summaryrefslogtreecommitdiff
path: root/Documentation/virt/hyperv/vmbus.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/virt/hyperv/vmbus.rst')
-rw-r--r--Documentation/virt/hyperv/vmbus.rst346
1 files changed, 346 insertions, 0 deletions
diff --git a/Documentation/virt/hyperv/vmbus.rst b/Documentation/virt/hyperv/vmbus.rst
new file mode 100644
index 000000000000..654bb4849972
--- /dev/null
+++ b/Documentation/virt/hyperv/vmbus.rst
@@ -0,0 +1,346 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+VMBus
+=====
+VMBus is a software construct provided by Hyper-V to guest VMs. It
+consists of a control path and common facilities used by synthetic
+devices that Hyper-V presents to guest VMs. The control path is
+used to offer synthetic devices to the guest VM and, in some cases,
+to rescind those devices. The common facilities include software
+channels for communicating between the device driver in the guest VM
+and the synthetic device implementation that is part of Hyper-V, and
+signaling primitives to allow Hyper-V and the guest to interrupt
+each other.
+
+VMBus is modeled in Linux as a bus, with the expected /sys/bus/vmbus
+entry in a running Linux guest. The VMBus driver (drivers/hv/vmbus_drv.c)
+establishes the VMBus control path with the Hyper-V host, then
+registers itself as a Linux bus driver. It implements the standard
+bus functions for adding and removing devices to/from the bus.
+
+Most synthetic devices offered by Hyper-V have a corresponding Linux
+device driver. These devices include:
+
+* SCSI controller
+* NIC
+* Graphics frame buffer
+* Keyboard
+* Mouse
+* PCI device pass-thru
+* Heartbeat
+* Time Sync
+* Shutdown
+* Memory balloon
+* Key/Value Pair (KVP) exchange with Hyper-V
+* Hyper-V online backup (a.k.a. VSS)
+
+Guest VMs may have multiple instances of the synthetic SCSI
+controller, synthetic NIC, and PCI pass-thru devices. Other
+synthetic devices are limited to a single instance per VM. Not
+listed above are a small number of synthetic devices offered by
+Hyper-V that are used only by Windows guests and for which Linux
+does not have a driver.
+
+Hyper-V uses the terms "VSP" and "VSC" in describing synthetic
+devices. "VSP" refers to the Hyper-V code that implements a
+particular synthetic device, while "VSC" refers to the driver for
+the device in the guest VM. For example, the Linux driver for the
+synthetic NIC is referred to as "netvsc" and the Linux driver for
+the synthetic SCSI controller is "storvsc". These drivers contain
+functions with names like "storvsc_connect_to_vsp".
+
+VMBus channels
+--------------
+An instance of a synthetic device uses VMBus channels to communicate
+between the VSP and the VSC. Channels are bi-directional and used
+for passing messages. Most synthetic devices use a single channel,
+but the synthetic SCSI controller and synthetic NIC may use multiple
+channels to achieve higher performance and greater parallelism.
+
+Each channel consists of two ring buffers. These are classic ring
+buffers from a university data structures textbook. If the read
+and writes pointers are equal, the ring buffer is considered to be
+empty, so a full ring buffer always has at least one byte unused.
+The "in" ring buffer is for messages from the Hyper-V host to the
+guest, and the "out" ring buffer is for messages from the guest to
+the Hyper-V host. In Linux, the "in" and "out" designations are as
+viewed by the guest side. The ring buffers are memory that is
+shared between the guest and the host, and they follow the standard
+paradigm where the memory is allocated by the guest, with the list
+of GPAs that make up the ring buffer communicated to the host. Each
+ring buffer consists of a header page (4 Kbytes) with the read and
+write indices and some control flags, followed by the memory for the
+actual ring. The size of the ring is determined by the VSC in the
+guest and is specific to each synthetic device. The list of GPAs
+making up the ring is communicated to the Hyper-V host over the
+VMBus control path as a GPA Descriptor List (GPADL). See function
+vmbus_establish_gpadl().
+
+Each ring buffer is mapped into contiguous Linux kernel virtual
+space in three parts: 1) the 4 Kbyte header page, 2) the memory
+that makes up the ring itself, and 3) a second mapping of the memory
+that makes up the ring itself. Because (2) and (3) are contiguous
+in kernel virtual space, the code that copies data to and from the
+ring buffer need not be concerned with ring buffer wrap-around.
