diff options
Diffstat (limited to 'Documentation/virtual/kvm/api.txt')
| -rw-r--r-- | Documentation/virtual/kvm/api.txt | 2802 |
1 files changed, 0 insertions, 2802 deletions
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt deleted file mode 100644 index ef925eaa1460..000000000000 --- a/Documentation/virtual/kvm/api.txt +++ /dev/null @@ -1,2802 +0,0 @@ -The Definitive KVM (Kernel-based Virtual Machine) API Documentation -=================================================================== - -1. General description ----------------------- - -The kvm API is a set of ioctls that are issued to control various aspects -of a virtual machine. The ioctls belong to three classes - - - System ioctls: These query and set global attributes which affect the - whole kvm subsystem. In addition a system ioctl is used to create - virtual machines - - - VM ioctls: These query and set attributes that affect an entire virtual - machine, for example memory layout. In addition a VM ioctl is used to - create virtual cpus (vcpus). - - Only run VM ioctls from the same process (address space) that was used - to create the VM. - - - vcpu ioctls: These query and set attributes that control the operation - of a single virtual cpu. - - Only run vcpu ioctls from the same thread that was used to create the - vcpu. - - -2. File descriptors -------------------- - -The kvm API is centered around file descriptors. An initial -open("/dev/kvm") obtains a handle to the kvm subsystem; this handle -can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this -handle will create a VM file descriptor which can be used to issue VM -ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu -and return a file descriptor pointing to it. Finally, ioctls on a vcpu -fd can be used to control the vcpu, including the important task of -actually running guest code. - -In general file descriptors can be migrated among processes by means -of fork() and the SCM_RIGHTS facility of unix domain socket. These -kinds of tricks are explicitly not supported by kvm. While they will -not cause harm to the host, their actual behavior is not guaranteed by -the API. The only supported use is one virtual machine per process, -and one vcpu per thread. - - -3. Extensions -------------- - -As of Linux 2.6.22, the KVM ABI has been stabilized: no backward -incompatible change are allowed. However, there is an extension -facility that allows backward-compatible extensions to the API to be -queried and used. - -The extension mechanism is not based on on the Linux version number. -Instead, kvm defines extension identifiers and a facility to query -whether a particular extension identifier is available. If it is, a -set of ioctls is available for application use. - - -4. API description ------------------- - -This section describes ioctls that can be used to control kvm guests. -For each ioctl, the following information is provided along with a -description: - - Capability: which KVM extension provides this ioctl. Can be 'basic', - which means that is will be provided by any kernel that supports - API version 12 (see section 4.1), or a KVM_CAP_xyz constant, which - means availability needs to be checked with KVM_CHECK_EXTENSION - (see section 4.4). - - Architectures: which instruction set architectures provide this ioctl. - x86 includes both i386 and x86_64. - - Type: system, vm, or vcpu. - - Parameters: what parameters are accepted by the ioctl. - - Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL) - are not detailed, but errors with specific meanings are. - - -4.1 KVM_GET_API_VERSION - -Capability: basic -Architectures: all -Type: system ioctl -Parameters: none -Returns: the constant KVM_API_VERSION (=12) - -This identifies the API version as the stable kvm API. It is not -expected that this number will change. However, Linux 2.6.20 and -2.6.21 report earlier versions; these are not documented and not -supported. Applications should refuse to run if KVM_GET_API_VERSION -returns a value other than 12. If this check passes, all ioctls -described as 'basic' will be available. - - -4.2 KVM_CREATE_VM - -Capability: basic -Architectures: all -Type: system ioctl -Parameters: machine type identifier (KVM_VM_*) -Returns: a VM fd that can be used to control the new virtual machine. - -The new VM has no virtual cpus and no memory. An mmap() of a VM fd -will access the virtual machine's physical address space; offset zero -corresponds to guest physical address zero. Use of mmap() on a VM fd -is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is -available. -You most certainly want to use 0 as machine type. - -In order to create user controlled virtual machines on S390, check -KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as -privileged user (CAP_SYS_ADMIN). - - -4.3 KVM_GET_MSR_INDEX_LIST - -Capability: basic -Architectures: x86 -Type: system -Parameters: