summaryrefslogtreecommitdiff
path: root/Documentation/filesystems/fscrypt.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems/fscrypt.rst')
-rw-r--r--Documentation/filesystems/fscrypt.rst413
1 files changed, 281 insertions, 132 deletions
diff --git a/Documentation/filesystems/fscrypt.rst b/Documentation/filesystems/fscrypt.rst
index a624e92f2687..70af896822e1 100644
--- a/Documentation/filesystems/fscrypt.rst
+++ b/Documentation/filesystems/fscrypt.rst
@@ -31,15 +31,15 @@ However, except for filenames, fscrypt does not encrypt filesystem
metadata.
Unlike eCryptfs, which is a stacked filesystem, fscrypt is integrated
-directly into supported filesystems --- currently ext4, F2FS, and
-UBIFS. This allows encrypted files to be read and written without
-caching both the decrypted and encrypted pages in the pagecache,
-thereby nearly halving the memory used and bringing it in line with
-unencrypted files. Similarly, half as many dentries and inodes are
-needed. eCryptfs also limits encrypted filenames to 143 bytes,
-causing application compatibility issues; fscrypt allows the full 255
-bytes (NAME_MAX). Finally, unlike eCryptfs, the fscrypt API can be
-used by unprivileged users, with no need to mount anything.
+directly into supported filesystems --- currently ext4, F2FS, UBIFS,
+and CephFS. This allows encrypted files to be read and written
+without caching both the decrypted and encrypted pages in the
+pagecache, thereby nearly halving the memory used and bringing it in
+line with unencrypted files. Similarly, half as many dentries and
+inodes are needed. eCryptfs also limits encrypted filenames to 143
+bytes, causing application compatibility issues; fscrypt allows the
+full 255 bytes (NAME_MAX). Finally, unlike eCryptfs, the fscrypt API
+can be used by unprivileged users, with no need to mount anything.
fscrypt does not support encrypting files in-place. Instead, it
supports marking an empty directory as encrypted. Then, after
@@ -70,7 +70,7 @@ Online attacks
--------------
fscrypt (and storage encryption in general) can only provide limited
-protection, if any at all, against online attacks. In detail:
+protection against online attacks. In detail:
Side-channel attacks
~~~~~~~~~~~~~~~~~~~~
@@ -99,16 +99,23 @@ Therefore, any encryption-specific access control checks would merely
be enforced by kernel *code* and therefore would be largely redundant
with the wide variety of access control mechanisms already available.)
-Kernel memory compromise
-~~~~~~~~~~~~~~~~~~~~~~~~
+Read-only kernel memory compromise
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Unless `hardware-wrapped keys`_ are used, an attacker who gains the
+ability to read from arbitrary kernel memory, e.g. by mounting a
+physical attack or by exploiting a kernel security vulnerability, can
+compromise all fscrypt keys that are currently in-use. This also
+extends to cold boot attacks; if the system is suddenly powered off,
+keys the system was using may remain in memory for a short time.
-An attacker who compromises the system enough to read from arbitrary
-memory, e.g. by mounting a physical attack or by exploiting a kernel
-security vulnerability, can compromise all encryption keys that are
-currently in use.
+However, if hardware-wrapped keys are used, then the fscrypt master
+keys and file contents encryption keys (but not other types of fscrypt
+subkeys such as filenames encryption keys) are protected from
+compromises of arbitrary kernel memory.
-However, fscrypt allows encryption keys to be removed from the kernel,
-which may protect them from later compromise.
+In addition, fscrypt allows encryption keys to be removed from the
+kernel, which may protect them from later compromise.
In more detail, the FS_IOC_REMOVE_ENCRYPTION_KEY ioctl (or the
FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS ioctl) can wipe a master
@@ -137,13 +144,29 @@ However, these ioctls have some limitations:
- In general, decrypted contents and filenames in the kernel VFS
caches are freed but not wiped. Therefore, portions thereof may be
recoverable from freed memory, even after the corresponding key(s)
- were wiped. To partially solve this, you can set
- CONFIG_PAGE_POISONING=y in your kernel config and add page_poison=1
- to your kernel command line. However, this has a performance cost.