+Once a copy operation has completed, the read or write index may
+need to be reset to point back into the first mapping, but the
+actual data copy does not need to be broken into two parts. This
+approach also allows complex data structures to be easily accessed
+directly in the ring without handling wrap-around.
+
+On arm64 with page sizes > 4 Kbytes, the header page must still be
+passed to Hyper-V as a 4 Kbyte area. But the memory for the actual
+ring must be aligned to PAGE_SIZE and have a size that is a multiple
+of PAGE_SIZE so that the duplicate mapping trick can be done. Hence
+a portion of the header page is unused and not communicated to
+Hyper-V. This case is handled by vmbus_establish_gpadl().
+
+Hyper-V enforces a limit on the aggregate amount of guest memory
+that can be shared with the host via GPADLs. This limit ensures
+that a rogue guest can't force the consumption of excessive host
+resources. For Windows Server 2019 and later, this limit is
+approximately 1280 Mbytes. For versions prior to Windows Server
+2019, the limit is approximately 384 Mbytes.
+
+VMBus channel messages
+----------------------
+All messages sent in a VMBus channel have a standard header that includes
+the message length, the offset of the message payload, some flags, and a
+transactionID. The portion of the message after the header is
+unique to each VSP/VSC pair.
+
+Messages follow one of two patterns:
+
+* Unidirectional: Either side sends a message and does not
+ expect a response message
+* Request/response: One side (usually the guest) sends a message
+ and expects a response
+
+The transactionID (a.k.a. "requestID") is for matching requests &
+responses. Some synthetic devices allow multiple requests to be in-
+flight simultaneously, so the guest specifies a transactionID when
+sending a request. Hyper-V sends back the same transactionID in the
+matching response.
+
+Messages passed between the VSP and VSC are control messages. For
+example, a message sent from the storvsc driver might be "execute
+this SCSI command". If a message also implies some data transfer
+between the guest and the Hyper-V host, the actual data to be
+transferred may be embedded with the control message, or it may be
+specified as a separate data buffer that the Hyper-V host will
+access as a DMA operation. The former case is used when the size of
+the data is small and the cost of copying the data to and from the
+ring buffer is minimal. For example, time sync messages from the
+Hyper-V host to the guest contain the actual time value. When the
+data is larger, a separate data buffer is used. In this case, the
+control message contains a list of GPAs that describe the data
+buffer. For example, the storvsc driver uses this approach to
+specify the data buffers to/from which disk I/O is done.
+
+Three functions exist to send VMBus channel messages:
+
+1. vmbus_sendpacket(): Control-only messages and messages with
+ embedded data -- no GPAs
+2. vmbus_sendpacket_pagebuffer(): Message with list of GPAs
+ identifying data to transfer. An offset and length is
+ associated with each GPA so that multiple discontinuous areas
+ of guest memory can be targeted.
+3. vmbus_sendpacket_mpb_desc(): Message with list of GPAs
+ identifying data to transfer. A single offset and length is
+ associated with a list of GPAs. The GPAs must describe a
+ single logical area of guest memory to be targeted.
+
+Historically, Linux guests have trusted Hyper-V to send well-formed
+and valid messages, and Linux drivers for synthetic devices did not
+fully validate messages. With the introduction of processor
+technologies that fully encrypt guest memory and that allow the
+guest to not trust the hypervisor (AMD SEV-SNP, Intel TDX), trusting
+the Hyper-V host is no longer a valid assumption. The drivers for
+VMBus synthetic devices are being updated to fully validate any
+values read from memory that is shared with Hyper-V, which includes
+messages from VMBus devices. To facilitate such validation,
+messages read by the guest from the "in" ring buffer are copied to a
+temporary buffer that is not shared with Hyper-V. Validation is
+performed in this temporary buffer without the risk of Hyper-V
+maliciously modifying the message after it is validated but before
+it is used.
+
+Synthetic Interrupt Controller (synic)
+--------------------------------------
+Hyper-V provides each guest CPU with a synthetic interrupt controller
+that is used by VMBus for host-guest communication. While each synic
+defines 16 synthetic interrupts (SINT), Linux uses only one of the 16
+(VMBUS_MESSAGE_SINT). All interrupts related to communication between
+the Hyper-V host and a guest CPU use that SINT.
