diff options
Diffstat (limited to 'Documentation/RCU/rcu_dereference.txt')
| -rw-r--r-- | Documentation/RCU/rcu_dereference.txt | 376 |
1 files changed, 0 insertions, 376 deletions
diff --git a/Documentation/RCU/rcu_dereference.txt b/Documentation/RCU/rcu_dereference.txt deleted file mode 100644 index b2a613f16d74..000000000000 --- a/Documentation/RCU/rcu_dereference.txt +++ /dev/null @@ -1,376 +0,0 @@ -PROPER CARE AND FEEDING OF RETURN VALUES FROM rcu_dereference() - -Most of the time, you can use values from rcu_dereference() or one of -the similar primitives without worries. Dereferencing (prefix "*"), -field selection ("->"), assignment ("="), address-of ("&"), addition and -subtraction of constants, and casts all work quite naturally and safely. - -It is nevertheless possible to get into trouble with other operations. -Follow these rules to keep your RCU code working properly: - -o You must use one of the rcu_dereference() family of primitives - to load an RCU-protected pointer, otherwise CONFIG_PROVE_RCU - will complain. Worse yet, your code can see random memory-corruption - bugs due to games that compilers and DEC Alpha can play. - Without one of the rcu_dereference() primitives, compilers - can reload the value, and won't your code have fun with two - different values for a single pointer! Without rcu_dereference(), - DEC Alpha can load a pointer, dereference that pointer, and - return data preceding initialization that preceded the store of - the pointer. - - In addition, the volatile cast in rcu_dereference() prevents the - compiler from deducing the resulting pointer value. Please see - the section entitled "EXAMPLE WHERE THE COMPILER KNOWS TOO MUCH" - for an example where the compiler can in fact deduce the exact - value of the pointer, and thus cause misordering. - -o Avoid cancellation when using the "+" and "-" infix arithmetic - operators. For example, for a given variable "x", avoid - "(x-x)". There are similar arithmetic pitfalls from other - arithmetic operators, such as "(x*0)", "(x/(x+1))" or "(x%1)". - The compiler is within its rights to substitute zero for all of - these expressions, so that subsequent accesses no longer depend - on the rcu_dereference(), again possibly resulting in bugs due - to misordering. - - Of course, if "p" is a pointer from rcu_dereference(), and "a" - and "b" are integers that happen to be equal, the expression - "p+a-b" is safe because its value still necessarily depends on - the rcu_dereference(), thus maintaining proper ordering. - -o Avoid all-zero operands to the bitwise "&" operator, and - similarly avoid all-ones operands to the bitwise "|" operator. - If the compiler is able to deduce the value of such operands, - it is within its rights to substitute the corresponding constant - for the bitwise operation. Once again, this causes subsequent - accesses to no longer depend on the rcu_dereference(), causing - bugs due to misordering. - - Please note that single-bit operands to bitwise "&" can also - be dangerous. At this point, the compiler knows that the - resulting value can only take on one of two possible values. - Therefore, a very small amount of additional information will - allow the compiler to deduce the exact value, which again can - result in misordering. - -o If you are using RCU to protect JITed functions, so that the - "()" function-invocation operator is applied to a value obtained - (directly or indirectly) from rcu_dereference(), you may need to - interact directly with the hardware to flush instruction caches. - This issue arises on some systems when a newly JITed function is - using the same memory that was used by an earlier JITed function. - -o Do not use the results from the boolean "&&" and "||" when - dereferencing. For example, the following (rather improbable) - code is buggy: - - int *p; - int *q; - - ... - - p = rcu_dereference(gp) - q = &global_q; - q += p != &oom_p1 && p != &oom_p2; - r1 = *q; /* BUGGY!!! */ - - The reason this is buggy is that "&&" and "||" are often compiled - using branches. While weak-memory machines such as ARM or PowerPC - do order stores after such branches, they can speculate loads, - which can result in misordering bugs. - -o Do not use the results from relational operators ("==", "!