
+ /* seed = HASHPRF(last_key, entropy_input) */
+ blake2s_final(&input_pool.hash, seed);
+
+ /* next_key = HASHPRF(seed, RDSEED || 0) */
+ block.counter = 0;
+ blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
+ blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
+
+ spin_unlock_irqrestore(&input_pool.lock, flags);
+ memzero_explicit(next_key, sizeof(next_key));
+ while (nbytes) {
+ i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
+ /* output = HASHPRF(seed, RDSEED || ++counter) */
+ ++block.counter;
+ blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
nbytes -= i;
buf += i;
- ret += i;
}
- crng_backtrack_protect(tmp, i);
- /* Wipe data just written to memory */
- memzero_explicit(tmp, sizeof(tmp));
+ memzero_explicit(seed, sizeof(seed));
+ memzero_explicit(&block, sizeof(block));
+}
- return ret;
+/*
+ * First we make sure we have POOL_MIN_BITS of entropy in the pool unless force
+ * is true, and then we set the entropy count to zero (but don't actually touch
+ * any data). Only then can we extract a new key with extract_entropy().
+ */
+static bool drain_entropy(void *buf, size_t nbytes, bool force)
+{
+ unsigned int entropy_count;
+ do {
+ entropy_count = READ_ONCE(input_pool.entropy_count);
+ if (!force && entropy_count < POOL_MIN_BITS)
+ return false;
+ } while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count);
+ extract_entropy(buf, nbytes);
+ wake_up_interruptible(&random_write_wait);
+ kill_fasync(&fasync, SIGIO, POLL_OUT);
+ return true;
}
-/*********************************************************************
+
+/**********************************************************************
*
- * Entropy input management
+ * Entropy collection routines.
*
- *********************************************************************/
+ * The following exported functions are used for pushing entropy into
+ * the above entropy accumulation routines:
+ *
+ * void add_device_randomness(const void *buf, size_t size);
+ * void add_input_randomness(unsigned int type, unsigned int code,
+ * unsigned int value);
+ * void add_disk_randomness(struct gendisk *disk);
+ * void add_hwgenerator_randomness(const void *buffer, size_t count,
+ * size_t entropy);
+ * void add_bootloader_randomness(const void *buf, size_t size);
+ * void add_vmfork_randomness(const void *unique_vm_id, size_t size);
+ * void add_interrupt_randomness(int irq);
+ *
+ * add_device_randomness() adds data to the input pool that
+ * is likely to differ between two devices (or possibly even per boot).
+ * This would be things like MAC addresses or serial numbers, or the
+ * read-out of the RTC. This does *not* credit any actual entropy to
+ * the pool, but it initializes the pool to different values for devices
+ * that might otherwise be identical and have very little entropy
+ * available to them (particularly common in the embedded world).
+ *
+ * add_input_randomness() uses the input layer interrupt timing, as well
+ * as the event type information from the hardware.
+ *
+ * add_disk_randomness() uses what amounts to the seek time of block
+ * layer request events, on a per-disk_devt basis, as input to the
+ * entropy pool. Note that high-speed solid state drives with very low
+ * seek times do not make for good sources of entropy, as their seek
+ * times are usually fairly consistent.
+ *
+ * The above two routines try to estimate how many bits of entropy
+ * to credit. They do this by keeping track of the first and second
+ * order deltas of the event timings.
+ *
+ * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
+ * entropy as specified by the caller. If the entropy pool is full it will
+ * block until more entropy is needed.
+ *
+ * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
+ * add_device_randomness(), depending on whether or not the configuration
+ * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
+ *
+ * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
+ * representing the current instance of a VM to the pool, without crediting,
+ * and then force-reseeds the crng so that it takes effect immediately.
+ *
+ * add_interrupt_randomness() uses the interrupt timing as random
+ * inputs to the entropy pool. Using the cycle counters and the irq source
+ * as inputs, it feeds the input pool roughly once a second or after 64
+ * interrupts, crediting 1 bit of entropy for whichever comes first.
+ *
+ **********************************************************************/
-/* There is one of these per entropy source */
-struct timer_rand_state {
- cycles_t last_time;
- long last_delta, last_delta2;
-};
+static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
+static int __init parse_trust_cpu(char *arg)
+{
+ return kstrtobool(arg, &trust_cpu);
+}
+early_param("random.trust_cpu", parse_trust_cpu);
+
+/*
+ * The first collection of entropy occurs at system boot while interrupts
+ * are still turned off. Here we push in RDSEED, a timestamp, and utsname().
+ * Depending on the above configuration knob, RDSEED may be considered
+ * sufficient for initialization. Note that much earlier setup may already
+ * have pushed entropy into the input pool by the time we get here.
+ */
+int __init rand_initialize(void)
+{
+ size_t i;
+ ktime_t now = ktime_get_real();
+ bool arch_init = true;
+ unsigned long rv;
+
+ for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) {
+ if (!arch_get_random_seed_long_early(&rv) &&
+ !arch_get_random_long_early(&rv)) {
+ rv = random_get_entropy();
+ arch_init = false;
+ }
+ _mix_pool_bytes(&rv, sizeof(rv));
+ }
+ _mix_pool_bytes(&now, sizeof(now));
+ _mix_pool_bytes(utsname(), sizeof(*(utsname())));
+
+ extract_entropy(base_crng.key, sizeof(base_crng.key));
+ ++base_crng.generation;
-#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
+ if (arch_init && trust_cpu && !crng_ready()) {
+ crng_init = 2;
+ pr_notice("crng init done (trusting CPU's manufacturer)\n");
+ }
+
+ if (ratelimit_disable)
+ unseeded_warning.interval = 0;
+ return 0;
+}
/*
* Add device- or boot-specific data to the input pool to help
@@ -1091,23 +992,27 @@ struct timer_rand_state {
* the entropy pool having similar initial state across largely
* identical devices.
*/
-void add_device_randomness(const void *buf, unsigned int size)
+void add_device_randomness(const void *buf, size_t size)
{
- unsigned long time = random_get_entropy() ^ jiffies;
- unsigned long flags;
+ cycles_t cycles = random_get_entropy();
+ unsigned long flags, now = jiffies;
- if (!crng_ready() && size)
- crng_slow_load(buf, size);
+ if (crng_init == 0 && size)
+ crng_pre_init_inject(buf, size, false);
- trace_add_device_randomness(size, _RET_IP_);
spin_lock_irqsave(&input_pool.lock, flags);
+ _mix_pool_bytes(&cycles, sizeof(cycles));
+ _mix_pool_bytes(&now, sizeof(now));
_mix_pool_bytes(buf, size);
- _mix_pool_bytes(&time, sizeof(time));
spin_unlock_irqrestore(&input_pool.lock, flags);
}
EXPORT_SYMBOL(add_device_randomness);
-static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
+/* There is one of these per entropy source */
+struct timer_rand_state {
+ unsigned long last_time;
+ long last_delta, last_delta2;
+};
/*
* This function adds entropy to the entropy "pool" by using timing
@@ -1117,29 +1022,26 @@ static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
* The number "num" is also added to the pool - it should somehow describe
* the type of event which just happened. This is currently 0-255 for
* keyboard scan codes, and 256 upwards for interrupts.
- *
*/
-static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
+static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
{
- struct {
- long jiffies;
- unsigned int cycles;
- unsigned int num;
- } sample;
+ cycles_t cycles = random_get_entropy();
+ unsigned long flags, now = jiffies;
long delta, delta2, delta3;
- sample.jiffies = jiffies;
- sample.cycles = random_get_entropy();
- sample.num = num;
- mix_pool_bytes(&sample, sizeof(sample));
+ spin_lock_irqsave(&input_pool.lock, flags);
+ _mix_pool_bytes(&cycles, sizeof(cycles));
+ _mix_pool_bytes(&now, sizeof(now));
+ _mix_pool_bytes(&num, sizeof(num));
+ spin_unlock_irqrestore(&input_pool.lock, flags);
/*
* Calculate number of bits of randomness we probably added.
* We take into account the first, second and third-order deltas
* in order to make our estimate.
*/
- delta = sample.jiffies - READ_ONCE(state->last_time);
- WRITE_ONCE(state->last_time, sample.jiffies);
+ delta = now - READ_ONCE(state->last_time);
+ WRITE_ONCE(state->last_time, now);
delta2 = delta - READ_ONCE(state->last_delta);
WRITE_ONCE(state->last_delta, delta);
@@ -1163,318 +1065,303 @@ static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
* Round down by 1 bit on general principles,
* and limit entropy estimate to 12 bits.
*/
- credit_entropy_bits(min_t(int, fls(delta >> 1), 11));
+ credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11));
}
void add_input_randomness(unsigned int type, unsigned int code,
unsigned int value)
{
static unsigned char last_value;
+ static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
- /* ignore autorepeat and the like */
+ /* Ignore autorepeat and the like. */
if (value == last_value)
return;
last_value = value;
add_timer_randomness(&input_timer_state,
(type << 4) ^ code ^ (code >> 4) ^ value);
- trace_add_input_randomness(POOL_ENTROPY_BITS());
}
EXPORT_SYMBOL_GPL(add_input_randomness);
-static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
-
-#ifdef ADD_INTERRUPT_BENCH
-static unsigned long avg_cycles, avg_deviation;
-
-#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
-#define FIXED_1_2 (1 << (AVG_SHIFT - 1))
-
-static void add_interrupt_bench(cycles_t start)
+#ifdef CONFIG_BLOCK
+void add_disk_randomness(struct gendisk *disk)
{
- long delta = random_get_entropy() - start;
-
- /* Use a weighted moving average */
- delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
- avg_cycles += delta;
- /* And average deviation */
- delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
- avg_deviation += delta;
+ if (!disk || !disk->random)
+ return;
+ /* First major is 1, so we get >= 0x200 here. */
+ add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
-#else
-#define add_interrupt_bench(x)
-#endif
+EXPORT_SYMBOL_GPL(add_disk_randomness);
-static u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
+void rand_initialize_disk(struct gendisk *disk)
{
- u32 *ptr = (u32 *)regs;
- unsigned int idx;
+ struct timer_rand_state *state;
- if (regs == NULL)
- return 0;
- idx = READ_ONCE(f->reg_idx);
- if (idx >= sizeof(struct pt_regs) / sizeof(u32))
- idx = 0;
- ptr += idx++;
- WRITE_ONCE(f->reg_idx, idx);
- return *ptr;
+ /*
+ * If kzalloc returns null, we just won't use that entropy
+ * source.
