summaryrefslogtreecommitdiff
path: root/Documentation/blockdev/zram.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/blockdev/zram.txt')
-rw-r--r--Documentation/blockdev/zram.txt235
1 files changed, 0 insertions, 235 deletions
diff --git a/Documentation/blockdev/zram.txt b/Documentation/blockdev/zram.txt
deleted file mode 100644
index 4fced8a21307..000000000000
--- a/Documentation/blockdev/zram.txt
+++ /dev/null
@@ -1,235 +0,0 @@
-zram: Compressed RAM based block devices
-----------------------------------------
-
-* Introduction
-
-The zram module creates RAM based block devices named /dev/zram<id>
-(<id> = 0, 1, ...). Pages written to these disks are compressed and stored
-in memory itself. These disks allow very fast I/O and compression provides
-good amounts of memory savings. Some of the usecases include /tmp storage,
-use as swap disks, various caches under /var and maybe many more :)
-
-Statistics for individual zram devices are exported through sysfs nodes at
-/sys/block/zram<id>/
-
-* Usage
-
-There are several ways to configure and manage zram device(-s):
-a) using zram and zram_control sysfs attributes
-b) using zramctl utility, provided by util-linux (util-linux@vger.kernel.org).
-
-In this document we will describe only 'manual' zram configuration steps,
-IOW, zram and zram_control sysfs attributes.
-
-In order to get a better idea about zramctl please consult util-linux
-documentation, zramctl man-page or `zramctl --help'. Please be informed
-that zram maintainers do not develop/maintain util-linux or zramctl, should
-you have any questions please contact util-linux@vger.kernel.org
-
-Following shows a typical sequence of steps for using zram.
-
-WARNING
-=======
-For the sake of simplicity we skip error checking parts in most of the
-examples below. However, it is your sole responsibility to handle errors.
-
-zram sysfs attributes always return negative values in case of errors.
-The list of possible return codes:
--EBUSY -- an attempt to modify an attribute that cannot be changed once
-the device has been initialised. Please reset device first;
--ENOMEM -- zram was not able to allocate enough memory to fulfil your
-needs;
--EINVAL -- invalid input has been provided.
-
-If you use 'echo', the returned value that is changed by 'echo' utility,
-and, in general case, something like:
-
- echo 3 > /sys/block/zram0/max_comp_streams
- if [ $? -ne 0 ];
- handle_error
- fi
-
-should suffice.
-
-1) Load Module:
- modprobe zram num_devices=4
- This creates 4 devices: /dev/zram{0,1,2,3}
-
-num_devices parameter is optional and tells zram how many devices should be
-pre-created. Default: 1.
-
-2) Set max number of compression streams
-Regardless the value passed to this attribute, ZRAM will always
-allocate multiple compression streams - one per online CPUs - thus
-allowing several concurrent compression operations. The number of
-allocated compression streams goes down when some of the CPUs
-become offline. There is no single-compression-stream mode anymore,
-unless you are running a UP system or has only 1 CPU online.
-
-To find out how many streams are currently available:
- cat /sys/block/zram0/max_comp_streams
-
-3) Select compression algorithm
-Using comp_algorithm device attribute one can see available and
-currently selected (shown in square brackets) compression algorithms,
-change selected compression algorithm (once the device is initialised
-there is no way to change compression algorithm).
-
-Examples:
- #show supported compression algorithms
- cat /sys/block/zram0/comp_algorithm
- lzo [lz4]
-
- #select lzo compression algorithm
- echo lzo > /sys/block/zram0/comp_algorithm
-
-For the time being, the `comp_algorithm' content does not necessarily
-show every compression algorithm supported by the kernel. We keep this
-list primarily to simplify device configuration and one can configure
-a new device with a compression algorithm that is not listed in
-`comp_algorithm'. The thing is that, internally, ZRAM uses Crypto API
-and, if some of the algorithms were built as modules, it's impossible
-to list all of them using, for instance, /proc/crypto or any other
-method. This, however, has an advantage of permitting the usage of
-custom crypto compression modules (implementing S/W or H/W compression).
-
-4) Set Disksize
-Set disk size by writing the value to sysfs node 'disksize'.
-The value can be either in bytes or you can use mem suffixes.
-Examples:
- # Initialize /dev/zram0 with 50MB disksize
- echo $((50*1024*1024)) > /sys/block/zram0/disksize
-
- # Using mem suffixes
- echo 256K > /sys/block/zram0/disksize
- echo 512M > /sys/block/zram0/disksize
- echo 1G > /sys/block/zram0/disksize
-
-Note:
-There is little point creating a zram of greater than twice the size of memory
-since we expect a 2:1 compression ratio. Note that zram uses about 0.1% of the
-size of the disk when not in use so a huge zram is wasteful.