-
-- Secret keys might still exist in CPU registers, in crypto
- accelerator hardware (if used by the crypto API to implement any of
- the algorithms), or in other places not explicitly considered here.
+ were wiped. To partially solve this, you can add init_on_free=1 to
+ your kernel command line. However, this has a performance cost.
+
+- Secret keys might still exist in CPU registers or in other places
+ not explicitly considered here.
+
+Full system compromise
+~~~~~~~~~~~~~~~~~~~~~~
+
+An attacker who gains "root" access and/or the ability to execute
+arbitrary kernel code can freely exfiltrate data that is protected by
+any in-use fscrypt keys. Thus, usually fscrypt provides no meaningful
+protection in this scenario. (Data that is protected by a key that is
+absent throughout the entire attack remains protected, modulo the
+limitations of key removal mentioned above in the case where the key
+was removed prior to the attack.)
+
+However, if `hardware-wrapped keys`_ are used, such attackers will be
+unable to exfiltrate the master keys or file contents keys in a form
+that will be usable after the system is powered off. This may be
+useful if the attacker is significantly time-limited and/or
+bandwidth-limited, so they can only exfiltrate some data and need to
+rely on a later offline attack to exfiltrate the rest of it.
Limitations of v1 policies
~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -171,6 +194,10 @@ policies on all new encrypted directories.
Key hierarchy
=============
+Note: this section assumes the use of raw keys rather than
+hardware-wrapped keys. The use of hardware-wrapped keys modifies the
+key hierarchy slightly. For details, see `Hardware-wrapped keys`_.
+
Master Keys
-----------
@@ -261,9 +288,9 @@ DIRECT_KEY policies
The Adiantum encryption mode (see `Encryption modes and usage`_) is
suitable for both contents and filenames encryption, and it accepts
-long IVs --- long enough to hold both an 8-byte logical block number
-and a 16-byte per-file nonce. Also, the overhead of each Adiantum key
-is greater than that of an AES-256-XTS key.
+long IVs --- long enough to hold both an 8-byte data unit index and a
+16-byte per-file nonce. Also, the overhead of each Adiantum key is
+greater than that of an AES-256-XTS key.
Therefore, to improve performance and save memory, for Adiantum a
"direct key" configuration is supported. When the user has enabled
@@ -300,8 +327,8 @@ IV_INO_LBLK_32 policies
IV_INO_LBLK_32 policies work like IV_INO_LBLK_64, except that for
IV_INO_LBLK_32, the inode number is hashed with SipHash-2-4 (where the
-SipHash key is derived from the master key) and added to the file
-logical block number mod 2^32 to produce a 32-bit IV.
+SipHash key is derived from the master key) and added to the file data
+unit index mod 2^32 to produce a 32-bit IV.
This format is optimized for use with inline encryption hardware
compliant with the eMMC v5.2 standard, which supports only 32 IV bits
@@ -338,11 +365,14 @@ Supported modes
Currently, the following pairs of encryption modes are supported:
-- AES-256-XTS for contents and AES-256-CTS-CBC for filenames
+- AES-256-XTS for contents and AES-256-CBC-CTS for filenames
- AES-256-XTS for contents and AES-256-HCTR2 for filenames
- Adiantum for both contents and filenames
-- AES-128-CBC-ESSIV for contents and AES-128-CTS-CBC for filenames
-- SM4-XTS for contents and SM4-CTS-CBC for filenames
+- AES-128-CBC-ESSIV for contents and AES-128-CBC-CTS for filenames
+- SM4-XTS for contents and SM4-CBC-CTS for filenames
+
+Note: in the API, "CBC" means CBC-ESSIV, and "CTS" means CBC-CTS.
+So, for example, FSCRYPT_MODE_AES_256_CTS means AES-256-CBC-CTS.