+ */
+ state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
+ if (state) {
+ state->last_time = INITIAL_JIFFIES;
+ disk->random = state;
+ }
}
+#endif
-void add_interrupt_randomness(int irq)
+/*
+ * Interface for in-kernel drivers of true hardware RNGs.
+ * Those devices may produce endless random bits and will be throttled
+ * when our pool is full.
+ */
+void add_hwgenerator_randomness(const void *buffer, size_t count,
+ size_t entropy)
{
- struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
- struct pt_regs *regs = get_irq_regs();
- unsigned long now = jiffies;
- cycles_t cycles = random_get_entropy();
- u32 c_high, j_high;
- u64 ip;
-
- if (cycles == 0)
- cycles = get_reg(fast_pool, regs);
- c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
- j_high = (sizeof(now) > 4) ? now >> 32 : 0;
- fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
- fast_pool->pool[1] ^= now ^ c_high;
- ip = regs ? instruction_pointer(regs) : _RET_IP_;
- fast_pool->pool[2] ^= ip;
- fast_pool->pool[3] ^=
- (sizeof(ip) > 4) ? ip >> 32 : get_reg(fast_pool, regs);
-
- fast_mix(fast_pool);
- add_interrupt_bench(cycles);
-
if (unlikely(crng_init == 0)) {
- if ((fast_pool->count >= 64) &&
- crng_fast_load((u8 *)fast_pool->pool, sizeof(fast_pool->pool)) > 0) {
- fast_pool->count = 0;
- fast_pool->last = now;
- }
- return;
+ size_t ret = crng_pre_init_inject(buffer, count, true);
+ mix_pool_bytes(buffer, ret);
+ count -= ret;
+ buffer += ret;
+ if (!count || crng_init == 0)
+ return;
}
- if ((fast_pool->count < 64) && !time_after(now, fast_pool->last + HZ))
- return;
+ /*
+ * Throttle writing if we're above the trickle threshold.
+ * We'll be woken up again once below POOL_MIN_BITS, when
+ * the calling thread is about to terminate, or once
+ * CRNG_RESEED_INTERVAL has elapsed.
+ */
+ wait_event_interruptible_timeout(random_write_wait,
+ !system_wq || kthread_should_stop() ||
+ input_pool.entropy_count < POOL_MIN_BITS,
+ CRNG_RESEED_INTERVAL);
+ mix_pool_bytes(buffer, count);
+ credit_entropy_bits(entropy);
+}
+EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
- if (!spin_trylock(&input_pool.lock))
- return;
+/*
+ * Handle random seed passed by bootloader.
+ * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
+ * it would be regarded as device data.
+ * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
+ */
+void add_bootloader_randomness(const void *buf, size_t size)
+{
+ if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
+ add_hwgenerator_randomness(buf, size, size * 8);
+ else
+ add_device_randomness(buf, size);
+}
+EXPORT_SYMBOL_GPL(add_bootloader_randomness);
- fast_pool->last = now;
- __mix_pool_bytes(&fast_pool->pool, sizeof(fast_pool->pool));
- spin_unlock(&input_pool.lock);
+#if IS_ENABLED(CONFIG_VMGENID)
+static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
- fast_pool->count = 0;
+/*
+ * Handle a new unique VM ID, which is unique, not secret, so we
+ * don't credit it, but we do immediately force a reseed after so
+ * that it's used by the crng posthaste.
+ */
+void add_vmfork_randomness(const void *unique_vm_id, size_t size)
+{
+ add_device_randomness(unique_vm_id, size);
+ if (crng_ready()) {
+ crng_reseed(true);
+ pr_notice("crng reseeded due to virtual machine fork\n");
+ }
+ blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
+}
+#if IS_MODULE(CONFIG_VMGENID)
+EXPORT_SYMBOL_GPL(add_vmfork_randomness);
+#endif
- /* award one bit for the contents of the fast pool */
- credit_entropy_bits(1);
+int register_random_vmfork_notifier(struct notifier_block *nb)
+{
+ return blocking_notifier_chain_register(&vmfork_chain, nb);
}
-EXPORT_SYMBOL_GPL(add_interrupt_randomness);
+EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
-#ifdef CONFIG_BLOCK
-void add_disk_randomness(struct gendisk *disk)
+int unregister_random_vmfork_notifier(struct notifier_block *nb)
{
- if (!disk || !disk->random)
- return;
- /* first major is 1, so we get >= 0x200 here */
- add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
- trace_add_disk_randomness(disk_devt(disk), POOL_ENTROPY_BITS());
+ return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
-EXPORT_SYMBOL_GPL(add_disk_randomness);
+EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
#endif
-/*********************************************************************
- *
- * Entropy extraction routines
- *
- *********************************************************************/
+struct fast_pool {
+ struct work_struct mix;
+ unsigned long pool[4];
+ unsigned long last;
+ unsigned int count;
+ u16 reg_idx;
+};
+
+static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
+#ifdef CONFIG_64BIT
+ /* SipHash constants */
+ .pool = { 0x736f6d6570736575UL, 0x646f72616e646f6dUL,
+ 0x6c7967656e657261UL, 0x7465646279746573UL }
+#else
+ /* HalfSipHash constants */
+ .pool = { 0, 0, 0x6c796765U, 0x74656462U }
+#endif
+};
/*
- * This function decides how many bytes to actually take from the
- * given pool, and also debits the entropy count accordingly.
+ * This is [Half]SipHash-1-x, starting from an empty key. Because
+ * the key is fixed, it assumes that its inputs are non-malicious,
+ * and therefore this has no security on its own. s represents the
+ * 128 or 256-bit SipHash state, while v represents a 128-bit input.
*/
-static size_t account(size_t nbytes, int min)
+static void fast_mix(unsigned long s[4], const unsigned long *v)
{
- int entropy_count, orig;
- size_t ibytes, nfrac;
-
- BUG_ON(input_pool.entropy_count > POOL_FRACBITS);
-
- /* Can we pull enough? */
-retry:
- entropy_count = orig = READ_ONCE(input_pool.entropy_count);
- if (WARN_ON(entropy_count < 0)) {
- pr_warn("negative entropy count: count %d\n", entropy_count);
- entropy_count = 0;
- }
+ size_t i;
- /* never pull more than available */
- ibytes = min_t(size_t, nbytes, entropy_count >> (POOL_ENTROPY_SHIFT + 3));
- if (ibytes < min)
- ibytes = 0;
- nfrac = ibytes << (POOL_ENTROPY_SHIFT + 3);
- if ((size_t)entropy_count > nfrac)
- entropy_count -= nfrac;
- else
- entropy_count = 0;
-
- if (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig)
- goto retry;
-
- trace_debit_entropy(8 * ibytes);
- if (ibytes && POOL_ENTROPY_BITS() < random_write_wakeup_bits) {
- wake_up_interruptible(&random_write_wait);
- kill_fasync(&fasync, SIGIO, POLL_OUT);
+ for (i = 0; i < 16 / sizeof(long); ++i) {
+ s[3] ^= v[i];
+#ifdef CONFIG_64BIT
+ s[0] += s[1]; s[1] = rol64(s[1], 13); s[1] ^= s[0]; s[0] = rol64(s[0], 32);
+ s[2] += s[3]; s[3] = rol64(s[3], 16); s[3] ^= s[2];
+ s[0] += s[3]; s[3] = rol64(s[3], 21); s[3] ^= s[0];
+ s[2] += s[1]; s[1] = rol64(s[1], 17); s[1] ^= s[2]; s[2] = rol64(s[2], 32);
+#else
+ s[0] += s[1]; s[1] = rol32(s[1], 5); s[1] ^= s[0]; s[0] = rol32(s[0], 16);
+ s[2] += s[3]; s[3] = rol32(s[3], 8); s[3] ^= s[2];
+ s[0] += s[3]; s[3] = rol32(s[3], 7); s[3] ^= s[0];
+ s[2] += s[1]; s[1] = rol32(s[1], 13); s[1] ^= s[2]; s[2] = rol32(s[2], 16);
+#endif
+ s[0] ^= v[i];
}
-
- return ibytes;
}
+#ifdef CONFIG_SMP
/*
- * This function does the actual extraction for extract_entropy.
- *
- * Note: we assume that .poolwords is a multiple of 16 words.
+ * This function is called when the CPU has just come online, with
+ * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
*/
-static void extract_buf(u8 *out)
+int random_online_cpu(unsigned int cpu)
{
- struct blake2s_state state __aligned(__alignof__(unsigned long));
- u8 hash[BLAKE2S_HASH_SIZE];
- unsigned long *salt;
- unsigned long flags;
-
- blake2s_init(&state, sizeof(hash));
-
/*
- * If we have an architectural hardware random number
- * generator, use it for BLAKE2's salt & personal fields.
