summaryrefslogtreecommitdiff
path: root/Documentation/arch/x86/topology.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/arch/x86/topology.rst')
-rw-r--r--Documentation/arch/x86/topology.rst421
1 files changed, 421 insertions, 0 deletions
diff --git a/Documentation/arch/x86/topology.rst b/Documentation/arch/x86/topology.rst
new file mode 100644
index 000000000000..86bec8ac2c4d
--- /dev/null
+++ b/Documentation/arch/x86/topology.rst
@@ -0,0 +1,421 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+============
+x86 Topology
+============
+
+This documents and clarifies the main aspects of x86 topology modelling and
+representation in the kernel. Update/change when doing changes to the
+respective code.
+
+The architecture-agnostic topology definitions are in
+Documentation/admin-guide/cputopology.rst. This file holds x86-specific
+differences/specialities which must not necessarily apply to the generic
+definitions. Thus, the way to read up on Linux topology on x86 is to start
+with the generic one and look at this one in parallel for the x86 specifics.
+
+Needless to say, code should use the generic functions - this file is *only*
+here to *document* the inner workings of x86 topology.
+
+Started by Thomas Gleixner <tglx@linutronix.de> and Borislav Petkov <bp@alien8.de>.
+
+The main aim of the topology facilities is to present adequate interfaces to
+code which needs to know/query/use the structure of the running system wrt
+threads, cores, packages, etc.
+
+The kernel does not care about the concept of physical sockets because a
+socket has no relevance to software. It's an electromechanical component. In
+the past a socket always contained a single package (see below), but with the
+advent of Multi Chip Modules (MCM) a socket can hold more than one package. So
+there might be still references to sockets in the code, but they are of
+historical nature and should be cleaned up.
+
+The topology of a system is described in the units of:
+
+ - packages
+ - cores
+ - threads
+
+Package
+=======
+Packages contain a number of cores plus shared resources, e.g. DRAM
+controller, shared caches etc.
+
+Modern systems may also use the term 'Die' for package.
+
+AMD nomenclature for package is 'Node'.
+
+Package-related topology information in the kernel:
+
+ - topology_num_threads_per_package()
+
+ The number of threads in a package.
+
+ - topology_num_cores_per_package()
+
+ The number of cores in a package.
+
+ - topology_max_dies_per_package()
+
+ The maximum number of dies in a package.
+
+ - cpuinfo_x86.topo.die_id:
+
+ The physical ID of the die.
+
+ - cpuinfo_x86.topo.pkg_id:
+
+ The physical ID of the package. This information is retrieved via CPUID
+ and deduced from the APIC IDs of the cores in the package.
+
+ Modern systems use this value for the socket. There may be multiple
+ packages within a socket. This value may differ from topo.die_id.
+
+ - cpuinfo_x86.topo.logical_pkg_id:
+
+ The logical ID of the package. As we do not trust BIOSes to enumerate the
+ packages in a consistent way, we introduced the concept of logical package
+ ID so we can sanely calculate the number of maximum possible packages in
+ the system and have the packages enumerated linearly.
+
+ - topology_max_packages():
+
+ The maximum possible number of packages in the system. Helpful for per
+ package facilities to preallocate per package information.
+
+ - cpuinfo_x86.topo.llc_id:
+
+ - On Intel, the first APIC ID of the list of CPUs sharing the Last Level
+ Cache
+
+ - On AMD, the Node ID or Core Complex ID containing the Last Level
+ Cache. In general, it is a number identifying an LLC uniquely on the
+ system.
+
+Cores
+=====
+A core consists of 1 or more threads. It does not matter whether the threads
+are SMT- or CMT-type threads.
+
+AMDs nomenclature for a CMT core is "Compute Unit". The kernel always uses
+"core".
+
+Threads
+=======
+A thread is a single scheduling unit. It's the equivalent to a logical Linux
+CPU.
+
+AMDs nomenclature for CMT threads is "Compute Unit Core". The kernel always
+uses "thread".
+
+Thread-related topology information in the kernel:
+
+ - topology_core_cpumask():
+
+ The cpumask contains all online threads in the package to which a thread
+ belongs.
+
+ The number of online threads is also printed in /proc/cpuinfo "siblings."
+
+ - topology_sibling_cpumask():
+
+ The cpumask contains all online threads in the core to which a thread
+ belongs.
+
+ - topology_logical_package_id():
+
+ The logical package ID to which a thread belongs.