Authenticated encryption modes are not currently supported because of
the difficulty of dealing with ciphertext expansion. Therefore,
@@ -351,11 +381,11 @@ contents encryption uses a block cipher in `XTS mode
`CBC-ESSIV mode
<https://en.wikipedia.org/wiki/Disk_encryption_theory#Encrypted_salt-sector_initialization_vector_(ESSIV)>`_,
or a wide-block cipher. Filenames encryption uses a
-block cipher in `CTS-CBC mode
+block cipher in `CBC-CTS mode
<https://en.wikipedia.org/wiki/Ciphertext_stealing>`_ or a wide-block
cipher.
-The (AES-256-XTS, AES-256-CTS-CBC) pair is the recommended default.
+The (AES-256-XTS, AES-256-CBC-CTS) pair is the recommended default.
It is also the only option that is *guaranteed* to always be supported
if the kernel supports fscrypt at all; see `Kernel config options`_.
@@ -364,7 +394,7 @@ upgrades the filenames encryption to use a wide-block cipher. (A
*wide-block cipher*, also called a tweakable super-pseudorandom
permutation, has the property that changing one bit scrambles the
entire result.) As described in `Filenames encryption`_, a wide-block
-cipher is the ideal mode for the problem domain, though CTS-CBC is the
+cipher is the ideal mode for the problem domain, though CBC-CTS is the
"least bad" choice among the alternatives. For more information about
HCTR2, see `the HCTR2 paper <https://eprint.iacr.org/2021/1441.pdf>`_.
@@ -375,13 +405,16 @@ the work is done by XChaCha12, which is much faster than AES when AES
acceleration is unavailable. For more information about Adiantum, see
`the Adiantum paper <https://eprint.iacr.org/2018/720.pdf>`_.
-The (AES-128-CBC-ESSIV, AES-128-CTS-CBC) pair exists only to support
-systems whose only form of AES acceleration is an off-CPU crypto
-accelerator such as CAAM or CESA that does not support XTS.
+The (AES-128-CBC-ESSIV, AES-128-CBC-CTS) pair was added to try to
+provide a more efficient option for systems that lack AES instructions
+in the CPU but do have a non-inline crypto engine such as CAAM or CESA
+that supports AES-CBC (and not AES-XTS). This is deprecated. It has
+been shown that just doing AES on the CPU is actually faster.
+Moreover, Adiantum is faster still and is recommended on such systems.
The remaining mode pairs are the "national pride ciphers":
-- (SM4-XTS, SM4-CTS-CBC)
+- (SM4-XTS, SM4-CBC-CTS)
Generally speaking, these ciphers aren't "bad" per se, but they
receive limited security review compared to the usual choices such as
@@ -393,7 +426,7 @@ Kernel config options
Enabling fscrypt support (CONFIG_FS_ENCRYPTION) automatically pulls in
only the basic support from the crypto API needed to use AES-256-XTS
-and AES-256-CTS-CBC encryption. For optimal performance, it is
+and AES-256-CBC-CTS encryption. For optimal performance, it is
strongly recommended to also enable any available platform-specific
kconfig options that provide acceleration for the algorithm(s) you
wish to use. Support for any "non-default" encryption modes typically
@@ -407,7 +440,7 @@ kernel crypto API (see `Inline encryption support`_); in that case,
the file contents mode doesn't need to supported in the kernel crypto
API, but the filenames mode still does.
-- AES-256-XTS and AES-256-CTS-CBC
+- AES-256-XTS and AES-256-CBC-CTS
- Recommended:
- arm64: CONFIG_CRYPTO_AES_ARM64_CE_BLK
- x86: CONFIG_CRYPTO_AES_NI_INTEL
@@ -417,65 +450,83 @@ API, but the filenames mode still does.