+ * During CPU shutdown and before CPU onlining, add_interrupt_
+ * randomness() may schedule mix_interrupt_randomness(), and
+ * set the MIX_INFLIGHT flag. However, because the worker can
+ * be scheduled on a different CPU during this period, that
+ * flag will never be cleared. For that reason, we zero out
+ * the flag here, which runs just after workqueues are onlined
+ * for the CPU again. This also has the effect of setting the
+ * irq randomness count to zero so that new accumulated irqs
+ * are fresh.
*/
- for (salt = (unsigned long *)&state.h[4];
- salt < (unsigned long *)&state.h[8]; ++salt) {
- unsigned long v;
- if (!arch_get_random_long(&v))
- break;
- *salt ^= v;
- }
-
- /* Generate a hash across the pool */
- spin_lock_irqsave(&input_pool.lock, flags);
- blake2s_update(&state, (const u8 *)input_pool_data, POOL_BYTES);
- blake2s_final(&state, hash); /* final zeros out state */
+ per_cpu_ptr(&irq_randomness, cpu)->count = 0;
+ return 0;
+}
+#endif
- /*
- * We mix the hash back into the pool to prevent backtracking
- * attacks (where the attacker knows the state of the pool
- * plus the current outputs, and attempts to find previous
- * outputs), unless the hash function can be inverted. By
- * mixing at least a hash worth of hash data back, we make
- * brute-forcing the feedback as hard as brute-forcing the
- * hash.
- */
- __mix_pool_bytes(hash, sizeof(hash));
- spin_unlock_irqrestore(&input_pool.lock, flags);
+static unsigned long get_reg(struct fast_pool *f, struct pt_regs *regs)
+{
+ unsigned long *ptr = (unsigned long *)regs;
+ unsigned int idx;
- /* Note that EXTRACT_SIZE is half of hash size here, because above
- * we've dumped the full length back into mixer. By reducing the
- * amount that we emit, we retain a level of forward secrecy.
- */
- memcpy(out, hash, EXTRACT_SIZE);
- memzero_explicit(hash, sizeof(hash));
+ if (regs == NULL)
+ return 0;
+ idx = READ_ONCE(f->reg_idx);
+ if (idx >= sizeof(struct pt_regs) / sizeof(unsigned long))
+ idx = 0;
+ ptr += idx++;
+ WRITE_ONCE(f->reg_idx, idx);
+ return *ptr;
}
-static ssize_t _extract_entropy(void *buf, size_t nbytes)
+static void mix_interrupt_randomness(struct work_struct *work)
{
- ssize_t ret = 0, i;
- u8 tmp[EXTRACT_SIZE];
+ struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
+ /*
+ * The size of the copied stack pool is explicitly 16 bytes so that we
+ * tax mix_pool_byte()'s compression function the same amount on all
+ * platforms. This means on 64-bit we copy half the pool into this,
+ * while on 32-bit we copy all of it. The entropy is supposed to be
+ * sufficiently dispersed between bits that in the sponge-like
+ * half case, on average we don't wind up "losing" some.
+ */
+ u8 pool[16];
- while (nbytes) {
- extract_buf(tmp);
- i = min_t(int, nbytes, EXTRACT_SIZE);
- memcpy(buf, tmp, i);
- nbytes -= i;
- buf += i;
- ret += i;
+ /* Check to see if we're running on the wrong CPU due to hotplug. */
+ local_irq_disable();
+ if (fast_pool != this_cpu_ptr(&irq_randomness)) {
+ local_irq_enable();
+ return;
}
- /* Wipe data just returned from memory */
- memzero_explicit(tmp, sizeof(tmp));
+ /*
+ * Copy the pool to the stack so that the mixer always has a
+ * consistent view, before we reenable irqs again.
+ */
+ memcpy(pool, fast_pool->pool, sizeof(pool));
+ fast_pool->count = 0;
+ fast_pool->last = jiffies;
+ local_irq_enable();
- return ret;
-}
+ if (unlikely(crng_init == 0)) {
+ crng_pre_init_inject(pool, sizeof(pool), true);
+ mix_pool_bytes(pool, sizeof(pool));
+ } else {
+ mix_pool_bytes(pool, sizeof(pool));
+ credit_entropy_bits(1);
+ }
-/*
- * This function extracts randomness from the "entropy pool", and
- * returns it in a buffer.
- *
- * The min parameter specifies the minimum amount we can pull before
- * failing to avoid races that defeat catastrophic reseeding.
- */
-static ssize_t extract_entropy(void *buf, size_t nbytes, int min)
-{
- trace_extract_entropy(nbytes, POOL_ENTROPY_BITS(), _RET_IP_);
- nbytes = account(nbytes, min);
- return _extract_entropy(buf, nbytes);
+ memzero_explicit(pool, sizeof(pool));
}
-#define warn_unseeded_randomness(previous) \
- _warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))
-
-static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
+void add_interrupt_randomness(int irq)
{
-#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
- const bool print_once = false;
-#else
- static bool print_once __read_mostly;
-#endif
-
- if (print_once || crng_ready() ||
- (previous && (caller == READ_ONCE(*previous))))
- return;
- WRITE_ONCE(*previous, caller);
-#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
- print_once = true;
-#endif
- if (__ratelimit(&unseeded_warning))
- printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
- func_name, caller, crng_init);
-}
+ enum { MIX_INFLIGHT = 1U << 31 };
+ cycles_t cycles = random_get_entropy();
+ unsigned long now = jiffies;
+ struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
+ struct pt_regs *regs = get_irq_regs();
+ unsigned int new_count;
+ union {
+ u32 u32[4];
+ u64 u64[2];
+ unsigned long longs[16 / sizeof(long)];
+ } irq_data;
-/*
- * This function is the exported kernel interface. It returns some
- * number of good random numbers, suitable for key generation, seeding
- * TCP sequence numbers, etc. It does not rely on the hardware random
- * number generator. For random bytes direct from the hardware RNG
- * (when available), use get_random_bytes_arch(). In order to ensure
- * that the randomness provided by this function is okay, the function
- * wait_for_random_bytes() should be called and return 0 at least once
- * at any point prior.
- */
-static void _get_random_bytes(void *buf, int nbytes)
-{
- u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
+ if (cycles == 0)
+ cycles = get_reg(fast_pool, regs);
- trace_get_random_bytes(nbytes, _RET_IP_);
+ if (sizeof(cycles) == 8)
+ irq_data.u64[0] = cycles ^ rol64(now, 32) ^ irq;
+ else {
+ irq_data.u32[0] = cycles ^ irq;
+ irq_data.u32[1] = now;
+ }
- while (nbytes >= CHACHA_BLOCK_SIZE) {
- extract_crng(buf);
- buf += CHACHA_BLOCK_SIZE;
- nbytes -= CHACHA_BLOCK_SIZE;
+ if (sizeof(unsigned long) == 8)
+ irq_data.u64[1] = regs ? instruction_pointer(regs) : _RET_IP_;
+ else {
+ irq_data.u32[2] = regs ? instruction_pointer(regs) : _RET_IP_;
+ irq_data.u32[3] = get_reg(fast_pool, regs);
}
- if (nbytes > 0) {
- extract_crng(tmp);
- memcpy(buf, tmp, nbytes);
- crng_backtrack_protect(tmp, nbytes);
- } else
- crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
- memzero_explicit(tmp, sizeof(tmp));
-}
+ fast_mix(fast_pool->pool, irq_data.longs);
+ new_count = ++fast_pool->count;
-void get_random_bytes(void *buf, int nbytes)
-{
- static void *previous;
+ if (new_count & MIX_INFLIGHT)
+ return;
- warn_unseeded_randomness(&previous);
- _get_random_bytes(buf, nbytes);
+ if (new_count < 64 && (!time_after(now, fast_pool->last + HZ) ||
+ unlikely(crng_init == 0)))
+ return;
+
+ if (unlikely(!fast_pool->mix.func))
+ INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
+ fast_pool->count |= MIX_INFLIGHT;
+ queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
}
-EXPORT_SYMBOL(get_random_bytes);
+EXPORT_SYMBOL_GPL(add_interrupt_randomness);
/*
* Each time the timer fires, we expect that we got an unpredictable
@@ -1501,264 +1388,81 @@ static void entropy_timer(struct timer_list *t)
static void try_to_generate_entropy(void)
{
struct {
- unsigned long now;
+ cycles_t cycles;
struct timer_list timer;
} stack;
- stack.now = random_get_entropy();
+ stack.cycles = random_get_entropy();
/* Slow counter - or none. Don't even bother */
- if (stack.now == random_get_entropy())
+ if (stack.cycles == random_get_entropy())
return;
timer_setup_on_stack(&stack.timer, entropy_timer, 0);
- while (!crng_ready()) {
+ while (!crng_ready() && !signal_pending(current)) {
if (!timer_pending(&stack.timer))
mod_timer(&stack.timer, jiffies + 1);
- mix_pool_bytes(&stack.now, sizeof(stack.now));
+ mix_pool_bytes(&stack.cycles, sizeof(stack.cycles));
schedule();
- stack.now = random_get_entropy();
+ stack.cycles = random_get_entropy();
}
del_timer_sync(&stack.timer);
destroy_timer_on_stack(&stack.timer);
- mix_pool_bytes(&stack.now, sizeof(stack.now));
+ mix_pool_bytes(&stack.cycles, sizeof(stack.cycles));
}
-/*
- * Wait for the urandom pool to be seeded and thus guaranteed to supply
- * cryptographically secure random numbers. This applies to: the /dev/urandom
- * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
- * family of functions. Using any of these functions without first calling
- * this function forfeits the guarantee of security.
- *
- * Returns: 0 if the urandom pool has been seeded.