=", - ">", ">=", "<", or "<=") when dereferencing. For example, - the following (quite strange) code is buggy: - - int *p; - int *q; - - ... - - p = rcu_dereference(gp) - q = &global_q; - q += p > &oom_p; - r1 = *q; /* BUGGY!!! */ - - As before, the reason this is buggy is that relational operators - are often compiled using branches. And as before, although - weak-memory machines such as ARM or PowerPC do order stores - after such branches, but can speculate loads, which can again - result in misordering bugs. - -o Be very careful about comparing pointers obtained from - rcu_dereference() against non-NULL values. As Linus Torvalds - explained, if the two pointers are equal, the compiler could - substitute the pointer you are comparing against for the pointer - obtained from rcu_dereference(). For example: - - p = rcu_dereference(gp); - if (p == &default_struct) - do_default(p->a); - - Because the compiler now knows that the value of "p" is exactly - the address of the variable "default_struct", it is free to - transform this code into the following: - - p = rcu_dereference(gp); - if (p == &default_struct) - do_default(default_struct.a); - - On ARM and Power hardware, the load from "default_struct.a" - can now be speculated, such that it might happen before the - rcu_dereference(). This could result in bugs due to misordering. - - However, comparisons are OK in the following cases: - - o The comparison was against the NULL pointer. If the - compiler knows that the pointer is NULL, you had better - not be dereferencing it anyway. If the comparison is - non-equal, the compiler is none the wiser. Therefore, - it is safe to compare pointers from rcu_dereference() - against NULL pointers. - - o The pointer is never dereferenced after being compared. - Since there are no subsequent dereferences, the compiler - cannot use anything it learned from the comparison - to reorder the non-existent subsequent dereferences. - This sort of comparison occurs frequently when scanning - RCU-protected circular linked lists. - - Note that if checks for being within an RCU read-side - critical section are not required and the pointer is never - dereferenced, rcu_access_pointer() should be used in place - of rcu_dereference(). The rcu_access_pointer() primitive - does not require an enclosing read-side critical section, - and also omits the smp_read_barrier_depends() included in - rcu_dereference(), which in turn should provide a small - performance gain in some CPUs (e.g., the DEC Alpha). - - o The comparison is against a pointer that references memory - that was initialized "a long time ago." The reason - this is safe is that even if misordering occurs, the - misordering will not affect the accesses that follow - the comparison. So exactly how long ago is "a long - time ago"? Here are some possibilities: - - o Compile time. - - o Boot time. - - o Module-init time for module code. - - o Prior to kthread creation for kthread code. - - o During some prior acquisition of the lock that - we now hold. - - o Before mod_timer() time for a timer handler. - - There are many other possibilities involving the Linux - kernel's wide array of primitives that cause code to - be invoked at a later time. - - o The pointer being compared against also came from - rcu_dereference(). In this case, both pointers depend - on one rcu_dereference() or another, so you get proper - ordering either way. - - That said, this situation can make certain RCU usage - bugs more likely to happen. Which can be a good thing, - at least if they happen during testing. An example - of such an RCU usage bug is shown in the section titled - "EXAMPLE OF AMPLIFIED RCU-USAGE BUG". - - o All of the accesses following the comparison are stores, - so that a control dependency preserves the needed ordering. - That said, it is easy to get control dependencies wrong. - Please see the "CONTROL DEPENDENCIES" section of - Documentation/memory-barriers.txt for more details. - - o The pointers are not equal -and- the compiler does - not have enough information to deduce the value of the - pointer. Note that the volatile cast in rcu_dereference() - will normally prevent the compiler from knowing too much. - - However, please note that if the compiler knows that the - pointer takes on only one of two values, a not-equal - comparison will provide exactly the information that the - compiler needs to deduce the value of the pointer. - -o Disable any value-speculation optimizations that your compiler - might provide, especially if you are making use of feedback-based - optimizations that take data collected from prior runs. Such - value-speculation optimizations reorder operations by design. - - There is one exception to this rule: Value-speculation - optimizations that leverage the branch-prediction hardware are - safe on strongly ordered systems (such as x86), but not on weakly - ordered systems (such as ARM or Power). Choose your compiler - command-line options wisely! - - -EXAMPLE OF AMPLIFIED RCU-USAGE BUG - -Because updaters can run concurrently with RCU readers, RCU readers can -see stale and/or inconsistent values. If RCU readers need fresh or -consistent values, which they sometimes do, they need to take proper -precautions. To see this, consider the following code fragment: - - struct foo { - int a; - int b; - int c; - }; - struct foo *gp1; - struct foo *gp2; - - void updater(void) - { - struct foo *p; - - p = kmalloc(...); - if (p == NULL) - deal_with_it(); - p->a = 42; /* Each field in its own cache line. */ - p->b = 43; - p->c = 44; - rcu_assign_pointer(gp1, p); - p->b = 143; - p->c = 144; - rcu_assign_pointer(gp2, p); - } - - void reader(void) - { - struct foo *p; - struct foo *q; - int r1, r2; - - p = rcu_dereference(gp2); - if (p == NULL) - return; - r1 = p->b; /* Guaranteed to get 143. */ - q = rcu_dereference(gp1); /* Guaranteed non-NULL. */ - if (p == q) { - /* The compiler decides that q->c is same as p->c. */ - r2 = p->c; /* Could get 44 on weakly order system. */ - } - do_something_with(r1, r2); - } - -You might be surprised that the outcome (r1 == 143 && r2 == 44) is possible, -but you should not be. After all, the updater might have been invoked -a second time between the time reader() loaded into "r1" and the time -that it loaded into "r2". The fact that this same result can occur due -to some reordering from the compiler and CPUs is beside the point. - -But suppose that the reader needs a consistent view? - -Then one approach is to use locking, for example, as follows: - - struct foo { - int a; - int b; - int c; - spinlock_t lock; - }; - struct foo *gp1; - struct foo *gp2; - - void updater(void) - { - struct foo *p; - - p = kmalloc(...); - if (p == NULL) - deal_with_it(); - spin_lock(&p->lock); - p->a = 42; /* Each field in its own cache line. */ - p->b = 43; - p->c = 44; - spin_unlock(&p->lock); - rcu_assign_pointer(gp1, p); - spin_lock(&p->lock); - p->b = 143; - p->c = 144; - spin_unlock(&p->lock); - rcu_assign_pointer(gp2, p); - } - - void reader(void) - { - struct foo *p; - struct foo *q; - int r1, r2; - - p = rcu_dereference(gp2); - if (p == NULL) - return; - spin_lock(&p->lock); - r1 = p->b; /* Guaranteed to get 143. */ - q = rcu_dereference(gp1); /* Guaranteed non-NULL. */ - if (p == q) { - /* The compiler decides that q->c is same as p->c. */ - r2 = p->c; /* Locking guarantees r2 == 144. */ - } - spin_unlock(&p->lock); - do_something_with(r1, r2); - } - -As always, use the right tool for the job! - - -EXAMPLE WHERE THE COMPILER KNOWS TOO MUCH - -If a pointer obtained from rcu_dereference() compares not-equal to some -other pointer, the compiler normally has no clue what the value of the -first pointer might be. This lack of knowledge prevents the compiler -from carrying out optimizations that otherwise might destroy the ordering -guarantees that RCU depends on. And the volatile cast in rcu_dereference() -should prevent the compiler from guessing the value. - -But without rcu_dereference(), the compiler knows more than you might -expect. Consider the following code fragment: - - struct foo { - int a; - int b; - }; - static struct foo variable1; - static struct foo variable2; - static struct foo *gp = &variable1; - - void updater(void) - { - initialize_foo(&variable2); - rcu_assign_pointer(gp, &variable2); - /* - * The above is the only store to gp in this translation unit, - * and the address of gp is not exported in any way. - */ - } - - int reader(void) - { - struct foo *p; - - p = gp; - barrier(); - if (p == &variable1) - return p->a; /* Must be variable1.a. */ - else - return p->b; /* Must be variable2.b. */ - } - -Because the compiler can see all stores to "gp", it knows that the only -possible values of "gp" are "variable1" on the one hand and "variable2" -on the other. The comparison in reader() therefore tells the compiler -the exact value of "p" even in the not-equals case. This allows the -compiler to make the return values independent of the load from "gp", -in turn destroying the ordering between this load and the loads of the -return values. This can result in "p->b" returning pre-initialization -garbage values. - -In short, rcu_dereference() is -not- optional when you are going to -dereference the resulting pointer. |