- CONFIG_CRYPTO_HCTR2
- Recommended:
- arm64: CONFIG_CRYPTO_AES_ARM64_CE_BLK
- - arm64: CONFIG_CRYPTO_POLYVAL_ARM64_CE
- x86: CONFIG_CRYPTO_AES_NI_INTEL
- - x86: CONFIG_CRYPTO_POLYVAL_CLMUL_NI
- Adiantum
- Mandatory:
- CONFIG_CRYPTO_ADIANTUM
- Recommended:
- - arm32: CONFIG_CRYPTO_CHACHA20_NEON
- arm32: CONFIG_CRYPTO_NHPOLY1305_NEON
- - arm64: CONFIG_CRYPTO_CHACHA20_NEON
- arm64: CONFIG_CRYPTO_NHPOLY1305_NEON
- - x86: CONFIG_CRYPTO_CHACHA20_X86_64
- x86: CONFIG_CRYPTO_NHPOLY1305_SSE2
- x86: CONFIG_CRYPTO_NHPOLY1305_AVX2
-- AES-128-CBC-ESSIV and AES-128-CTS-CBC:
+- AES-128-CBC-ESSIV and AES-128-CBC-CTS:
- Mandatory:
- CONFIG_CRYPTO_ESSIV
- CONFIG_CRYPTO_SHA256 or another SHA-256 implementation
- Recommended:
- AES-CBC acceleration
-fscrypt also uses HMAC-SHA512 for key derivation, so enabling SHA-512
-acceleration is recommended:
-
-- SHA-512
- - Recommended:
- - arm64: CONFIG_CRYPTO_SHA512_ARM64_CE
- - x86: CONFIG_CRYPTO_SHA512_SSSE3
-
Contents encryption
-------------------
-For file contents, each filesystem block is encrypted independently.
-Starting from Linux kernel 5.5, encryption of filesystems with block
-size less than system's page size is supported.
-
-Each block's IV is set to the logical block number within the file as
-a little endian number, except that:
-
-- With CBC mode encryption, ESSIV is also used. Specifically, each IV
- is encrypted with AES-256 where the AES-256 key is the SHA-256 hash
- of the file's data encryption key.
-
-- With `DIRECT_KEY policies`_, the file's nonce is appended to the IV.
- Currently this is only allowed with the Adiantum encryption mode.
-
-- With `IV_INO_LBLK_64 policies`_, the logical block number is limited
- to 32 bits and is placed in bits 0-31 of the IV. The inode number
- (which is also limited to 32 bits) is placed in bits 32-63.
-
-- With `IV_INO_LBLK_32 policies`_, the logical block number is limited
- to 32 bits and is placed in bits 0-31 of the IV. The inode number
- is then hashed and added mod 2^32.
-
-Note that because file logical block numbers are included in the IVs,
-filesystems must enforce that blocks are never shifted around within
-encrypted files, e.g. via "collapse range" or "insert range".
+For contents encryption, each file's contents is divided into "data
+units". Each data unit is encrypted independently. The IV for each
+data unit incorporates the zero-based index of the data unit within
+the file. This ensures that each data unit within a file is encrypted
+differently, which is essential to prevent leaking information.
+
+Note: the encryption depending on the offset into the file means that
+operations like "collapse range" and "insert range" that rearrange the
+extent mapping of files are not supported on encrypted files.
+
+There are two cases for the sizes of the data units:
+
+* Fixed-size data units. This is how all filesystems other than UBIFS
+ work. A file's data units are all the same size; the last data unit
+ is zero-padded if needed. By default, the data unit size is equal
+ to the filesystem block size. On some filesystems, users can select
+ a sub-block data unit size via the ``log2_data_unit_size`` field of
+ the encryption policy; see `FS_IOC_SET_ENCRYPTION_POLICY`_.
+
+* Variable-size data units. This is what UBIFS does. Each "UBIFS
+ data node" is treated as a crypto data unit. Each contains variable
+ length, possibly compressed data, zero-padded to the next 16-byte
+ boundary. Users cannot select a sub-block data unit size on UBIFS.
+
+In the case of compression + encryption, the compressed data is
+encrypted. UBIFS compression works as described above. f2fs
+compression works a bit differently; it compresses a number of
+filesystem blocks into a smaller number of filesystem blocks.
+Therefore a f2fs-compressed file still uses fixed-size data units, and
+it is encrypted in a similar way to a file containing holes.
+
+As mentioned in `Key hierarchy`_, the default encryption setting uses
+per-file keys. In this case, the IV for each data unit is simply the
+index of the data unit in the file. However, users can select an
+encryption setting that does not use per-file keys. For these, some
+kind of file identifier is incorporated into the IVs as follows:
+
+- With `DIRECT_KEY policies`_, the data unit index is placed in bits
+ 0-63 of the IV, and the file's nonce is placed in bits 64-191.