+
+The SINT is mapped to a single per-CPU architectural interrupt (i.e,
+an 8-bit x86/x64 interrupt vector, or an arm64 PPI INTID). Because
+each CPU in the guest has a synic and may receive VMBus interrupts,
+they are best modeled in Linux as per-CPU interrupts. This model works
+well on arm64 where a single per-CPU Linux IRQ is allocated for
+VMBUS_MESSAGE_SINT. This IRQ appears in /proc/interrupts as an IRQ labelled
+"Hyper-V VMbus". Since x86/x64 lacks support for per-CPU IRQs, an x86
+interrupt vector is statically allocated (HYPERVISOR_CALLBACK_VECTOR)
+across all CPUs and explicitly coded to call vmbus_isr(). In this case,
+there's no Linux IRQ, and the interrupts are visible in aggregate in
+/proc/interrupts on the "HYP" line.
+
+The synic provides the means to demultiplex the architectural interrupt into
+one or more logical interrupts and route the logical interrupt to the proper
+VMBus handler in Linux. This demultiplexing is done by vmbus_isr() and
+related functions that access synic data structures.
+
+The synic is not modeled in Linux as an irq chip or irq domain,
+and the demultiplexed logical interrupts are not Linux IRQs. As such,
+they don't appear in /proc/interrupts or /proc/irq. The CPU
+affinity for one of these logical interrupts is controlled via an
+entry under /sys/bus/vmbus as described below.
+
+VMBus interrupts
+----------------
+VMBus provides a mechanism for the guest to interrupt the host when
+the guest has queued new messages in a ring buffer. The host
+expects that the guest will send an interrupt only when an "out"
+ring buffer transitions from empty to non-empty. If the guest sends
+interrupts at other times, the host deems such interrupts to be
+unnecessary. If a guest sends an excessive number of unnecessary
+interrupts, the host may throttle that guest by suspending its
+execution for a few seconds to prevent a denial-of-service attack.
+
+Similarly, the host will interrupt the guest via the synic when
+it sends a new message on the VMBus control path, or when a VMBus
+channel "in" ring buffer transitions from empty to non-empty due to
+the host inserting a new VMBus channel message. The control message stream
+and each VMBus channel "in" ring buffer are separate logical interrupts
+that are demultiplexed by vmbus_isr(). It demultiplexes by first checking
+for channel interrupts by calling vmbus_chan_sched(), which looks at a synic
+bitmap to determine which channels have pending interrupts on this CPU.
+If multiple channels have pending interrupts for this CPU, they are
+processed sequentially. When all channel interrupts have been processed,
+vmbus_isr() checks for and processes any messages received on the VMBus
+control path.
+
+The guest CPU that a VMBus channel will interrupt is selected by the
+guest when the channel is created, and the host is informed of that
+selection. VMBus devices are broadly grouped into two categories:
+
+1. "Slow" devices that need only one VMBus channel. The devices
+ (such as keyboard, mouse, heartbeat, and timesync) generate
+ relatively few interrupts. Their VMBus channels are all
+ assigned to interrupt the VMBUS_CONNECT_CPU, which is always
+ CPU 0.
+
+2. "High speed" devices that may use multiple VMBus channels for
+ higher parallelism and performance. These devices include the
+ synthetic SCSI controller and synthetic NIC. Their VMBus
+ channels interrupts are assigned to CPUs that are spread out
+ among the available CPUs in the VM so that interrupts on
+ multiple channels can be processed in parallel.
+
+The assignment of VMBus channel interrupts to CPUs is done in the
+function init_vp_index(). This assignment is done outside of the
+normal Linux interrupt affinity mechanism, so the interrupts are
+neither "unmanaged" nor "managed" interrupts.
+
+The CPU that a VMBus channel will interrupt can be seen in
+/sys/bus/vmbus/devices/<deviceGUID>/ channels/<channelRelID>/cpu.
+When running on later versions of Hyper-V, the CPU can be changed
+by writing a new value to this sysfs entry. Because VMBus channel
+interrupts are not Linux IRQs, there are no entries in /proc/interrupts
+or /proc/irq corresponding to individual VMBus channel interrupts.
