summaryrefslogtreecommitdiff
path: root/Documentation/arch/x86/amd-memory-encryption.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/arch/x86/amd-memory-encryption.rst')
-rw-r--r--Documentation/arch/x86/amd-memory-encryption.rst278
1 files changed, 278 insertions, 0 deletions
diff --git a/Documentation/arch/x86/amd-memory-encryption.rst b/Documentation/arch/x86/amd-memory-encryption.rst
new file mode 100644
index 000000000000..bd840df708ea
--- /dev/null
+++ b/Documentation/arch/x86/amd-memory-encryption.rst
@@ -0,0 +1,278 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=====================
+AMD Memory Encryption
+=====================
+
+Secure Memory Encryption (SME) and Secure Encrypted Virtualization (SEV) are
+features found on AMD processors.
+
+SME provides the ability to mark individual pages of memory as encrypted using
+the standard x86 page tables. A page that is marked encrypted will be
+automatically decrypted when read from DRAM and encrypted when written to
+DRAM. SME can therefore be used to protect the contents of DRAM from physical
+attacks on the system.
+
+SEV enables running encrypted virtual machines (VMs) in which the code and data
+of the guest VM are secured so that a decrypted version is available only
+within the VM itself. SEV guest VMs have the concept of private and shared
+memory. Private memory is encrypted with the guest-specific key, while shared
+memory may be encrypted with hypervisor key. When SME is enabled, the hypervisor
+key is the same key which is used in SME.
+
+A page is encrypted when a page table entry has the encryption bit set (see
+below on how to determine its position). The encryption bit can also be
+specified in the cr3 register, allowing the PGD table to be encrypted. Each
+successive level of page tables can also be encrypted by setting the encryption
+bit in the page table entry that points to the next table. This allows the full
+page table hierarchy to be encrypted. Note, this means that just because the
+encryption bit is set in cr3, doesn't imply the full hierarchy is encrypted.
+Each page table entry in the hierarchy needs to have the encryption bit set to
+achieve that. So, theoretically, you could have the encryption bit set in cr3
+so that the PGD is encrypted, but not set the encryption bit in the PGD entry
+for a PUD which results in the PUD pointed to by that entry to not be
+encrypted.
+
+When SEV is enabled, instruction pages and guest page tables are always treated
+as private. All the DMA operations inside the guest must be performed on shared
+memory. Since the memory encryption bit is controlled by the guest OS when it
+is operating in 64-bit or 32-bit PAE mode, in all other modes the SEV hardware
+forces the memory encryption bit to 1.
+
+Support for SME and SEV can be determined through the CPUID instruction. The
+CPUID function 0x8000001f reports information related to SME::
+
+ 0x8000001f[eax]:
+ Bit[0] indicates support for SME
+ Bit[1] indicates support for SEV
+ 0x8000001f[ebx]:
+ Bits[5:0] pagetable bit number used to activate memory
+ encryption
+ Bits[11:6] reduction in physical address space, in bits, when
+ memory encryption is enabled (this only affects
+ system physical addresses, not guest physical
+ addresses)
+
+If support for SME is present, MSR 0xc00100010 (MSR_AMD64_SYSCFG) can be used to
+determine if SME is enabled and/or to enable memory encryption::
+
+ 0xc0010010:
+ Bit[23] 0 = memory encryption features are disabled
+ 1 = memory encryption features are enabled
+
+If SEV is supported, MSR 0xc0010131 (MSR_AMD64_SEV) can be used to determine if
+SEV is active::
+
+ 0xc0010131:
+ Bit[0] 0 = memory encryption is not active
+ 1 = memory encryption is active
+
+Linux relies on BIOS to set this bit if BIOS has determined that the reduction
+in the physical address space as a result of enabling memory encryption (see
+CPUID information above) will not conflict with the address space resource
+requirements for the system. If this bit is not set upon Linux startup then
+Linux itself will not set it and memory encryption will not be possible.
+
+The state of SME in the Linux kernel can be documented as follows:
+
+ - Supported:
+ The CPU supports SME (determined through CPUID instruction).
+
+ - Enabled:
+ Supported and bit 23 of MSR_AMD64_SYSCFG is set.