+
+ - topology_physical_package_id():
+
+ The physical package ID to which a thread belongs.
+
+ - topology_core_id();
+
+ The ID of the core to which a thread belongs. It is also printed in /proc/cpuinfo
+ "core_id."
+
+ - topology_logical_core_id();
+
+ The logical core ID to which a thread belongs.
+
+
+
+System topology enumeration
+===========================
+
+The topology on x86 systems can be discovered using a combination of vendor
+specific CPUID leaves which enumerate the processor topology and the cache
+hierarchy.
+
+The CPUID leaves in their preferred order of parsing for each x86 vendor is as
+follows:
+
+1) AMD
+
+ 1) CPUID leaf 0x80000026 [Extended CPU Topology] (Core::X86::Cpuid::ExCpuTopology)
+
+ The extended CPUID leaf 0x80000026 is the extension of the CPUID leaf 0xB
+ and provides the topology information of Core, Complex, CCD (Die), and
+ Socket in each level.
+
+ Support for the leaf is discovered by checking if the maximum extended
+ CPUID level is >= 0x80000026 and then checking if `LogProcAtThisLevel`
+ in `EBX[15:0]` at a particular level (starting from 0) is non-zero.
+
+ The `LevelType` in `ECX[15:8]` at the level provides the topology domain
+ the level describes - Core, Complex, CCD(Die), or the Socket.
+
+ The kernel uses the `CoreMaskWidth` from `EAX[4:0]` to discover the
+ number of bits that need to be right-shifted from `ExtendedLocalApicId`
+ in `EDX[31:0]` in order to get a unique Topology ID for the topology
+ level. CPUs with the same Topology ID share the resources at that level.
+
+ CPUID leaf 0x80000026 also provides more information regarding the power
+ and efficiency rankings, and about the core type on AMD processors with
+ heterogeneous characteristics.
+
+ If CPUID leaf 0x80000026 is supported, further parsing is not required.
+
+ 2) CPUID leaf 0x0000000B [Extended Topology Enumeration] (Core::X86::Cpuid::ExtTopEnum)
+
+ The extended CPUID leaf 0x0000000B is the predecessor on the extended
+ CPUID leaf 0x80000026 and only describes the core, and the socket domains
+ of the processor topology.
+
+ The support for the leaf is discovered by checking if the maximum supported
+ CPUID level is >= 0xB and then if `EBX[31:0]` at a particular level
+ (starting from 0) is non-zero.
+
+ The `LevelType` in `ECX[15:8]` at the level provides the topology domain
+ that the level describes - Thread, or Processor (Socket).
+
+ The kernel uses the `CoreMaskWidth` from `EAX[4:0]` to discover the
+ number of bits that need to be right-shifted from the `ExtendedLocalApicId`
+ in `EDX[31:0]` to get a unique Topology ID for that topology level. CPUs
+ sharing the Topology ID share the resources at that level.
+
+ If CPUID leaf 0xB is supported, further parsing is not required.
+
+
+ 3) CPUID leaf 0x80000008 ECX [Size Identifiers] (Core::X86::Cpuid::SizeId)
+
+ If neither the CPUID leaf 0x80000026 nor 0xB is supported, the number of
+ CPUs on the package is detected using the Size Identifier leaf
+ 0x80000008 ECX.
+
+ The support for the leaf is discovered by checking if the supported
+ extended CPUID level is >= 0x80000008.
+
+ The shifts from the APIC ID for the Socket ID is calculated from the
+ `ApicIdSize` field in `ECX[15:12]` if it is non-zero.
+
+ If `ApicIdSize` is reported to be zero, the shift is calculated as the
+ order of the `number of threads` calculated from `NC` field in
+ `ECX[7:0]` which describes the `number of threads - 1` on the package.
+
+ Unless Extended APIC ID is supported, the APIC ID used to find the
+ Socket ID is from the `LocalApicId` field of CPUID leaf 0x00000001
+ `EBX[31:24]`.
+
+ The topology parsing continues to detect if Extended APIC ID is
+ supported or not.
+
+
+ 4) CPUID leaf 0x8000001E [Extended APIC ID, Core Identifiers, Node Identifiers]
+ (Core::X86::Cpuid::{ExtApicId,CoreId,NodeId})
+
+ The support for Extended APIC ID can be detected by checking for the
+ presence of `TopologyExtensions` in `ECX[22]` of CPUID leaf 0x80000001
+ [Feature Identifiers] (Core::X86::Cpuid::FeatureExtIdEcx).