- * -ERESTARTSYS if the function was interrupted by a signal.
- */
-int wait_for_random_bytes(void)
-{
- if (likely(crng_ready()))
- return 0;
-
- do {
- int ret;
- ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
- if (ret)
- return ret > 0 ? 0 : ret;
-
- try_to_generate_entropy();
- } while (!crng_ready());
- return 0;
-}
-EXPORT_SYMBOL(wait_for_random_bytes);
-
-/*
- * Returns whether or not the urandom pool has been seeded and thus guaranteed
- * to supply cryptographically secure random numbers. This applies to: the
- * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
- * ,u64,int,long} family of functions.
+/**********************************************************************
*
- * Returns: true if the urandom pool has been seeded.
- * false if the urandom pool has not been seeded.
- */
-bool rng_is_initialized(void)
-{
- return crng_ready();
-}
-EXPORT_SYMBOL(rng_is_initialized);
-
-/*
- * Add a callback function that will be invoked when the nonblocking
- * pool is initialised.
+ * Userspace reader/writer interfaces.
*
- * returns: 0 if callback is successfully added
- * -EALREADY if pool is already initialised (callback not called)
- * -ENOENT if module for callback is not alive
- */
-int add_random_ready_callback(struct random_ready_callback *rdy)
-{
- struct module *owner;
- unsigned long flags;
- int err = -EALREADY;
-
- if (crng_ready())
- return err;
-
- owner = rdy->owner;
- if (!try_module_get(owner))
- return -ENOENT;
-
- spin_lock_irqsave(&random_ready_list_lock, flags);
- if (crng_ready())
- goto out;
-
- owner = NULL;
-
- list_add(&rdy->list, &random_ready_list);
- err = 0;
-
-out:
- spin_unlock_irqrestore(&random_ready_list_lock, flags);
-
- module_put(owner);
-
- return err;
-}
-EXPORT_SYMBOL(add_random_ready_callback);
-
-/*
- * Delete a previously registered readiness callback function.
- */
-void del_random_ready_callback(struct random_ready_callback *rdy)
-{
- unsigned long flags;
- struct module *owner = NULL;
-
- spin_lock_irqsave(&random_ready_list_lock, flags);
- if (!list_empty(&rdy->list)) {
- list_del_init(&rdy->list);
- owner = rdy->owner;
- }
- spin_unlock_irqrestore(&random_ready_list_lock, flags);
-
- module_put(owner);
-}
-EXPORT_SYMBOL(del_random_ready_callback);
-
-/*
- * This function will use the architecture-specific hardware random
- * number generator if it is available. The arch-specific hw RNG will
- * almost certainly be faster than what we can do in software, but it
- * is impossible to verify that it is implemented securely (as
- * opposed, to, say, the AES encryption of a sequence number using a
- * key known by the NSA). So it's useful if we need the speed, but
- * only if we're willing to trust the hardware manufacturer not to
- * have put in a back door.
+ * getrandom(2) is the primary modern interface into the RNG and should
+ * be used in preference to anything else.
*
- * Return number of bytes filled in.
- */
-int __must_check get_random_bytes_arch(void *buf, int nbytes)
-{
- int left = nbytes;
- u8 *p = buf;
-
- trace_get_random_bytes_arch(left, _RET_IP_);
- while (left) {
- unsigned long v;
- int chunk = min_t(int, left, sizeof(unsigned long));
-
- if (!arch_get_random_long(&v))
- break;
-
- memcpy(p, &v, chunk);
- p += chunk;
- left -= chunk;
- }
-
- return nbytes - left;
-}
-EXPORT_SYMBOL(get_random_bytes_arch);
-
-/*
- * init_std_data - initialize pool with system data
+ * Reading from /dev/random and /dev/urandom both have the same effect
+ * as calling getrandom(2) with flags=0. (In earlier versions, however,
+ * they each had different semantics.)
*
- * This function clears the pool's entropy count and mixes some system
- * data into the pool to prepare it for use. The pool is not cleared
- * as that can only decrease the entropy in the pool.
- */
-static void __init init_std_data(void)
-{
- int i;
- ktime_t now = ktime_get_real();
- unsigned long rv;
-
- mix_pool_bytes(&now, sizeof(now));
- for (i = POOL_BYTES; i > 0; i -= sizeof(rv)) {
- if (!arch_get_random_seed_long(&rv) &&
- !arch_get_random_long(&rv))
- rv = random_get_entropy();
- mix_pool_bytes(&rv, sizeof(rv));
- }
- mix_pool_bytes(utsname(), sizeof(*(utsname())));
-}
-
-/*
- * Note that setup_arch() may call add_device_randomness()
- * long before we get here. This allows seeding of the pools
- * with some platform dependent data very early in the boot
- * process. But it limits our options here. We must use
- * statically allocated structures that already have all
- * initializations complete at compile time. We should also
- * take care not to overwrite the precious per platform data
- * we were given.
- */
-int __init rand_initialize(void)
-{
- init_std_data();
- if (crng_need_final_init)
- crng_finalize_init();
- crng_initialize_primary();
- crng_global_init_time = jiffies;
- if (ratelimit_disable) {
- urandom_warning.interval = 0;
- unseeded_warning.interval = 0;
- }
- return 0;
-}
+ * Writing to either /dev/random or /dev/urandom adds entropy to
+ * the input pool but does not credit it.
+ *
+ * Polling on /dev/random or /dev/urandom indicates when the RNG
+ * is initialized, on the read side, and when it wants new entropy,
+ * on the write side.
+ *
+ * Both /dev/random and /dev/urandom have the same set of ioctls for
+ * adding entropy, getting the entropy count, zeroing the count, and
+ * reseeding the crng.
+ *
+ **********************************************************************/
-#ifdef CONFIG_BLOCK
-void rand_initialize_disk(struct gendisk *disk)
+SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
+ flags)
{
- struct timer_rand_state *state;
+ if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
+ return -EINVAL;
/*
- * If kzalloc returns null, we just won't use that entropy
- * source.
+ * Requesting insecure and blocking randomness at the same time makes
+ * no sense.
*/
- state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
- if (state) {
- state->last_time = INITIAL_JIFFIES;
- disk->random = state;
- }
-}
-#endif
-
-static ssize_t urandom_read_nowarn(struct file *file, char __user *buf,
- size_t nbytes, loff_t *ppos)
-{
- int ret;
+ if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
+ return -EINVAL;
- nbytes = min_t(size_t, nbytes, INT_MAX >> (POOL_ENTROPY_SHIFT + 3));
- ret = extract_crng_user(buf, nbytes);
- trace_urandom_read(8 * nbytes, 0, POOL_ENTROPY_BITS());
- return ret;
-}
+ if (count > INT_MAX)
+ count = INT_MAX;
-static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
- loff_t *ppos)
-{
- static int maxwarn = 10;
+ if (!(flags & GRND_INSECURE) && !crng_ready()) {
+ int ret;
- if (!crng_ready() && maxwarn > 0) {
- maxwarn--;
- if (__ratelimit(&urandom_warning))
- pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
- current->comm, nbytes);
+ if (flags & GRND_NONBLOCK)
+ return -EAGAIN;
+ ret = wait_for_random_bytes();
+ if (unlikely(ret))
+ return ret;
}
-
- return urandom_read_nowarn(file, buf, nbytes, ppos);
-}
-
-static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
- loff_t *ppos)
-{
- int ret;
-
- ret = wait_for_random_bytes();
- if (ret != 0)
- return ret;
- return urandom_read_nowarn(file, buf, nbytes, ppos);
+ return get_random_bytes_user(buf, count);
}
static __poll_t random_poll(struct file *file, poll_table *wait)
@@ -1770,44 +1474,38 @@ static __poll_t random_poll(struct file *file, poll_table *wait)
mask = 0;
if (crng_ready())
mask |= EPOLLIN | EPOLLRDNORM;
- if (POOL_ENTROPY_BITS() < random_write_wakeup_bits)
+ if (input_pool.entropy_count < POOL_MIN_BITS)
mask |= EPOLLOUT | EPOLLWRNORM;
return mask;
}
-static int write_pool(const char __user *buffer, size_t count)
+static int write_pool(const char __user *ubuf, size_t count)
{
- size_t bytes;
- u32 t, buf[16];
- const char __user *p = buffer;
-
- while (count > 0) {
- int b, i = 0;
-
- bytes = min(count, sizeof(buf));
- if (copy_from_user(&buf, p, bytes))
- return -EFAULT;
+ size_t len;
+ int ret = 0;
+ u8 block[BLAKE2S_BLOCK_SIZE];
- for (b = bytes; b > 0; b -= sizeof(u32), i++) {
- if (!arch_get_random_int(&t))
- break;
- buf[i] ^= t;
+ while (count) {
+ len = min(count, sizeof(block));
+ if (copy_from_user(block, ubuf, len)) {
+ ret = -EFAULT;
+ goto out;
}
-
- count -= bytes;
- p += bytes;
-
- mix_pool_bytes(buf, bytes);
+ count -= len;
+ ubuf += len;
+ mix_pool_bytes(block, len);
cond_resched();
}
- return 0;
+out:
+ memzero_explicit(block, sizeof(block));
+ return ret;
}
static ssize_t random_write(struct file *file, const char __user *buffer,
size_t count, loff_t *ppos)
{
- size_t ret;
+ int ret;
ret = write_pool(buffer, count);
if (ret)
@@ -1816,6 +1514,17 @@ static ssize_t random_write(struct file *file, const char __user *buffer,
return (ssize_t)count;
}
+static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
+ loff_t *ppos)
+{
+ int ret;
+
+ ret = wait_for_random_bytes();
+ if (ret != 0)
+ return ret;
+ return get_random_bytes_user(buf, nbytes);
+}
+
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
{
int size, ent_count;
@@ -1824,9 +1533,8 @@ static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
switch (cmd) {
case RNDGETENTCNT:
- /* inherently racy, no point locking */
- ent_count = POOL_ENTROPY_BITS();
- if (put_user(ent_count, p))
+ /* Inherently racy, no point locking. */
+ if (put_user(input_pool.entropy_count, p))
return -EFAULT;
return 0;
case RNDADDTOENTCNT:
@@ -1834,7 +1542,10 @@ static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
return -EPERM;
if (get_user(ent_count, p))
return -EFAULT;
- return credit_entropy_bits_safe(ent_count);
+ if (ent_count < 0)
+ return -EINVAL;
+ credit_entropy_bits(ent_count);
+ return 0;
case RNDADDENTROPY:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
@@ -1847,7 +1558,8 @@ static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
retval = write_pool((const char __user *)p, size);
if (retval < 0)
return retval;
- return credit_entropy_bits_safe(ent_count);
+ credit_entropy_bits(ent_count);
+ return 0;
case RNDZAPENTCNT:
case RNDCLEARPOOL:
/*
@@ -1856,7 +1568,7 @@ static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
*/
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
- if (xchg(&input_pool.entropy_count, 0) && random_write_wakeup_bits) {
+ if (xchg(&input_pool.entropy_count, 0) >= POOL_MIN_BITS) {
wake_up_interruptible(&random_write_wait);
kill_fasync(&fasync, SIGIO, POLL_OUT);
}
@@ -1864,10 +1576,9 @@ static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
case RNDRESEEDCRNG:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
- if (crng_init < 2)
+ if (!crng_ready())
return -ENODATA;
- crng_reseed(&primary_crng, true);
- WRITE_ONCE(crng_global_init_time, jiffies - 1);
+ crng_reseed(false);
return 0;
default:
return -EINVAL;
@@ -1889,46 +1600,34 @@ const struct file_operations random_fops = {
.llseek = noop_llseek,
};
-const struct file_operations urandom_fops = {
- .read = urandom_read,
- .write = random_write,
- .unlocked_ioctl = random_ioctl,
- .compat_ioctl = compat_ptr_ioctl,
- .fasync = random_fasync,
- .llseek = noop_llseek,
-};
-
-SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
- flags)
-{
- int ret;
-
- if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
- return -EINVAL;
-
- /*
- * Requesting insecure and blocking randomness at the same time makes
- * no sense.