+
+ - Active:
+ Supported, Enabled and the Linux kernel is actively applying
+ the encryption bit to page table entries (the SME mask in the
+ kernel is non-zero).
+
+SME can also be enabled and activated in the BIOS. If SME is enabled and
+activated in the BIOS, then all memory accesses will be encrypted and it
+will not be necessary to activate the Linux memory encryption support.
+
+If the BIOS merely enables SME (sets bit 23 of the MSR_AMD64_SYSCFG),
+then memory encryption can be enabled by supplying mem_encrypt=on on the
+kernel command line. However, if BIOS does not enable SME, then Linux
+will not be able to activate memory encryption, even if configured to do
+so by default or the mem_encrypt=on command line parameter is specified.
+
+Secure Nested Paging (SNP)
+==========================
+
+SEV-SNP introduces new features (SEV_FEATURES[1:63]) which can be enabled
+by the hypervisor for security enhancements. Some of these features need
+guest side implementation to function correctly. The below table lists the
+expected guest behavior with various possible scenarios of guest/hypervisor
+SNP feature support.
+
++-----------------+---------------+---------------+------------------+
+| Feature Enabled | Guest needs | Guest has | Guest boot |
+| by the HV | implementation| implementation| behaviour |
++=================+===============+===============+==================+
+| No | No | No | Boot |
+| | | | |
++-----------------+---------------+---------------+------------------+
+| No | Yes | No | Boot |
+| | | | |
++-----------------+---------------+---------------+------------------+
+| No | Yes | Yes | Boot |
+| | | | |
++-----------------+---------------+---------------+------------------+
+| Yes | No | No | Boot with |
+| | | | feature enabled |
++-----------------+---------------+---------------+------------------+
+| Yes | Yes | No | Graceful boot |
+| | | | failure |
++-----------------+---------------+---------------+------------------+
+| Yes | Yes | Yes | Boot with |
+| | | | feature enabled |
++-----------------+---------------+---------------+------------------+
+
+More details in AMD64 APM[1] Vol 2: 15.34.10 SEV_STATUS MSR
+
+Reverse Map Table (RMP)
+=======================
+
+The RMP is a structure in system memory that is used to ensure a one-to-one
+mapping between system physical addresses and guest physical addresses. Each
+page of memory that is potentially assignable to guests has one entry within
+the RMP.
+
+The RMP table can be either contiguous in memory or a collection of segments
+in memory.
+
+Contiguous RMP
+--------------
+
+Support for this form of the RMP is present when support for SEV-SNP is
+present, which can be determined using the CPUID instruction::
+
+ 0x8000001f[eax]:
+ Bit[4] indicates support for SEV-SNP
+
+The location of the RMP is identified to the hardware through two MSRs::
+
+ 0xc0010132 (RMP_BASE):
+ System physical address of the first byte of the RMP
+
+ 0xc0010133 (RMP_END):
+ System physical address of the last byte of the RMP
+
+Hardware requires that RMP_BASE and (RPM_END + 1) be 8KB aligned, but SEV
+firmware increases the alignment requirement to require a 1MB alignment.
+
+The RMP consists of a 16KB region used for processor bookkeeping followed
+by the RMP entries, which are 16 bytes in size. The size of the RMP
+determines the range of physical memory that the hypervisor can assign to
+SEV-SNP guests. The RMP covers the system physical address from::
+
+ 0 to ((RMP_END + 1 - RMP_BASE - 16KB) / 16B) x 4KB.
+
+The current Linux support relies on BIOS to allocate/reserve the memory for
+the RMP and to set RMP_BASE and RMP_END appropriately. Linux uses the MSR
+values to locate the RMP and determine the size of the RMP. The RMP must
+cover all of system memory in order for Linux to enable SEV-SNP.
+
+Segmented RMP
+-------------
+
+Segmented RMP support is a new way of representing the layout of an RMP.
+Initial RMP support required the RMP table to be contiguous in memory.
+RMP accesses from a NUMA node on which the RMP doesn't reside
+can take longer than accesses from a NUMA node on which the RMP resides.
+Segmented RMP support allows the RMP entries to be located on the same
+node as the memory the RMP is covering, potentially reducing latency
+associated with accessing an RMP entry associated with the memory. Each
+RMP segment covers a specific range of system physical addresses.