+
+ If Topology Extensions is supported, the APIC ID from `ExtendedApicId`
+ from CPUID leaf 0x8000001E `EAX[31:0]` should be preferred over that from
+ `LocalApicId` field of CPUID leaf 0x00000001 `EBX[31:24]` for topology
+ enumeration.
+
+ On processors of Family 0x17 and above that do not support CPUID leaf
+ 0x80000026 or CPUID leaf 0xB, the shifts from the APIC ID for the Core
+ ID is calculated using the order of `number of threads per core`
+ calculated using the `ThreadsPerCore` field in `EBX[15:8]` which
+ describes `number of threads per core - 1`.
+
+ On Processors of Family 0x15, the Core ID from `EBX[7:0]` is used as the
+ `cu_id` (Compute Unit ID) to detect CPUs that share the compute units.
+
+
+ All AMD processors that support the `TopologyExtensions` feature store the
+ `NodeId` from the `ECX[7:0]` of CPUID leaf 0x8000001E
+ (Core::X86::Cpuid::NodeId) as the per-CPU `node_id`. On older processors,
+ the `node_id` was discovered using MSR_FAM10H_NODE_ID MSR (MSR
+ 0x0xc001_100c). The presence of the NODE_ID MSR was detected by checking
+ `ECX[19]` of CPUID leaf 0x80000001 [Feature Identifiers]
+ (Core::X86::Cpuid::FeatureExtIdEcx).
+
+
+2) Intel
+
+ On Intel platforms, the CPUID leaves that enumerate the processor
+ topology are as follows:
+
+ 1) CPUID leaf 0x1F (V2 Extended Topology Enumeration Leaf)
+
+ The CPUID leaf 0x1F is the extension of the CPUID leaf 0xB and provides
+ the topology information of Core, Module, Tile, Die, DieGrp, and Socket
+ in each level.
+
+ The support for the leaf is discovered by checking if the supported
+ CPUID level is >= 0x1F and then `EBX[31:0]` at a particular level
+ (starting from 0) is non-zero.
+
+ The `Domain Type` in `ECX[15:8]` of the sub-leaf provides the topology
+ domain that the level describes - Core, Module, Tile, Die, DieGrp, and
+ Socket.
+
+ The kernel uses the value from `EAX[4:0]` to discover the number of
+ bits that need to be right shifted from the `x2APIC ID` in `EDX[31:0]`
+ to get a unique Topology ID for the topology level. CPUs with the same
+ Topology ID share the resources at that level.
+
+ If CPUID leaf 0x1F is supported, further parsing is not required.
+
+
+ 2) CPUID leaf 0x0000000B (Extended Topology Enumeration Leaf)
+
+ The extended CPUID leaf 0x0000000B is the predecessor of the V2 Extended
+ Topology Enumeration Leaf 0x1F and only describes the core, and the
+ socket domains of the processor topology.
+
+ The support for the leaf is iscovered by checking if the supported CPUID
+ level is >= 0xB and then checking if `EBX[31:0]` at a particular level
+ (starting from 0) is non-zero.
+
+ CPUID leaf 0x0000000B shares the same layout as CPUID leaf 0x1F and
+ should be enumerated in a similar manner.
+
+ If CPUID leaf 0xB is supported, further parsing is not required.
+
+
+ 3) CPUID leaf 0x00000004 (Deterministic Cache Parameters Leaf)
+
+ On Intel processors that support neither CPUID leaf 0x1F, nor CPUID leaf
+ 0xB, the shifts for the SMT domains is calculated using the number of
+ CPUs sharing the L1 cache.
+
+ Processors that feature Hyper-Threading is detected using `EDX[28]` of
+ CPUID leaf 0x1 (Basic CPUID Information).
+
+ The order of `Maximum number of addressable IDs for logical processors
+ sharing this cache` from `EAX[25:14]` of level-0 of CPUID 0x4 provides
+ the shifts from the APIC ID required to compute the Core ID.
+
+ The APIC ID and Package information is computed using the data from
+ CPUID leaf 0x1.
+
+
+ 4) CPUID leaf 0x00000001 (Basic CPUID Information)
+
+ The mask and shifts to derive the Physical Package (socket) ID is
+ computed using the `Maximum number of addressable IDs for logical
+ processors in this physical package` from `EBX[23:16]` of CPUID leaf
+ 0x1.
