summaryrefslogtreecommitdiff
path: root/Documentation/gpu/drm-kms.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/gpu/drm-kms.rst')
-rw-r--r--Documentation/gpu/drm-kms.rst13
1 files changed, 7 insertions, 6 deletions
diff --git a/Documentation/gpu/drm-kms.rst b/Documentation/gpu/drm-kms.rst
index 514939433004..5dee6b8a4c12 100644
--- a/Documentation/gpu/drm-kms.rst
+++ b/Documentation/gpu/drm-kms.rst
@@ -56,11 +56,12 @@ Overview
The basic object structure KMS presents to userspace is fairly simple.
Framebuffers (represented by :c:type:`struct drm_framebuffer <drm_framebuffer>`,
-see `Frame Buffer Abstraction`_) feed into planes. One or more (or even no)
-planes feed their pixel data into a CRTC (represented by :c:type:`struct
-drm_crtc <drm_crtc>`, see `CRTC Abstraction`_) for blending. The precise
-blending step is explained in more detail in `Plane Composition Properties`_ and
-related chapters.
+see `Frame Buffer Abstraction`_) feed into planes. Planes are represented by
+:c:type:`struct drm_plane <drm_plane>`, see `Plane Abstraction`_ for more
+details. One or more (or even no) planes feed their pixel data into a CRTC
+(represented by :c:type:`struct drm_crtc <drm_crtc>`, see `CRTC Abstraction`_)
+for blending. The precise blending step is explained in more detail in `Plane
+Composition Properties`_ and related chapters.
For the output routing the first step is encoders (represented by
:c:type:`struct drm_encoder <drm_encoder>`, see `Encoder Abstraction`_). Those
@@ -466,7 +467,7 @@ Output discovery and initialization example
drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
DRM_MODE_ENCODER_DAC);
- drm_mode_connector_attach_encoder(&intel_output->base,
+ drm_connector_attach_encoder(&intel_output->base,
&intel_output->enc);
/* Set up the DDC bus. */