+
+Support for this form of the RMP can be determined using the CPUID
+instruction::
+
+ 0x8000001f[eax]:
+ Bit[23] indicates support for segmented RMP
+
+If supported, segmented RMP attributes can be found using the CPUID
+instruction::
+
+ 0x80000025[eax]:
+ Bits[5:0] minimum supported RMP segment size
+ Bits[11:6] maximum supported RMP segment size
+
+ 0x80000025[ebx]:
+ Bits[9:0] number of cacheable RMP segment definitions
+ Bit[10] indicates if the number of cacheable RMP segments
+ is a hard limit
+
+To enable a segmented RMP, a new MSR is available::
+
+ 0xc0010136 (RMP_CFG):
+ Bit[0] indicates if segmented RMP is enabled
+ Bits[13:8] contains the size of memory covered by an RMP
+ segment (expressed as a power of 2)
+
+The RMP segment size defined in the RMP_CFG MSR applies to all segments
+of the RMP. Therefore each RMP segment covers a specific range of system
+physical addresses. For example, if the RMP_CFG MSR value is 0x2401, then
+the RMP segment coverage value is 0x24 => 36, meaning the size of memory
+covered by an RMP segment is 64GB (1 << 36). So the first RMP segment
+covers physical addresses from 0 to 0xF_FFFF_FFFF, the second RMP segment
+covers physical addresses from 0x10_0000_0000 to 0x1F_FFFF_FFFF, etc.
+
+When a segmented RMP is enabled, RMP_BASE points to the RMP bookkeeping
+area as it does today (16K in size). However, instead of RMP entries
+beginning immediately after the bookkeeping area, there is a 4K RMP
+segment table (RST). Each entry in the RST is 8-bytes in size and represents
+an RMP segment::
+
+ Bits[19:0] mapped size (in GB)
+ The mapped size can be less than the defined segment size.
+ A value of zero, indicates that no RMP exists for the range
+ of system physical addresses associated with this segment.
+ Bits[51:20] segment physical address
+ This address is left shift 20-bits (or just masked when
+ read) to form the physical address of the segment (1MB
+ alignment).
+
+The RST can hold 512 segment entries but can be limited in size to the number
+of cacheable RMP segments (CPUID 0x80000025_EBX[9:0]) if the number of cacheable
+RMP segments is a hard limit (CPUID 0x80000025_EBX[10]).
+
+The current Linux support relies on BIOS to allocate/reserve the memory for
+the segmented RMP (the bookkeeping area, RST, and all segments), build the RST
+and to set RMP_BASE, RMP_END, and RMP_CFG appropriately. Linux uses the MSR
+values to locate the RMP and determine the size and location of the RMP
+segments. The RMP must cover all of system memory in order for Linux to enable
+SEV-SNP.
+
+More details in the AMD64 APM Vol 2, section "15.36.3 Reverse Map Table",
+docID: 24593.
+
+Secure VM Service Module (SVSM)
+===============================
+
+SNP provides a feature called Virtual Machine Privilege Levels (VMPL) which
+defines four privilege levels at which guest software can run. The most
+privileged level is 0 and numerically higher numbers have lesser privileges.
+More details in the AMD64 APM Vol 2, section "15.35.7 Virtual Machine
+Privilege Levels", docID: 24593.
+
+When using that feature, different services can run at different protection
+levels, apart from the guest OS but still within the secure SNP environment.
+They can provide services to the guest, like a vTPM, for example.
+
+When a guest is not running at VMPL0, it needs to communicate with the software
+running at VMPL0 to perform privileged operations or to interact with secure
+services. An example fur such a privileged operation is PVALIDATE which is
+*required* to be executed at VMPL0.
+
+In this scenario, the software running at VMPL0 is usually called a Secure VM
+Service Module (SVSM). Discovery of an SVSM and the API used to communicate
+with it is documented in "Secure VM Service Module for SEV-SNP Guests", docID:
+58019.
+
+(Latest versions of the above-mentioned documents can be found by using
+a search engine like duckduckgo.com and typing in:
+
+ site:amd.com "Secure VM Service Module for SEV-SNP Guests", docID: 58019
+
+for example.)