+
+ The APIC ID on the legacy platforms is derived from the `Initial APIC
+ ID` field from `EBX[31:24]` of CPUID leaf 0x1.
+
+
+3) Centaur and Zhaoxin
+
+ Similar to Intel, Centaur and Zhaoxin use a combination of CPUID leaf
+ 0x00000004 (Deterministic Cache Parameters Leaf) and CPUID leaf 0x00000001
+ (Basic CPUID Information) to derive the topology information.
+
+
+
+System topology examples
+========================
+
+.. note::
+ The alternative Linux CPU enumeration depends on how the BIOS enumerates the
+ threads. Many BIOSes enumerate all threads 0 first and then all threads 1.
+ That has the "advantage" that the logical Linux CPU numbers of threads 0 stay
+ the same whether threads are enabled or not. That's merely an implementation
+ detail and has no practical impact.
+
+1) Single Package, Single Core::
+
+ [package 0] -> [core 0] -> [thread 0] -> Linux CPU 0
+
+2) Single Package, Dual Core
+
+ a) One thread per core::
+
+ [package 0] -> [core 0] -> [thread 0] -> Linux CPU 0
+ -> [core 1] -> [thread 0] -> Linux CPU 1
+
+ b) Two threads per core::
+
+ [package 0] -> [core 0] -> [thread 0] -> Linux CPU 0
+ -> [thread 1] -> Linux CPU 1
+ -> [core 1] -> [thread 0] -> Linux CPU 2
+ -> [thread 1] -> Linux CPU 3
+
+ Alternative enumeration::
+
+ [package 0] -> [core 0] -> [thread 0] -> Linux CPU 0
+ -> [thread 1] -> Linux CPU 2
+ -> [core 1] -> [thread 0] -> Linux CPU 1
+ -> [thread 1] -> Linux CPU 3
+
+ AMD nomenclature for CMT systems::
+
+ [node 0] -> [Compute Unit 0] -> [Compute Unit Core 0] -> Linux CPU 0
+ -> [Compute Unit Core 1] -> Linux CPU 1
+ -> [Compute Unit 1] -> [Compute Unit Core 0] -> Linux CPU 2
+ -> [Compute Unit Core 1] -> Linux CPU 3
+
+4) Dual Package, Dual Core
+
+ a) One thread per core::
+
+ [package 0] -> [core 0] -> [thread 0] -> Linux CPU 0
+ -> [core 1] -> [thread 0] -> Linux CPU 1
+
+ [package 1] -> [core 0] -> [thread 0] -> Linux CPU 2
+ -> [core 1] -> [thread 0] -> Linux CPU 3
+
+ b) Two threads per core::
+
+ [package 0] -> [core 0] -> [thread 0] -> Linux CPU 0
+ -> [thread 1] -> Linux CPU 1
+ -> [core 1] -> [thread 0] -> Linux CPU 2
+ -> [thread 1] -> Linux CPU 3
+
+ [package 1] -> [core 0] -> [thread 0] -> Linux CPU 4
+ -> [thread 1] -> Linux CPU 5
+ -> [core 1] -> [thread 0] -> Linux CPU 6
+ -> [thread 1] -> Linux CPU 7
+
+ Alternative enumeration::
+
+ [package 0] -> [core 0] -> [thread 0] -> Linux CPU 0
+ -> [thread 1] -> Linux CPU 4
+ -> [core 1] -> [thread 0] -> Linux CPU 1
+ -> [thread 1] -> Linux CPU 5
+
+ [package 1] -> [core 0] -> [thread 0] -> Linux CPU 2
+ -> [thread 1] -> Linux CPU 6
+ -> [core 1] -> [thread 0] -> Linux CPU 3
+ -> [thread 1] -> Linux CPU 7
+
+ AMD nomenclature for CMT systems::
+
+ [node 0] -> [Compute Unit 0] -> [Compute Unit Core 0] -> Linux CPU 0
+ -> [Compute Unit Core 1] -> Linux CPU 1
+ -> [Compute Unit 1] -> [Compute Unit Core 0] -> Linux CPU 2
+ -> [Compute Unit Core 1] -> Linux CPU 3
+
+ [node 1] -> [Compute Unit 0] -> [Compute Unit Core 0] -> Linux CPU 4
+ -> [Compute Unit Core 1] -> Linux CPU 5
+ -> [Compute Unit 1] -> [Compute Unit Core 0] -> Linux CPU 6
+ -> [Compute Unit Core 1] -> Linux CPU 7