-
-5) Set memory limit: Optional
-Set memory limit by writing the value to sysfs node 'mem_limit'.
-The value can be either in bytes or you can use mem suffixes.
-In addition, you could change the value in runtime.
-Examples:
- # limit /dev/zram0 with 50MB memory
- echo $((50*1024*1024)) > /sys/block/zram0/mem_limit
-
- # Using mem suffixes
- echo 256K > /sys/block/zram0/mem_limit
- echo 512M > /sys/block/zram0/mem_limit
- echo 1G > /sys/block/zram0/mem_limit
-
- # To disable memory limit
- echo 0 > /sys/block/zram0/mem_limit
-
-6) Activate:
- mkswap /dev/zram0
- swapon /dev/zram0
-
- mkfs.ext4 /dev/zram1
- mount /dev/zram1 /tmp
-
-7) Add/remove zram devices
-
-zram provides a control interface, which enables dynamic (on-demand) device
-addition and removal.
-
-In order to add a new /dev/zramX device, perform read operation on hot_add
-attribute. This will return either new device's device id (meaning that you
-can use /dev/zram<id>) or error code.
-
-Example:
- cat /sys/class/zram-control/hot_add
- 1
-
-To remove the existing /dev/zramX device (where X is a device id)
-execute
- echo X > /sys/class/zram-control/hot_remove
-
-8) Stats:
-Per-device statistics are exported as various nodes under /sys/block/zram<id>/
-
-A brief description of exported device attributes. For more details please
-read Documentation/ABI/testing/sysfs-block-zram.
-
-Name access description
----- ------ -----------
-disksize RW show and set the device's disk size
-initstate RO shows the initialization state of the device
-reset WO trigger device reset
-mem_used_max WO reset the `mem_used_max' counter (see later)
-mem_limit WO specifies the maximum amount of memory ZRAM can use
- to store the compressed data
-max_comp_streams RW the number of possible concurrent compress operations
-comp_algorithm RW show and change the compression algorithm
-compact WO trigger memory compaction
-debug_stat RO this file is used for zram debugging purposes
-
-
-User space is advised to use the following files to read the device statistics.
-
-File /sys/block/zram<id>/stat
-
-Represents block layer statistics. Read Documentation/block/stat.txt for
-details.
-
-File /sys/block/zram<id>/io_stat
-
-The stat file represents device's I/O statistics not accounted by block
-layer and, thus, not available in zram<id>/stat file. It consists of a
-single line of text and contains the following stats separated by
-whitespace:
- failed_reads the number of failed reads
- failed_writes the number of failed writes
- invalid_io the number of non-page-size-aligned I/O requests
- notify_free Depending on device usage scenario it may account
- a) the number of pages freed because of swap slot free
- notifications or b) the number of pages freed because of
- REQ_DISCARD requests sent by bio. The former ones are
- sent to a swap block device when a swap slot is freed,
- which implies that this disk is being used as a swap disk.
- The latter ones are sent by filesystem mounted with
- discard option, whenever some data blocks are getting
- discarded.
-
-File /sys/block/zram<id>/mm_stat
-
-The stat file represents device's mm statistics. It consists of a single
-line of text and contains the following stats separated by whitespace:
- orig_data_size uncompressed size of data stored in this disk.
- This excludes same-element-filled pages (same_pages) since
- no memory is allocated for them.
- Unit: bytes
- compr_data_size compressed size of data stored in this disk
- mem_used_total the amount of memory allocated for this disk. This
- includes allocator fragmentation and metadata overhead,
- allocated for this disk. So, allocator space efficiency
- can be calculated using compr_data_size and this statistic.
- Unit: bytes
- mem_limit the maximum amount of memory ZRAM can use to store
- the compressed data
- mem_used_max the maximum amount of memory zram have consumed to
- store the data
- same_pages the number of same element filled pages written to this disk.
- No memory is allocated for such pages.
- pages_compacted the number of pages freed during compaction
-
-9) Deactivate:
- swapoff /dev/zram0
- umount /dev/zram1
-
-10) Reset:
- Write any positive value to 'reset' sysfs node
- echo 1 > /sys/block/zram0/reset
- echo 1 > /sys/block/zram1/reset
-
- This frees all the memory allocated for the given device and
- resets the disksize to zero. You must set the disksize again
- before reusing the device.
-
-Nitin Gupta
-ngupta@vflare.org