- */
- if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
- return -EINVAL;
-
- if (count > INT_MAX)
- count = INT_MAX;
-
- if (!(flags & GRND_INSECURE) && !crng_ready()) {
- if (flags & GRND_NONBLOCK)
- return -EAGAIN;
- ret = wait_for_random_bytes();
- if (unlikely(ret))
- return ret;
- }
- return urandom_read_nowarn(NULL, buf, count, NULL);
-}
/********************************************************************
*
- * Sysctl interface
+ * Sysctl interface.
+ *
+ * These are partly unused legacy knobs with dummy values to not break
+ * userspace and partly still useful things. They are usually accessible
+ * in /proc/sys/kernel/random/ and are as follows:
+ *
+ * - boot_id - a UUID representing the current boot.
+ *
+ * - uuid - a random UUID, different each time the file is read.
+ *
+ * - poolsize - the number of bits of entropy that the input pool can
+ * hold, tied to the POOL_BITS constant.
+ *
+ * - entropy_avail - the number of bits of entropy currently in the
+ * input pool. Always <= poolsize.
+ *
+ * - write_wakeup_threshold - the amount of entropy in the input pool
+ * below which write polls to /dev/random will unblock, requesting
+ * more entropy, tied to the POOL_MIN_BITS constant. It is writable
+ * to avoid breaking old userspaces, but writing to it does not
+ * change any behavior of the RNG.
+ *
+ * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
+ * It is writable to avoid breaking old userspaces, but writing
+ * to it does not change any behavior of the RNG.
*
********************************************************************/
@@ -1936,25 +1635,28 @@ SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
#include <linux/sysctl.h>
-static int min_write_thresh;
-static int max_write_thresh = POOL_BITS;
-static int random_min_urandom_seed = 60;
-static char sysctl_bootid[16];
+static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
+static int sysctl_random_write_wakeup_bits = POOL_MIN_BITS;
+static int sysctl_poolsize = POOL_BITS;
+static u8 sysctl_bootid[UUID_SIZE];
/*
* This function is used to return both the bootid UUID, and random
- * UUID. The difference is in whether table->data is NULL; if it is,
+ * UUID. The difference is in whether table->data is NULL; if it is,
* then a new UUID is generated and returned to the user.
- *
- * If the user accesses this via the proc interface, the UUID will be
- * returned as an ASCII string in the standard UUID format; if via the
- * sysctl system call, as 16 bytes of binary data.
*/
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
size_t *lenp, loff_t *ppos)
{
- struct ctl_table fake_table;
- unsigned char buf[64], tmp_uuid[16], *uuid;
+ u8 tmp_uuid[UUID_SIZE], *uuid;
+ char uuid_string[UUID_STRING_LEN + 1];
+ struct ctl_table fake_table = {
+ .data = uuid_string,
+ .maxlen = UUID_STRING_LEN
+ };
+
+ if (write)
+ return -EPERM;
uuid = table->data;
if (!uuid) {
@@ -1969,32 +1671,17 @@ static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
spin_unlock(&bootid_spinlock);
}
- sprintf(buf, "%pU", uuid);
-
- fake_table.data = buf;
- fake_table.maxlen = sizeof(buf);
-
- return proc_dostring(&fake_table, write, buffer, lenp, ppos);
+ snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
+ return proc_dostring(&fake_table, 0, buffer, lenp, ppos);
}
-/*
- * Return entropy available scaled to integral bits
- */
-static int proc_do_entropy(struct ctl_table *table, int write, void *buffer,
- size_t *lenp, loff_t *ppos)
+/* The same as proc_dointvec, but writes don't change anything. */
+static int proc_do_rointvec(struct ctl_table *table, int write, void *buffer,
+ size_t *lenp, loff_t *ppos)
{
- struct ctl_table fake_table;
- int entropy_count;
-
- entropy_count = *(int *)table->data >> POOL_ENTROPY_SHIFT;
-
- fake_table.data = &entropy_count;
- fake_table.maxlen = sizeof(entropy_count);
-
- return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
+ return write ? 0 : proc_dointvec(table, 0, buffer, lenp, ppos);
}
-static int sysctl_poolsize = POOL_BITS;
static struct ctl_table random_table[] = {
{
.procname = "poolsize",
@@ -2005,56 +1692,36 @@ static struct ctl_table random_table[] = {
},
{
.procname = "entropy_avail",
+ .data = &input_pool.entropy_count,
.maxlen = sizeof(int),
.mode = 0444,
- .proc_handler = proc_do_entropy,
- .data = &input_pool.entropy_count,
+ .proc_handler = proc_dointvec,
},
{
.procname = "write_wakeup_threshold",
- .data = &random_write_wakeup_bits,
+ .data = &sysctl_random_write_wakeup_bits,
.maxlen = sizeof(int),
.mode = 0644,
- .proc_handler = proc_dointvec_minmax,
- .extra1 = &min_write_thresh,
- .extra2 = &max_write_thresh,
+ .proc_handler = proc_do_rointvec,
},
{
.procname = "urandom_min_reseed_secs",
- .data = &random_min_urandom_seed,
+ .data = &sysctl_random_min_urandom_seed,
.maxlen = sizeof(int),
.mode = 0644,
- .proc_handler = proc_dointvec,
+ .proc_handler = proc_do_rointvec,
},
{
.procname = "boot_id",
.data = &sysctl_bootid,
- .maxlen = 16,
.mode = 0444,
.proc_handler = proc_do_uuid,
},
{
.procname = "uuid",
- .maxlen = 16,
.mode = 0444,
.proc_handler = proc_do_uuid,
},
-#ifdef ADD_INTERRUPT_BENCH
- {
- .procname = "add_interrupt_avg_cycles",
- .data = &avg_cycles,
- .maxlen = sizeof(avg_cycles),
- .mode = 0444,
- .proc_handler = proc_doulongvec_minmax,
- },
- {
- .procname = "add_interrupt_avg_deviation",
- .data = &avg_deviation,
- .maxlen = sizeof(avg_deviation),
- .mode = 0444,
- .proc_handler = proc_doulongvec_minmax,
- },
-#endif
{ }
};
@@ -2068,170 +1735,4 @@ static int __init random_sysctls_init(void)
return 0;
}
device_initcall(random_sysctls_init);
-#endif /* CONFIG_SYSCTL */
-
-struct batched_entropy {
- union {
- u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
- u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
- };
- unsigned int position;
- spinlock_t batch_lock;
-};
-
-/*
- * Get a random word for internal kernel use only. The quality of the random
- * number is good as /dev/urandom, but there is no backtrack protection, with
- * the goal of being quite fast and not depleting entropy. In order to ensure
- * that the randomness provided by this function is okay, the function
- * wait_for_random_bytes() should be called and return 0 at least once at any
- * point prior.