+
+- With `IV_INO_LBLK_64 policies`_, the data unit index is placed in
+ bits 0-31 of the IV, and the file's inode number is placed in bits
+ 32-63. This setting is only allowed when data unit indices and
+ inode numbers fit in 32 bits.
+
+- With `IV_INO_LBLK_32 policies`_, the file's inode number is hashed
+ and added to the data unit index. The resulting value is truncated
+ to 32 bits and placed in bits 0-31 of the IV. This setting is only
+ allowed when data unit indices and inode numbers fit in 32 bits.
+
+The byte order of the IV is always little endian.
+
+If the user selects FSCRYPT_MODE_AES_128_CBC for the contents mode, an
+ESSIV layer is automatically included. In this case, before the IV is
+passed to AES-128-CBC, it is encrypted with AES-256 where the AES-256
+key is the SHA-256 hash of the file's contents encryption key.
Filenames encryption
--------------------
@@ -490,7 +541,7 @@ alternatively has the file's nonce (for `DIRECT_KEY policies`_) or
inode number (for `IV_INO_LBLK_64 policies`_) included in the IVs.
Thus, IV reuse is limited to within a single directory.
-With CTS-CBC, the IV reuse means that when the plaintext filenames share a
+With CBC-CTS, the IV reuse means that when the plaintext filenames share a
common prefix at least as long as the cipher block size (16 bytes for AES), the
corresponding encrypted filenames will also share a common prefix. This is
undesirable. Adiantum and HCTR2 do not have this weakness, as they are
@@ -544,7 +595,8 @@ follows::
__u8 contents_encryption_mode;
__u8 filenames_encryption_mode;
__u8 flags;
- __u8 __reserved[4];
+ __u8 log2_data_unit_size;
+ __u8 __reserved[3];
__u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
};
@@ -586,6 +638,29 @@ This structure must be initialized as follows:
The DIRECT_KEY, IV_INO_LBLK_64, and IV_INO_LBLK_32 flags are
mutually exclusive.
+- ``log2_data_unit_size`` is the log2 of the data unit size in bytes,
+ or 0 to select the default data unit size. The data unit size is
+ the granularity of file contents encryption. For example, setting
+ ``log2_data_unit_size`` to 12 causes file contents be passed to the
+ underlying encryption algorithm (such as AES-256-XTS) in 4096-byte
+ data units, each with its own IV.
+
+ Not all filesystems support setting ``log2_data_unit_size``. ext4
+ and f2fs support it since Linux v6.7. On filesystems that support
+ it, the supported nonzero values are 9 through the log2 of the
+ filesystem block size, inclusively. The default value of 0 selects
+ the filesystem block size.
+
+ The main use case for ``log2_data_unit_size`` is for selecting a
+ data unit size smaller than the filesystem block size for
+ compatibility with inline encryption hardware that only supports
+ smaller data unit sizes. ``/sys/block/$disk/queue/crypto/`` may be
+ useful for checking which data unit sizes are supported by a
+ particular system's inline encryption hardware.
+
+ Leave this field zeroed unless you are certain you need it. Using
+ an unnecessarily small data unit size reduces performance.
+
- For v2 encryption policies, ``__reserved`` must be zeroed.
- For v1 encryption policies, ``master_key_descriptor`` specifies how
@@ -778,7 +853,9 @@ a pointer to struct fscrypt_add_key_arg, defined as follows::
struct fscrypt_key_specifier key_spec;
__u32 raw_size;
__u32 key_id;
- __u32 __reserved[8];
+ #define FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED 0x00000001
+ __u32 flags;
+ __u32 __reserved[7];
__u8 raw[];
};
@@ -797,7 +874,7 @@ a pointer to struct fscrypt_add_key_arg, defined as follows::
struct fscrypt_provisioning_key_payload {
__u32 type;
- __u32 __reserved;
+ __u32 flags;
__u8 raw[];
};
@@ -825,24 +902,32 @@ as follows:
Alternatively, if ``key_id`` is nonzero, this field must be 0, since
in that case the size is implied by the specified Linux keyring key.