+
+An online CPU in a Linux guest may not be taken offline if it has
+VMBus channel interrupts assigned to it. Starting in kernel v6.15,
+any such interrupts are automatically reassigned to some other CPU
+at the time of offlining. The "other" CPU is chosen by the
+implementation and is not load balanced or otherwise intelligently
+determined. If the CPU is onlined again, channel interrupts previously
+assigned to it are not moved back. As a result, after multiple CPUs
+have been offlined, and perhaps onlined again, the interrupt-to-CPU
+mapping may be scrambled and non-optimal. In such a case, optimal
+assignments must be re-established manually. For kernels v6.14 and
+earlier, any conflicting channel interrupts must first be manually
+reassigned to another CPU as described above. Then when no channel
+interrupts are assigned to the CPU, it can be taken offline.
+
+The VMBus channel interrupt handling code is designed to work
+correctly even if an interrupt is received on a CPU other than the
+CPU assigned to the channel. Specifically, the code does not use
+CPU-based exclusion for correctness. In normal operation, Hyper-V
+will interrupt the assigned CPU. But when the CPU assigned to a
+channel is being changed via sysfs, the guest doesn't know exactly
+when Hyper-V will make the transition. The code must work correctly
+even if there is a time lag before Hyper-V starts interrupting the
+new CPU. See comments in target_cpu_store().
+
+VMBus device creation/deletion
+------------------------------
+Hyper-V and the Linux guest have a separate message-passing path
+that is used for synthetic device creation and deletion. This
+path does not use a VMBus channel. See vmbus_post_msg() and
+vmbus_on_msg_dpc().
+
+The first step is for the guest to connect to the generic
+Hyper-V VMBus mechanism. As part of establishing this connection,
+the guest and Hyper-V agree on a VMBus protocol version they will
+use. This negotiation allows newer Linux kernels to run on older
+Hyper-V versions, and vice versa.
+
+The guest then tells Hyper-V to "send offers". Hyper-V sends an
+offer message to the guest for each synthetic device that the VM
+is configured to have. Each VMBus device type has a fixed GUID
+known as the "class ID", and each VMBus device instance is also
+identified by a GUID. The offer message from Hyper-V contains
+both GUIDs to uniquely (within the VM) identify the device.
+There is one offer message for each device instance, so a VM with
+two synthetic NICs will get two offers messages with the NIC
+class ID. The ordering of offer messages can vary from boot-to-boot
+and must not be assumed to be consistent in Linux code. Offer
+messages may also arrive long after Linux has initially booted
+because Hyper-V supports adding devices, such as synthetic NICs,
+to running VMs. A new offer message is processed by
+vmbus_process_offer(), which indirectly invokes vmbus_add_channel_work().
+
+Upon receipt of an offer message, the guest identifies the device
+type based on the class ID, and invokes the correct driver to set up
+the device. Driver/device matching is performed using the standard
+Linux mechanism.
+
+The device driver probe function opens the primary VMBus channel to
+the corresponding VSP. It allocates guest memory for the channel
+ring buffers and shares the ring buffer with the Hyper-V host by
+giving the host a list of GPAs for the ring buffer memory. See
+vmbus_establish_gpadl().
+
+Once the ring buffer is set up, the device driver and VSP exchange
+setup messages via the primary channel. These messages may include
+negotiating the device protocol version to be used between the Linux
+VSC and the VSP on the Hyper-V host. The setup messages may also
+include creating additional VMBus channels, which are somewhat
+mis-named as "sub-channels" since they are functionally
+equivalent to the primary channel once they are created.
+
+Finally, the device driver may create entries in /dev as with
+any device driver.
+
+The Hyper-V host can send a "rescind" message to the guest to
+remove a device that was previously offered. Linux drivers must
+handle such a rescind message at any time. Rescinding a device
+invokes the device driver "remove" function to cleanly shut
+down the device and remove it. Once a synthetic device is
+rescinded, neither Hyper-V nor Linux retains any state about
+its previous existence. Such a device might be re-added later,
+in which case it is treated as an entirely new device. See
+vmbus_onoffer_rescind().
+
+For some devices, such as the KVP device, Hyper-V automatically
+sends a rescind message when the primary channel is closed,
+likely as a result of unbinding the device from its driver.
+The rescind causes Linux to remove the device. But then Hyper-V
+immediately reoffers the device to the guest, causing a new
+instance of the device to be created in Linux. For other
+devices, such as the synthetic SCSI and NIC devices, closing the
+primary channel does *not* result in Hyper-V sending a rescind
+message. The device continues to exist in Linux on the VMBus,
+but with no driver bound to it. The same driver or a new driver
+can subsequently be bound to the existing instance of the device.