- */
-static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
- .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
-};
-
-u64 get_random_u64(void)
-{
- u64 ret;
- unsigned long flags;
- struct batched_entropy *batch;
- static void *previous;
-
- warn_unseeded_randomness(&previous);
-
- batch = raw_cpu_ptr(&batched_entropy_u64);
- spin_lock_irqsave(&batch->batch_lock, flags);
- if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
- extract_crng((u8 *)batch->entropy_u64);
- batch->position = 0;
- }
- ret = batch->entropy_u64[batch->position++];
- spin_unlock_irqrestore(&batch->batch_lock, flags);
- return ret;
-}
-EXPORT_SYMBOL(get_random_u64);
-
-static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
- .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
-};
-u32 get_random_u32(void)
-{
- u32 ret;
- unsigned long flags;
- struct batched_entropy *batch;
- static void *previous;
-
- warn_unseeded_randomness(&previous);
-
- batch = raw_cpu_ptr(&batched_entropy_u32);
- spin_lock_irqsave(&batch->batch_lock, flags);
- if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
- extract_crng((u8 *)batch->entropy_u32);
- batch->position = 0;
- }
- ret = batch->entropy_u32[batch->position++];
- spin_unlock_irqrestore(&batch->batch_lock, flags);
- return ret;
-}
-EXPORT_SYMBOL(get_random_u32);
-
-/* It's important to invalidate all potential batched entropy that might
- * be stored before the crng is initialized, which we can do lazily by
- * simply resetting the counter to zero so that it's re-extracted on the
- * next usage. */
-static void invalidate_batched_entropy(void)
-{
- int cpu;
- unsigned long flags;
-
- for_each_possible_cpu(cpu) {
- struct batched_entropy *batched_entropy;
-
- batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
- spin_lock_irqsave(&batched_entropy->batch_lock, flags);
- batched_entropy->position = 0;
- spin_unlock(&batched_entropy->batch_lock);
-
- batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
- spin_lock(&batched_entropy->batch_lock);
- batched_entropy->position = 0;
- spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
- }
-}
-
-/**
- * randomize_page - Generate a random, page aligned address
- * @start: The smallest acceptable address the caller will take.
- * @range: The size of the area, starting at @start, within which the
- * random address must fall.
- *
- * If @start + @range would overflow, @range is capped.
- *
- * NOTE: Historical use of randomize_range, which this replaces, presumed that
- * @start was already page aligned. We now align it regardless.
- *
- * Return: A page aligned address within [start, start + range). On error,
- * @start is returned.
- */
-unsigned long randomize_page(unsigned long start, unsigned long range)
-{
- if (!PAGE_ALIGNED(start)) {
- range -= PAGE_ALIGN(start) - start;
- start = PAGE_ALIGN(start);
- }
-
- if (start > ULONG_MAX - range)
- range = ULONG_MAX - start;
-
- range >>= PAGE_SHIFT;
-
- if (range == 0)
- return start;
-
- return start + (get_random_long() % range << PAGE_SHIFT);
-}
-
-/* Interface for in-kernel drivers of true hardware RNGs.
- * Those devices may produce endless random bits and will be throttled
- * when our pool is full.
- */
-void add_hwgenerator_randomness(const char *buffer, size_t count,
- size_t entropy)
-{
- if (unlikely(crng_init == 0)) {
- size_t ret = crng_fast_load(buffer, count);
- mix_pool_bytes(buffer, ret);
- count -= ret;
- buffer += ret;
- if (!count || crng_init == 0)
- return;
- }
-
- /* Throttle writing if we're above the trickle threshold.
- * We'll be woken up again once below random_write_wakeup_thresh,
- * when the calling thread is about to terminate, or once
- * CRNG_RESEED_INTERVAL has lapsed.
- */
- wait_event_interruptible_timeout(random_write_wait,
- !system_wq || kthread_should_stop() ||
- POOL_ENTROPY_BITS() <= random_write_wakeup_bits,
- CRNG_RESEED_INTERVAL);
- mix_pool_bytes(buffer, count);
- credit_entropy_bits(entropy);
-}
-EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
-
-/* Handle random seed passed by bootloader.
- * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
- * it would be regarded as device data.
- * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
- */
-void add_bootloader_randomness(const void *buf, unsigned int size)
-{
- if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
- add_hwgenerator_randomness(buf, size, size * 8);
- else
- add_device_randomness(buf, size);
-}
-EXPORT_SYMBOL_GPL(add_bootloader_randomness);
+#endif
diff --git a/drivers/net/wireguard/device.c b/drivers/net/wireguard/device.c
index a46067c38bf5..0fad1331303c 100644
--- a/drivers/net/wireguard/device.c
+++ b/drivers/net/wireguard/device.c
@@ -59,9 +59,7 @@ out:
return ret;
}
-#ifdef CONFIG_PM_SLEEP
-static int wg_pm_notification(struct notifier_block *nb, unsigned long action,
- void *data)
+static int wg_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
{
struct wg_device *wg;
struct wg_peer *peer;
@@ -92,7 +90,24 @@ static int wg_pm_notification(struct notifier_block *nb, unsigned long action,
}
static struct notifier_block pm_notifier = { .notifier_call = wg_pm_notification };
-#endif
+
+static int wg_vm_notification(struct notifier_block *nb, unsigned long action, void *data)
+{
+ struct wg_device *wg;
+ struct wg_peer *peer;
+
+ rtnl_lock();
+ list_for_each_entry(wg, &device_list, device_list) {
+ mutex_lock(&wg->device_update_lock);
+ list_for_each_entry(peer, &wg->peer_list, peer_list)
+ wg_noise_expire_current_peer_keypairs(peer);
+ mutex_unlock(&wg->device_update_lock);
+ }
+ rtnl_unlock();
+ return 0;
+}
+
+static struct notifier_block vm_notifier = { .notifier_call = wg_vm_notification };
static int wg_stop(struct net_device *dev)
{
@@ -424,16 +439,18 @@ int __init wg_device_init(void)
{
int ret;
-#ifdef CONFIG_PM_SLEEP
ret = register_pm_notifier(&pm_notifier);
if (ret)
return ret;
-#endif
- ret = register_pernet_device(&pernet_ops);
+ ret = register_random_vmfork_notifier(&vm_notifier);
if (ret)
goto error_pm;
+ ret = register_pernet_device(&pernet_ops);
+ if (ret)
+ goto error_vm;
+
ret = rtnl_link_register(&link_ops);
if (ret)
goto error_pernet;
@@ -442,10 +459,10 @@ int __init wg_device_init(void)
error_pernet:
unregister_pernet_device(&pernet_ops);
+error_vm:
+ unregister_random_vmfork_notifier(&vm_notifier);
error_pm:
-#ifdef CONFIG_PM_SLEEP
unregister_pm_notifier(&pm_notifier);
-#endif
return ret;
}
@@ -453,8 +470,7 @@ void wg_device_uninit(void)
{
rtnl_link_unregister(&link_ops);
unregister_pernet_device(&pernet_ops);
-#ifdef CONFIG_PM_SLEEP
+ unregister_random_vmfork_notifier(&vm_notifier);
unregister_pm_notifier(&pm_notifier);
-#endif
rcu_barrier();
}
diff --git a/drivers/virt/Kconfig b/drivers/virt/Kconfig
index 8061e8ef449f..121b9293c737 100644
--- a/drivers/virt/Kconfig
+++ b/drivers/virt/Kconfig
@@ -13,6 +13,17 @@ menuconfig VIRT_DRIVERS
if VIRT_DRIVERS
+config VMGENID
+ tristate "Virtual Machine Generation ID driver"
+ default y
+ depends on ACPI
+ help
+ Say Y here to use the hypervisor-provided Virtual Machine Generation ID
+ to reseed the RNG when the VM is cloned. This is highly recommended if
+ you intend to do any rollback / cloning / snapshotting of VMs.
+
+ Prefer Y to M so that this protection is activated very early.