-- ``key_id`` is 0 if the raw key is given directly in the ``raw``
- field. Otherwise ``key_id`` is the ID of a Linux keyring key of
- type "fscrypt-provisioning" whose payload is
- struct fscrypt_provisioning_key_payload whose ``raw`` field contains
- the raw key and whose ``type`` field matches ``key_spec.type``.
- Since ``raw`` is variable-length, the total size of this key's
- payload must be ``sizeof(struct fscrypt_provisioning_key_payload)``
- plus the raw key size. The process must have Search permission on
- this key.
-
- Most users should leave this 0 and specify the raw key directly.
- The support for specifying a Linux keyring key is intended mainly to
+- ``key_id`` is 0 if the key is given directly in the ``raw`` field.
+ Otherwise ``key_id`` is the ID of a Linux keyring key of type
+ "fscrypt-provisioning" whose payload is struct
+ fscrypt_provisioning_key_payload whose ``raw`` field contains the
+ key, whose ``type`` field matches ``key_spec.type``, and whose
+ ``flags`` field matches ``flags``. Since ``raw`` is
+ variable-length, the total size of this key's payload must be
+ ``sizeof(struct fscrypt_provisioning_key_payload)`` plus the number
+ of key bytes. The process must have Search permission on this key.
+
+ Most users should leave this 0 and specify the key directly. The
+ support for specifying a Linux keyring key is intended mainly to
allow re-adding keys after a filesystem is unmounted and re-mounted,
- without having to store the raw keys in userspace memory.
+ without having to store the keys in userspace memory.
+
+- ``flags`` contains optional flags from ``<linux/fscrypt.h>``:
+
+ - FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED: This denotes that the key is a
+ hardware-wrapped key. See `Hardware-wrapped keys`_. This flag
+ can't be used if FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR is used.
- ``raw`` is a variable-length field which must contain the actual
key, ``raw_size`` bytes long. Alternatively, if ``key_id`` is
- nonzero, then this field is unused.
+ nonzero, then this field is unused. Note that despite being named
+ ``raw``, if FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED is specified then it
+ will contain a wrapped key, not a raw key.
For v2 policy keys, the kernel keeps track of which user (identified
by effective user ID) added the key, and only allows the key to be
@@ -854,8 +939,8 @@ prevent that other user from unexpectedly removing it. Therefore,
FS_IOC_ADD_ENCRYPTION_KEY may also be used to add a v2 policy key
*again*, even if it's already added by other user(s). In this case,
FS_IOC_ADD_ENCRYPTION_KEY will just install a claim to the key for the
-current user, rather than actually add the key again (but the raw key
-must still be provided, as a proof of knowledge).
+current user, rather than actually add the key again (but the key must
+still be provided, as a proof of knowledge).
FS_IOC_ADD_ENCRYPTION_KEY returns 0 if either the key or a claim to
the key was either added or already exists.
@@ -864,20 +949,23 @@ FS_IOC_ADD_ENCRYPTION_KEY can fail with the following errors:
- ``EACCES``: FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR was specified, but the
caller does not have the CAP_SYS_ADMIN capability in the initial
- user namespace; or the raw key was specified by Linux key ID but the
+ user namespace; or the key was specified by Linux key ID but the
process lacks Search permission on the key.
+- ``EBADMSG``: invalid hardware-wrapped key
- ``EDQUOT``: the key quota for this user would be exceeded by adding
the key
- ``EINVAL``: invalid key size or key specifier type, or reserved bits
were set
-- ``EKEYREJECTED``: the raw key was specified by Linux key ID, but the
- key has the wrong type
-- ``ENOKEY``: the raw key was specified by Linux key ID, but no key
- exists with that ID
+- ``EKEYREJECTED``: the key was specified by Linux key ID, but the key
+ has the wrong type
+- ``ENOKEY``: the key was specified by Linux key ID, but no key exists
+ with that ID
- ``ENOTTY``: this type of filesystem does not implement encryption
- ``EOPNOTSUPP``: the kernel was not configured with encryption
support for this filesystem, or the filesystem superblock has not
- had encryption enabled on it
+ had encryption enabled on it; or a hardware wrapped key was specified
+ but the filesystem does not support inline encryption or the hardware
+ does not support hardware-wrapped keys
Legacy method
~~~~~~~~~~~~~
@@ -940,9 +1028,8 @@ or removed by non-root users.
