summaryrefslogtreecommitdiff
path: root/Documentation/admin-guide/mm/hugetlbpage.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/admin-guide/mm/hugetlbpage.rst')
-rw-r--r--Documentation/admin-guide/mm/hugetlbpage.rst29
1 files changed, 22 insertions, 7 deletions
diff --git a/Documentation/admin-guide/mm/hugetlbpage.rst b/Documentation/admin-guide/mm/hugetlbpage.rst
index 19f27c0d92e0..67a941903fd2 100644
--- a/Documentation/admin-guide/mm/hugetlbpage.rst
+++ b/Documentation/admin-guide/mm/hugetlbpage.rst
@@ -1,5 +1,3 @@
-.. _hugetlbpage:
-
=============
HugeTLB Pages
=============
@@ -86,7 +84,7 @@ by increasing or decreasing the value of ``nr_hugepages``.
Note: When the feature of freeing unused vmemmap pages associated with each
hugetlb page is enabled, we can fail to free the huge pages triggered by
-the user when ths system is under memory pressure. Please try again later.
+the user when the system is under memory pressure. Please try again later.
Pages that are used as huge pages are reserved inside the kernel and cannot
be used for other purposes. Huge pages cannot be swapped out under
@@ -147,7 +145,17 @@ hugepages
It will allocate 1 2M hugepage on node0 and 2 2M hugepages on node1.
If the node number is invalid, the parameter will be ignored.
+hugepage_alloc_threads
+ Specify the number of threads that should be used to allocate hugepages
+ during boot. This parameter can be used to improve system bootup time
+ when allocating a large amount of huge pages.
+
+ The default value is 25% of the available hardware threads.
+ Example to use 8 allocation threads::
+ hugepage_alloc_threads=8
+
+ Note that this parameter only applies to non-gigantic huge pages.
default_hugepagesz
Specify the default huge page size. This parameter can
only be specified once on the command line. default_hugepagesz can
@@ -313,7 +321,7 @@ memory policy mode--bind, preferred, local or interleave--may be used. The
resulting effect on persistent huge page allocation is as follows:
#. Regardless of mempolicy mode [see
- :ref:`Documentation/admin-guide/mm/numa_memory_policy.rst <numa_memory_policy>`],
+ Documentation/admin-guide/mm/numa_memory_policy.rst],
persistent huge pages will be distributed across the node or nodes
specified in the mempolicy as if "interleave" had been specified.
However, if a node in the policy does not contain sufficient contiguous
@@ -378,6 +386,13 @@ Note that the number of overcommit and reserve pages remain global quantities,
as we don't know until fault time, when the faulting task's mempolicy is
applied, from which node the huge page allocation will be attempted.
+The hugetlb may be migrated between the per-node hugepages pool in the following
+scenarios: memory offline, memory failure, longterm pinning, syscalls(mbind,
+migrate_pages and move_pages), alloc_contig_range() and alloc_contig_pages().
+Now only memory offline, memory failure and syscalls allow fallbacking to allocate
+a new hugetlb on a different node if the current node is unable to allocate during
+hugetlb migration, that means these 3 cases can break the per-node hugepages pool.
+
.. _using_huge_pages:
Using Huge Pages
@@ -461,13 +476,13 @@ Examples
.. _map_hugetlb:
``map_hugetlb``
- see tools/testing/selftests/vm/map_hugetlb.c
+ see tools/testing/selftests/mm/map_hugetlb.c
``hugepage-shm``
- see tools/testing/selftests/vm/hugepage-shm.c
+ see tools/testing/selftests/mm/hugepage-shm.c
``hugepage-mmap``
- see tools/testing/selftests/vm/hugepage-mmap.c
+ see tools/testing/selftests/mm/hugepage-mmap.c
The `libhugetlbfs`_ library provides a wide range of userspace tools
to help with huge page usability, environment setup, and control.