+
config FSL_HV_MANAGER
tristate "Freescale hypervisor management driver"
depends on FSL_SOC
diff --git a/drivers/virt/Makefile b/drivers/virt/Makefile
index 3e272ea60cd9..108d0ffcc9aa 100644
--- a/drivers/virt/Makefile
+++ b/drivers/virt/Makefile
@@ -4,6 +4,7 @@
#
obj-$(CONFIG_FSL_HV_MANAGER) += fsl_hypervisor.o
+obj-$(CONFIG_VMGENID) += vmgenid.o
obj-y += vboxguest/
obj-$(CONFIG_NITRO_ENCLAVES) += nitro_enclaves/
diff --git a/drivers/virt/vmgenid.c b/drivers/virt/vmgenid.c
new file mode 100644
index 000000000000..0ae1a39f2e28
--- /dev/null
+++ b/drivers/virt/vmgenid.c
@@ -0,0 +1,100 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
+ *
+ * The "Virtual Machine Generation ID" is exposed via ACPI and changes when a
+ * virtual machine forks or is cloned. This driver exists for shepherding that
+ * information to random.c.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/acpi.h>
+#include <linux/random.h>
+
+ACPI_MODULE_NAME("vmgenid");
+
+enum { VMGENID_SIZE = 16 };
+
+struct vmgenid_state {
+ u8 *next_id;
+ u8 this_id[VMGENID_SIZE];
+};
+
+static int vmgenid_add(struct acpi_device *device)
+{
+ struct acpi_buffer parsed = { ACPI_ALLOCATE_BUFFER };
+ struct vmgenid_state *state;
+ union acpi_object *obj;
+ phys_addr_t phys_addr;
+ acpi_status status;
+ int ret = 0;
+
+ state = devm_kmalloc(&device->dev, sizeof(*state), GFP_KERNEL);
+ if (!state)
+ return -ENOMEM;
+
+ status = acpi_evaluate_object(device->handle, "ADDR", NULL, &parsed);
+ if (ACPI_FAILURE(status)) {
+ ACPI_EXCEPTION((AE_INFO, status, "Evaluating ADDR"));
+ return -ENODEV;
+ }
+ obj = parsed.pointer;
+ if (!obj || obj->type != ACPI_TYPE_PACKAGE || obj->package.count != 2 ||
+ obj->package.elements[0].type != ACPI_TYPE_INTEGER ||
+ obj->package.elements[1].type != ACPI_TYPE_INTEGER) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ phys_addr = (obj->package.elements[0].integer.value << 0) |
+ (obj->package.elements[1].integer.value << 32);
+ state->next_id = devm_memremap(&device->dev, phys_addr, VMGENID_SIZE, MEMREMAP_WB);
+ if (IS_ERR(state->next_id)) {
+ ret = PTR_ERR(state->next_id);
+ goto out;
+ }
+
+ memcpy(state->this_id, state->next_id, sizeof(state->this_id));
+ add_device_randomness(state->this_id, sizeof(state->this_id));
+
+ device->driver_data = state;
+
+out:
+ ACPI_FREE(parsed.pointer);
+ return ret;
+}
+
+static void vmgenid_notify(struct acpi_device *device, u32 event)
+{
+ struct vmgenid_state *state = acpi_driver_data(device);
+ u8 old_id[VMGENID_SIZE];
+
+ memcpy(old_id, state->this_id, sizeof(old_id));
+ memcpy(state->this_id, state->next_id, sizeof(state->this_id));
+ if (!memcmp(old_id, state->this_id, sizeof(old_id)))
+ return;
+ add_vmfork_randomness(state->this_id, sizeof(state->this_id));
+}
+
+static const struct acpi_device_id vmgenid_ids[] = {
+ { "VM_GEN_COUNTER", 0 },
+ { }
+};
+
+static struct acpi_driver vmgenid_driver = {
+ .name = "vmgenid",
+ .ids = vmgenid_ids,
+ .owner = THIS_MODULE,
+ .ops = {
+ .add = vmgenid_add,
+ .notify = vmgenid_notify
+ }
+};
+
+module_acpi_driver(vmgenid_driver);
+
+MODULE_DEVICE_TABLE(acpi, vmgenid_ids);
+MODULE_DESCRIPTION("Virtual Machine Generation ID");
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Jason A. Donenfeld <Jason@zx2c4.com>");
diff --git a/include/linux/cpuhotplug.h b/include/linux/cpuhotplug.h
index 2bc550ac8dc7..c7dce7883179 100644
--- a/include/linux/cpuhotplug.h
+++ b/include/linux/cpuhotplug.h
@@ -100,6 +100,7 @@ enum cpuhp_state {
CPUHP_AP_ARM_CACHE_B15_RAC_DEAD,
CPUHP_PADATA_DEAD,
CPUHP_AP_DTPM_CPU_DEAD,
+ CPUHP_RANDOM_PREPARE,
CPUHP_WORKQUEUE_PREP,
CPUHP_POWER_NUMA_PREPARE,
CPUHP_HRTIMERS_PREPARE,
@@ -241,6 +242,7 @@ enum cpuhp_state {
CPUHP_AP_PERF_CSKY_ONLINE,
CPUHP_AP_WATCHDOG_ONLINE,
CPUHP_AP_WORKQUEUE_ONLINE,
+ CPUHP_AP_RANDOM_ONLINE,
CPUHP_AP_RCUTREE_ONLINE,
CPUHP_AP_BASE_CACHEINFO_ONLINE,
CPUHP_AP_ONLINE_DYN,
diff --git a/include/linux/hw_random.h b/include/linux/hw_random.h
index 8e6dd908da21..aa1d4da03538 100644
--- a/include/linux/hw_random.h
+++ b/include/linux/hw_random.h
@@ -60,7 +60,5 @@ extern int devm_hwrng_register(struct device *dev, struct hwrng *rng);
/** Unregister a Hardware Random Number Generator driver. */
extern void hwrng_unregister(struct hwrng *rng);
extern void devm_hwrng_unregister(struct device *dve, struct hwrng *rng);
-/** Feed random bits into the pool. */
-extern void add_hwgenerator_randomness(const char *buffer, size_t count, size_t entropy);
#endif /* LINUX_HWRANDOM_H_ */
diff --git a/include/linux/mod_devicetable.h b/include/linux/mod_devicetable.h
index 4bb71979a8fd..5da5d990ff58 100644
--- a/include/linux/mod_devicetable.h
+++ b/include/linux/mod_devicetable.h
@@ -211,7 +211,7 @@ struct css_device_id {
kernel_ulong_t driver_data;
};
-#define ACPI_ID_LEN 9
+#define ACPI_ID_LEN 16
struct acpi_device_id {
__u8 id[ACPI_ID_LEN];
diff --git a/include/linux/random.h b/include/linux/random.h
index c45b2693e51f..c0baffe7afb1 100644
--- a/include/linux/random.h
+++ b/include/linux/random.h
@@ -1,9 +1,5 @@
/* SPDX-License-Identifier: GPL-2.0 */
-/*
- * include/linux/random.h
- *
- * Include file for the random number generator.
- */
+
#ifndef _LINUX_RANDOM_H
#define _LINUX_RANDOM_H
@@ -14,14 +10,10 @@
#include <uapi/linux/random.h>
-struct random_ready_callback {
- struct list_head list;
- void (*func)(struct random_ready_callback *rdy);
- struct module *owner;
-};
+struct notifier_block;
-extern void add_device_randomness(const void *, unsigned int);
-extern void add_bootloader_randomness(const void *, unsigned int);
+extern void add_device_randomness(const void *, size_t);
+extern void add_bootloader_randomness(const void *, size_t);
#if defined(LATENT_ENTROPY_PLUGIN) && !defined(__CHECKER__)
static inline void add_latent_entropy(void)
@@ -36,17 +28,27 @@ static inline void add_latent_entropy(void) {}
extern void add_input_randomness(unsigned int type, unsigned int code,
unsigned int value) __latent_entropy;
extern void add_interrupt_randomness(int irq) __latent_entropy;
+extern void add_hwgenerator_randomness(const void *buffer, size_t count,
+ size_t entropy);
+#if IS_ENABLED(CONFIG_VMGENID)
+extern void add_vmfork_randomness(const void *unique_vm_id, size_t size);
+extern int register_random_vmfork_notifier(struct notifier_block *nb);
+extern int unregister_random_vmfork_notifier(struct notifier_block *nb);
+#else
+static inline int register_random_vmfork_notifier(struct notifier_block *nb) { return 0; }
+static inline int unregister_random_vmfork_notifier(struct notifier_block *nb) { return 0; }
+#endif
-extern void get_random_bytes(void *buf, int nbytes);
+extern void get_random_bytes(void *buf, size_t nbytes);
extern int wait_for_random_bytes(void);
extern int __init rand_initialize(void);
extern bool rng_is_initialized(void);
-extern int add_random_ready_callback(struct random_ready_callback *rdy);
-extern void del_random_ready_callback(struct random_ready_callback *rdy);
-extern int __must_check get_random_bytes_arch(void *buf, int nbytes);
+extern int register_random_ready_notifier(struct notifier_block *nb);
+extern int unregister_random_ready_notifier(struct notifier_block *nb);
+extern size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes);
#ifndef MODULE
-extern const struct file_operations random_fops, urandom_fops;
+extern const struct file_operations random_fops;
#endif
u32 get_random_u32(void);
@@ -87,7 +89,7 @@ static inline unsigned long get_random_canary(void)
/* Calls wait_for_random_bytes() and then calls get_random_bytes(buf, nbytes).