These ioctls don't work on keys that were added via the legacy
process-subscribed keyrings mechanism.
-Before using these ioctls, read the `Kernel memory compromise`_
-section for a discussion of the security goals and limitations of
-these ioctls.
+Before using these ioctls, read the `Online attacks`_ section for a
+discussion of the security goals and limitations of these ioctls.
FS_IOC_REMOVE_ENCRYPTION_KEY
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -1079,8 +1166,8 @@ The caller must zero all input fields, then fill in ``key_spec``:
On success, 0 is returned and the kernel fills in the output fields:
- ``status`` indicates whether the key is absent, present, or
- incompletely removed. Incompletely removed means that the master
- secret has been removed, but some files are still in use; i.e.,
+ incompletely removed. Incompletely removed means that removal has
+ been initiated, but some files are still in use; i.e.,
`FS_IOC_REMOVE_ENCRYPTION_KEY`_ returned 0 but set the informational
status flag FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY.
@@ -1231,22 +1318,13 @@ this by validating all top-level encryption policies prior to access.
Inline encryption support
=========================
-By default, fscrypt uses the kernel crypto API for all cryptographic
-operations (other than HKDF, which fscrypt partially implements
-itself). The kernel crypto API supports hardware crypto accelerators,
-but only ones that work in the traditional way where all inputs and
-outputs (e.g. plaintexts and ciphertexts) are in memory. fscrypt can
-take advantage of such hardware, but the traditional acceleration
-model isn't particularly efficient and fscrypt hasn't been optimized
-for it.
-
-Instead, many newer systems (especially mobile SoCs) have *inline
-encryption hardware* that can encrypt/decrypt data while it is on its
-way to/from the storage device. Linux supports inline encryption
-through a set of extensions to the block layer called *blk-crypto*.
-blk-crypto allows filesystems to attach encryption contexts to bios
-(I/O requests) to specify how the data will be encrypted or decrypted
-in-line. For more information about blk-crypto, see
+Many newer systems (especially mobile SoCs) have *inline encryption
+hardware* that can encrypt/decrypt data while it is on its way to/from
+the storage device. Linux supports inline encryption through a set of
+extensions to the block layer called *blk-crypto*. blk-crypto allows
+filesystems to attach encryption contexts to bios (I/O requests) to
+specify how the data will be encrypted or decrypted in-line. For more
+information about blk-crypto, see
:ref:`Documentation/block/inline-encryption.rst <inline_encryption>`.
On supported filesystems (currently ext4 and f2fs), fscrypt can use
@@ -1262,7 +1340,8 @@ inline encryption hardware doesn't have the needed crypto capabilities
(e.g. support for the needed encryption algorithm and data unit size)
and where blk-crypto-fallback is unusable. (For blk-crypto-fallback
to be usable, it must be enabled in the kernel configuration with
-CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK=y.)
+CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK=y, and the file must be
+protected by a raw key rather than a hardware-wrapped key.)
Currently fscrypt always uses the filesystem block size (which is
usually 4096 bytes) as the data unit size. Therefore, it can only use
@@ -1270,7 +1349,76 @@ inline encryption hardware that supports that data unit size.
Inline encryption doesn't affect the ciphertext or other aspects of
the on-disk format, so users may freely switch back and forth between
-using "inlinecrypt" and not using "inlinecrypt".
+using "inlinecrypt" and not using "inlinecrypt". An exception is that
+files that are protected by a hardware-wrapped key can only be
+encrypted/decrypted by the inline encryption hardware and therefore
+can only be accessed when the "inlinecrypt" mount option is used. For
+more information about hardware-wrapped keys, see below.
