summaryrefslogtreecommitdiff
path: root/Documentation/core-api/symbol-namespaces.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/core-api/symbol-namespaces.rst')
-rw-r--r--Documentation/core-api/symbol-namespaces.rst168
1 files changed, 168 insertions, 0 deletions
diff --git a/Documentation/core-api/symbol-namespaces.rst b/Documentation/core-api/symbol-namespaces.rst
new file mode 100644
index 000000000000..034898e81ba2
--- /dev/null
+++ b/Documentation/core-api/symbol-namespaces.rst
@@ -0,0 +1,168 @@
+=================
+Symbol Namespaces
+=================
+
+The following document describes how to use Symbol Namespaces to structure the
+export surface of in-kernel symbols exported through the family of
+EXPORT_SYMBOL() macros.
+
+Introduction
+============
+
+Symbol Namespaces have been introduced as a means to structure the export
+surface of the in-kernel API. It allows subsystem maintainers to partition
+their exported symbols into separate namespaces. That is useful for
+documentation purposes (think of the SUBSYSTEM_DEBUG namespace) as well as for
+limiting the availability of a set of symbols for use in other parts of the
+kernel. As of today, modules that make use of symbols exported into namespaces,
+are required to import the namespace. Otherwise the kernel will, depending on
+its configuration, reject loading the module or warn about a missing import.
+
+Additionally, it is possible to put symbols into a module namespace, strictly
+limiting which modules are allowed to use these symbols.
+
+How to define Symbol Namespaces
+===============================
+
+Symbols can be exported into namespace using different methods. All of them are
+changing the way EXPORT_SYMBOL and friends are instrumented to create ksymtab
+entries.
+
+Using the EXPORT_SYMBOL macros
+------------------------------
+
+In addition to the macros EXPORT_SYMBOL() and EXPORT_SYMBOL_GPL(), that allow
+exporting of kernel symbols to the kernel symbol table, variants of these are
+available to export symbols into a certain namespace: EXPORT_SYMBOL_NS() and
+EXPORT_SYMBOL_NS_GPL(). They take one additional argument: the namespace as a
+string constant. Note that this string must not contain whitespaces.
+E.g. to export the symbol ``usb_stor_suspend`` into the
+namespace ``USB_STORAGE``, use::
+
+ EXPORT_SYMBOL_NS(usb_stor_suspend, "USB_STORAGE");
+
+The corresponding ksymtab entry struct ``kernel_symbol`` will have the member
+``namespace`` set accordingly. A symbol that is exported without a namespace will
+refer to ``NULL``. There is no default namespace if none is defined. ``modpost``
+and kernel/module/main.c make use the namespace at build time or module load
+time, respectively.
+
+Using the DEFAULT_SYMBOL_NAMESPACE define
+-----------------------------------------
+
+Defining namespaces for all symbols of a subsystem can be very verbose and may
+become hard to maintain. Therefore a default define (DEFAULT_SYMBOL_NAMESPACE)
+is been provided, that, if set, will become the default for all EXPORT_SYMBOL()
+and EXPORT_SYMBOL_GPL() macro expansions that do not specify a namespace.
+
+There are multiple ways of specifying this define and it depends on the
+subsystem and the maintainer's preference, which one to use. The first option
+is to define the default namespace in the ``Makefile`` of the subsystem. E.g. to
+export all symbols defined in usb-common into the namespace USB_COMMON, add a
+line like this to drivers/usb/common/Makefile::
+
+ ccflags-y += -DDEFAULT_SYMBOL_NAMESPACE='"USB_COMMON"'
+
+That will affect all EXPORT_SYMBOL() and EXPORT_SYMBOL_GPL() statements. A
+symbol exported with EXPORT_SYMBOL_NS() while this definition is present, will
+still be exported into the namespace that is passed as the namespace argument
+as this argument has preference over a default symbol namespace.
+
+A second option to define the default namespace is directly in the compilation
+unit as preprocessor statement. The above example would then read::
+
+ #define DEFAULT_SYMBOL_NAMESPACE "USB_COMMON"
+
+within the corresponding compilation unit before the #include for
+<linux/export.h>. Typically it's placed before the first #include statement.
+
+Using the EXPORT_SYMBOL_FOR_MODULES() macro
+-------------------------------------------
+
+Symbols exported using this macro are put into a module namespace. This
+namespace cannot be imported. These exports are GPL-only as they are only
+intended for in-tree modules.
+
+The macro takes a comma separated list of module names, allowing only those
+modules to access this symbol. Simple tail-globs are supported.
+
+For example::
+
+ EXPORT_SYMBOL_FOR_MODULES(preempt_notifier_inc, "kvm,kvm-*")
+
+will limit usage of this symbol to modules whose name matches the given
+patterns.
+
+How to use Symbols exported in Namespaces
+=========================================
+
+In order to use symbols that are exported into namespaces, kernel modules need
+to explicitly import these namespaces. Otherwise the kernel might reject to
+load the module. The module code is required to use the macro MODULE_IMPORT_NS
+for the namespaces it uses symbols from. E.g. a module using the
+usb_stor_suspend symbol from above, needs to import the namespace USB_STORAGE
+using a statement like::
+
+ MODULE_IMPORT_NS("USB_STORAGE");
+
+This will create a ``modinfo`` tag in the module for each imported namespace.
+This has the side effect, that the imported namespaces of a module can be
+inspected with modinfo::
+
+ $ modinfo drivers/usb/storage/ums-karma.ko
+ [...]
+ import_ns: USB_STORAGE
+ [...]
+
+
+It is advisable to add the MODULE_IMPORT_NS() statement close to other module
+metadata definitions like MODULE_AUTHOR() or MODULE_LICENSE().
+
+Loading Modules that use namespaced Symbols
+===========================================
+
+At module loading time (e.g. ``insmod``), the kernel will check each symbol
+referenced from the module for its availability and whether the namespace it
+might be exported to has been imported by the module. The default behaviour of
+the kernel is to reject loading modules that don't specify sufficient imports.
+An error will be logged and loading will be failed with EINVAL. In order to
+allow loading of modules that don't satisfy this precondition, a configuration
+option is available: Setting MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS=y will
+enable loading regardless, but will emit a warning.
+
+Automatically creating MODULE_IMPORT_NS statements
+==================================================
+
+Missing namespaces imports can easily be detected at build time. In fact,
+modpost will emit a warning if a module uses a symbol from a namespace
+without importing it.
+MODULE_IMPORT_NS() statements will usually be added at a definite location
+(along with other module meta data). To make the life of module authors (and
+subsystem maintainers) easier, a script and make target is available to fixup
+missing imports. Fixing missing imports can be done with::
+
+ $ make nsdeps
+
+A typical scenario for module authors would be::
+
+ - write code that depends on a symbol from a not imported namespace
+ - ``make``
+ - notice the warning of modpost telling about a missing import
+ - run ``make nsdeps`` to add the import to the correct code location
+
+For subsystem maintainers introducing a namespace, the steps are very similar.
+Again, ``make nsdeps`` will eventually add the missing namespace imports for
+in-tree modules::
+
+ - move or add symbols to a namespace (e.g. with EXPORT_SYMBOL_NS())
+ - ``make`` (preferably with an allmodconfig to cover all in-kernel
+ modules)
+ - notice the warning of modpost telling about a missing import
+ - run ``make nsdeps`` to add the import to the correct code location
+
+You can also run nsdeps for external module builds. A typical usage is::
+
+ $ make -C <path_to_kernel_src> M=$PWD nsdeps
+
+Note: it will happily generate an import statement for the module namespace;
+which will not work and generates build and runtime failures.