* Returns the result of the call to wait_for_random_bytes. */
-static inline int get_random_bytes_wait(void *buf, int nbytes)
+static inline int get_random_bytes_wait(void *buf, size_t nbytes)
{
int ret = wait_for_random_bytes();
get_random_bytes(buf, nbytes);
@@ -158,4 +160,9 @@ static inline bool __init arch_get_random_long_early(unsigned long *v)
}
#endif
+#ifdef CONFIG_SMP
+extern int random_prepare_cpu(unsigned int cpu);
+extern int random_online_cpu(unsigned int cpu);
+#endif
+
#endif /* _LINUX_RANDOM_H */
diff --git a/include/trace/events/random.h b/include/trace/events/random.h
deleted file mode 100644
index a2d9aa16a5d7..000000000000
--- a/include/trace/events/random.h
+++ /dev/null
@@ -1,233 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-#undef TRACE_SYSTEM
-#define TRACE_SYSTEM random
-
-#if !defined(_TRACE_RANDOM_H) || defined(TRACE_HEADER_MULTI_READ)
-#define _TRACE_RANDOM_H
-
-#include <linux/writeback.h>
-#include <linux/tracepoint.h>
-
-TRACE_EVENT(add_device_randomness,
- TP_PROTO(int bytes, unsigned long IP),
-
- TP_ARGS(bytes, IP),
-
- TP_STRUCT__entry(
- __field( int, bytes )
- __field(unsigned long, IP )
- ),
-
- TP_fast_assign(
- __entry->bytes = bytes;
- __entry->IP = IP;
- ),
-
- TP_printk("bytes %d caller %pS",
- __entry->bytes, (void *)__entry->IP)
-);
-
-DECLARE_EVENT_CLASS(random__mix_pool_bytes,
- TP_PROTO(int bytes, unsigned long IP),
-
- TP_ARGS(bytes, IP),
-
- TP_STRUCT__entry(
- __field( int, bytes )
- __field(unsigned long, IP )
- ),
-
- TP_fast_assign(
- __entry->bytes = bytes;
- __entry->IP = IP;
- ),
-
- TP_printk("input pool: bytes %d caller %pS",
- __entry->bytes, (void *)__entry->IP)
-);
-
-DEFINE_EVENT(random__mix_pool_bytes, mix_pool_bytes,
- TP_PROTO(int bytes, unsigned long IP),
-
- TP_ARGS(bytes, IP)
-);
-
-DEFINE_EVENT(random__mix_pool_bytes, mix_pool_bytes_nolock,
- TP_PROTO(int bytes, unsigned long IP),
-
- TP_ARGS(bytes, IP)
-);
-
-TRACE_EVENT(credit_entropy_bits,
- TP_PROTO(int bits, int entropy_count, unsigned long IP),
-
- TP_ARGS(bits, entropy_count, IP),
-
- TP_STRUCT__entry(
- __field( int, bits )
- __field( int, entropy_count )
- __field(unsigned long, IP )
- ),
-
- TP_fast_assign(
- __entry->bits = bits;
- __entry->entropy_count = entropy_count;
- __entry->IP = IP;
- ),
-
- TP_printk("input pool: bits %d entropy_count %d caller %pS",
- __entry->bits, __entry->entropy_count, (void *)__entry->IP)
-);
-
-TRACE_EVENT(debit_entropy,
- TP_PROTO(int debit_bits),
-
- TP_ARGS( debit_bits),
-
- TP_STRUCT__entry(
- __field( int, debit_bits )
- ),
-
- TP_fast_assign(
- __entry->debit_bits = debit_bits;
- ),
-
- TP_printk("input pool: debit_bits %d", __entry->debit_bits)
-);
-
-TRACE_EVENT(add_input_randomness,
- TP_PROTO(int input_bits),
-
- TP_ARGS(input_bits),
-
- TP_STRUCT__entry(
- __field( int, input_bits )
- ),
-
- TP_fast_assign(
- __entry->input_bits = input_bits;
- ),
-
- TP_printk("input_pool_bits %d", __entry->input_bits)
-);
-
-TRACE_EVENT(add_disk_randomness,
- TP_PROTO(dev_t dev, int input_bits),
-
- TP_ARGS(dev, input_bits),
-
- TP_STRUCT__entry(
- __field( dev_t, dev )
- __field( int, input_bits )
- ),
-
- TP_fast_assign(
- __entry->dev = dev;
- __entry->input_bits = input_bits;
- ),
-
- TP_printk("dev %d,%d input_pool_bits %d", MAJOR(__entry->dev),
- MINOR(__entry->dev), __entry->input_bits)
-);
-
-DECLARE_EVENT_CLASS(random__get_random_bytes,
- TP_PROTO(int nbytes, unsigned long IP),
-
- TP_ARGS(nbytes, IP),
-
- TP_STRUCT__entry(
- __field( int, nbytes )
- __field(unsigned long, IP )
- ),
-
- TP_fast_assign(
- __entry->nbytes = nbytes;
- __entry->IP = IP;
- ),
-
- TP_printk("nbytes %d caller %pS", __entry->nbytes, (void *)__entry->IP)
-);
-
-DEFINE_EVENT(random__get_random_bytes, get_random_bytes,
- TP_PROTO(int nbytes, unsigned long IP),
-
- TP_ARGS(nbytes, IP)
-);
-
-DEFINE_EVENT(random__get_random_bytes, get_random_bytes_arch,
- TP_PROTO(int nbytes, unsigned long IP),
-
- TP_ARGS(nbytes, IP)
-);
-
-DECLARE_EVENT_CLASS(random__extract_entropy,
- TP_PROTO(int nbytes, int entropy_count, unsigned long IP),
-
- TP_ARGS(nbytes, entropy_count, IP),
-
- TP_STRUCT__entry(
- __field( int, nbytes )
- __field( int, entropy_count )
- __field(unsigned long, IP )
- ),
-
- TP_fast_assign(
- __entry->nbytes = nbytes;
- __entry->entropy_count = entropy_count;
- __entry->IP = IP;
- ),
-
- TP_printk("input pool: nbytes %d entropy_count %d caller %pS",
- __entry->nbytes, __entry->entropy_count, (void *)__entry->IP)
-);
-
-
-DEFINE_EVENT(random__extract_entropy, extract_entropy,
- TP_PROTO(int nbytes, int entropy_count, unsigned long IP),
-
- TP_ARGS(nbytes, entropy_count, IP)
-);
-
-TRACE_EVENT(urandom_read,
- TP_PROTO(int got_bits, int pool_left, int input_left),
-
- TP_ARGS(got_bits, pool_left, input_left),
-
- TP_STRUCT__entry(
- __field( int, got_bits )
- __field( int, pool_left )
- __field( int, input_left )
- ),
-
- TP_fast_assign(
- __entry->got_bits = got_bits;
- __entry->pool_left = pool_left;
- __entry->input_left = input_left;
- ),
-
- TP_printk("got_bits %d nonblocking_pool_entropy_left %d "
- "input_entropy_left %d", __entry->got_bits,
- __entry->pool_left, __entry->input_left)
-);
-
-TRACE_EVENT(prandom_u32,
-
- TP_PROTO(unsigned int ret),
-
- TP_ARGS(ret),
-
- TP_STRUCT__entry(
- __field( unsigned int, ret)
- ),
-
- TP_fast_assign(
- __entry->ret = ret;
- ),
-
- TP_printk("ret=%u" , __entry->ret)
-);
-
-#endif /* _TRACE_RANDOM_H */
-
-/* This part must be outside protection */
-#include <trace/define_trace.h>
diff --git a/kernel/cpu.c b/kernel/cpu.c
index 407a2568f35e..238cba15449f 100644
--- a/kernel/cpu.c
+++ b/kernel/cpu.c
@@ -34,6 +34,7 @@
#include <linux/scs.h>
#include <linux/percpu-rwsem.h>
#include <linux/cpuset.h>
+#include <linux/random.h>
#include <trace/events/power.h>
#define CREATE_TRACE_POINTS
@@ -1659,6 +1660,11 @@ static struct cpuhp_step cpuhp_hp_states[] = {
.startup.single = perf_event_init_cpu,
.teardown.single = perf_event_exit_cpu,
},
+ [CPUHP_RANDOM_PREPARE] = {
+ .name = "random:prepare",
+ .startup.single = random_prepare_cpu,
+ .teardown.single = NULL,
+ },
[CPUHP_WORKQUEUE_PREP] = {
.name = "workqueue:prepare",
.startup.single = workqueue_prepare_cpu,
@@ -1782,6 +1788,11 @@ static struct cpuhp_step cpuhp_hp_states[] = {
.startup.single = workqueue_online_cpu,
.teardown.single = workqueue_offline_cpu,
},
+ [CPUHP_AP_RANDOM_ONLINE] = {
+ .name = "random:online",
+ .startup.single = random_online_cpu,
+ .teardown.single = NULL,
+ },
[CPUHP_AP_RCUTREE_ONLINE] = {
.name = "RCU/tree:online",
.startup.single = rcutree_online_cpu,
diff --git a/lib/random32.c b/lib/random32.c
index a57a0e18819d..976632003ec6 100644
--- a/lib/random32.c
+++ b/lib/random32.c
@@ -41,7 +41,6 @@
#include <linux/bitops.h>
#include <linux/slab.h>
#include <asm/unaligned.h>
-#include <trace/events/random.h>
/**
* prandom_u32_state - seeded pseudo-random number generator.
@@ -387,7 +386,6 @@ u32 prandom_u32(void)
struct siprand_state *state = get_cpu_ptr(&net_rand_state);
u32 res = siprand_u32(state);
- trace_prandom_u32(res);
put_cpu_ptr(&net_rand_state);
return res;
}
@@ -553,9 +551,11 @@ static void prandom_reseed(struct timer_list *unused)
* To avoid worrying about whether it's safe to delay that interrupt
* long enough to seed all CPUs, just schedule an immediate timer event.
*/
-static void prandom_timer_start(struct random_ready_callback *unused)
+static int prandom_timer_start(struct notifier_block *nb,
+ unsigned long action, void *data)
{
mod_timer(&seed_timer, jiffies);
+ return 0;
}
#ifdef CONFIG_RANDOM32_SELFTEST
@@ -619,13 +619,13 @@ core_initcall(prandom32_state_selftest);
*/
static int __init prandom_init_late(void)
{
- static struct random_ready_callback random_ready = {
- .func = prandom_timer_start
+ static struct notifier_block random_ready = {
+ .notifier_call = prandom_timer_start
};
- int ret = add_random_ready_callback(&random_ready);
+ int ret = register_random_ready_notifier(&random_ready);
if (ret == -EALREADY) {
- prandom_timer_start(&random_ready);
+ prandom_timer_start(&random_ready, 0, NULL);
ret = 0;
}
return ret;
diff --git a/lib/vsprintf.c b/lib/vsprintf.c
index 3b8129dd374c..36574a806a81 100644
--- a/lib/vsprintf.c
+++ b/lib/vsprintf.c
@@ -757,14 +757,16 @@ static void enable_ptr_key_workfn(struct work_struct *work)
static DECLARE_WORK(enable_ptr_key_work, enable_ptr_key_workfn);
-static void fill_random_ptr_key(struct random_ready_callback *unused)
+static int fill_random_ptr_key(struct notifier_block *nb,
+ unsigned long action, void *data)
{
/* This may be in an interrupt handler. */
queue_work(system_unbound_wq, &enable_ptr_key_work);
+ return 0;
}
-static struct random_ready_callback random_ready = {
- .func = fill_random_ptr_key
+static struct notifier_block random_ready = {
+ .notifier_call = fill_random_ptr_key
};
static int __init initialize_ptr_random(void)
@@ -778,7 +780,7 @@ static int __init initialize_ptr_random(void)
return 0;
}
- ret = add_random_ready_callback(&random_ready);
+ ret = register_random_ready_notifier(&random_ready);
if (!ret) {
return 0;
} else if (ret == -EALREADY) {