+
+Hardware-wrapped keys
+---------------------
+
+fscrypt supports using *hardware-wrapped keys* when the inline
+encryption hardware supports it. Such keys are only present in kernel
+memory in wrapped (encrypted) form; they can only be unwrapped
+(decrypted) by the inline encryption hardware and are temporally bound
+to the current boot. This prevents the keys from being compromised if
+kernel memory is leaked. This is done without limiting the number of
+keys that can be used and while still allowing the execution of
+cryptographic tasks that are tied to the same key but can't use inline
+encryption hardware, e.g. filenames encryption.
+
+Note that hardware-wrapped keys aren't specific to fscrypt; they are a
+block layer feature (part of *blk-crypto*). For more details about
+hardware-wrapped keys, see the block layer documentation at
+:ref:`Documentation/block/inline-encryption.rst
+<hardware_wrapped_keys>`. The rest of this section just focuses on
+the details of how fscrypt can use hardware-wrapped keys.
+
+fscrypt supports hardware-wrapped keys by allowing the fscrypt master
+keys to be hardware-wrapped keys as an alternative to raw keys. To
+add a hardware-wrapped key with `FS_IOC_ADD_ENCRYPTION_KEY`_,
+userspace must specify FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED in the
+``flags`` field of struct fscrypt_add_key_arg and also in the
+``flags`` field of struct fscrypt_provisioning_key_payload when
+applicable. The key must be in ephemerally-wrapped form, not
+long-term wrapped form.
+
+Some limitations apply. First, files protected by a hardware-wrapped
+key are tied to the system's inline encryption hardware. Therefore
+they can only be accessed when the "inlinecrypt" mount option is used,
+and they can't be included in portable filesystem images. Second,
+currently the hardware-wrapped key support is only compatible with
+`IV_INO_LBLK_64 policies`_ and `IV_INO_LBLK_32 policies`_, as it
+assumes that there is just one file contents encryption key per
+fscrypt master key rather than one per file. Future work may address
+this limitation by passing per-file nonces down the storage stack to
+allow the hardware to derive per-file keys.
+
+Implementation-wise, to encrypt/decrypt the contents of files that are
+protected by a hardware-wrapped key, fscrypt uses blk-crypto,
+attaching the hardware-wrapped key to the bio crypt contexts. As is
+the case with raw keys, the block layer will program the key into a
+keyslot when it isn't already in one. However, when programming a
+hardware-wrapped key, the hardware doesn't program the given key
+directly into a keyslot but rather unwraps it (using the hardware's
+ephemeral wrapping key) and derives the inline encryption key from it.
+The inline encryption key is the key that actually gets programmed
+into a keyslot, and it is never exposed to software.
+
+However, fscrypt doesn't just do file contents encryption; it also
+uses its master keys to derive filenames encryption keys, key
+identifiers, and sometimes some more obscure types of subkeys such as
+dirhash keys. So even with file contents encryption out of the
+picture, fscrypt still needs a raw key to work with. To get such a
+key from a hardware-wrapped key, fscrypt asks the inline encryption
+hardware to derive a cryptographically isolated "software secret" from
+the hardware-wrapped key. fscrypt uses this "software secret" to key
+its KDF to derive all subkeys other than file contents keys.
+
+Note that this implies that the hardware-wrapped key feature only
+protects the file contents encryption keys. It doesn't protect other
+fscrypt subkeys such as filenames encryption keys.
Direct I/O support
==================
@@ -1327,7 +1475,8 @@ directory.) These structs are defined as follows::
u8 contents_encryption_mode;
u8 filenames_encryption_mode;
u8 flags;
- u8 __reserved[4];
+ u8 log2_data_unit_size;
+ u8 __reserved[3];
u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
};
@@ -1354,7 +1503,7 @@ read the ciphertext into the page cache and decrypt it in-place. The
folio lock must be held until decryption has finished, to prevent the
folio from becoming visible to userspace prematurely.
-For the write path (->writepage()) of regular files, filesystems
+For the write path (->writepages()) of regular files, filesystems
cannot encrypt data in-place in the page cache, since the cached
plaintext must be preserved. Instead, filesystems must encrypt into a
temporary buffer or "bounce page", then write out the temporary