struct kvm_msr_list (in/out) -Returns: 0 on success; -1 on error -Errors: - E2BIG: the msr index list is to be to fit in the array specified by - the user. - -struct kvm_msr_list { - __u32 nmsrs; /* number of msrs in entries */ - __u32 indices[0]; -}; - -This ioctl returns the guest msrs that are supported. The list varies -by kvm version and host processor, but does not change otherwise. The -user fills in the size of the indices array in nmsrs, and in return -kvm adjusts nmsrs to reflect the actual number of msrs and fills in -the indices array with their numbers. - -Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are -not returned in the MSR list, as different vcpus can have a different number -of banks, as set via the KVM_X86_SETUP_MCE ioctl. - - -4.4 KVM_CHECK_EXTENSION - -Capability: basic -Architectures: all -Type: system ioctl -Parameters: extension identifier (KVM_CAP_*) -Returns: 0 if unsupported; 1 (or some other positive integer) if supported - -The API allows the application to query about extensions to the core -kvm API. Userspace passes an extension identifier (an integer) and -receives an integer that describes the extension availability. -Generally 0 means no and 1 means yes, but some extensions may report -additional information in the integer return value. - - -4.5 KVM_GET_VCPU_MMAP_SIZE - -Capability: basic -Architectures: all -Type: system ioctl -Parameters: none -Returns: size of vcpu mmap area, in bytes - -The KVM_RUN ioctl (cf.) communicates with userspace via a shared -memory region. This ioctl returns the size of that region. See the -KVM_RUN documentation for details. - - -4.6 KVM_SET_MEMORY_REGION - -Capability: basic -Architectures: all -Type: vm ioctl -Parameters: struct kvm_memory_region (in) -Returns: 0 on success, -1 on error - -This ioctl is obsolete and has been removed. - - -4.7 KVM_CREATE_VCPU - -Capability: basic -Architectures: all -Type: vm ioctl -Parameters: vcpu id (apic id on x86) -Returns: vcpu fd on success, -1 on error - -This API adds a vcpu to a virtual machine. The vcpu id is a small integer -in the range [0, max_vcpus). - -The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of -the KVM_CHECK_EXTENSION ioctl() at run-time. -The maximum possible value for max_vcpus can be retrieved using the -KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time. - -If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4 -cpus max. -If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is -same as the value returned from KVM_CAP_NR_VCPUS. - -On powerpc using book3s_hv mode, the vcpus are mapped onto virtual -threads in one or more virtual CPU cores. (This is because the -hardware requires all the hardware threads in a CPU core to be in the -same partition.) The KVM_CAP_PPC_SMT capability indicates the number -of vcpus per virtual core (vcore). The vcore id is obtained by -dividing the vcpu id by the number of vcpus per vcore. The vcpus in a -given vcore will always be in the same physical core as each other -(though that might be a different physical core from time to time). -Userspace can control the threading (SMT) mode of the guest by its -allocation of vcpu ids. For example, if userspace wants -single-threaded guest vcpus, it should make all vcpu ids be a multiple -of the number of vcpus per vcore. - -For virtual cpus that have been created with S390 user controlled virtual -machines, the resulting vcpu fd can be memory mapped at page offset -KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual -cpu's hardware control block. - - -4.8 KVM_GET_DIRTY_LOG (vm ioctl) - -Capability: basic -Architectures: x86 -Type: vm ioctl -Parameters: struct kvm_dirty_log (in/out) -Returns: 0 on success, -1 on error - -/* for KVM_GET_DIRTY_LOG */ -struct kvm_dirty_log { - __u32 slot; - __u32 padding; - union { - void __user *dirty_bitmap; /* one bit per page */ - __u64 padding; - }; -}; - -Given a memory slot, return a bitmap containing any pages dirtied -since the last call to this ioctl. Bit 0 is the first page in the -memory slot. Ensure the entire structure is cleared to avoid padding -issues. - - -4.9 KVM_SET_MEMORY_ALIAS - -Capability: basic -Architectures: x86 -Type: vm ioctl -Parameters: struct kvm_memory_alias (in) -Returns: 0 (success), -1 (error) - -This ioctl is obsolete and has been removed. - - -4.10 KVM_RUN - -Capability: basic -Architectures: all -Type: vcpu ioctl -Parameters: none -Returns: 0 on success, -1 on error -Errors: - EINTR: an unmasked signal is pending - -This ioctl is used to run a guest virtual cpu. While there are no -explicit parameters, there is an implicit parameter block that can be -obtained by mmap()ing the vcpu fd at offset 0, with the size given by -KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct -kvm_run' (see below). - - -4.11 KVM_GET_REGS - -Capability: basic -Architectures: all except ARM, arm64 -Type: vcpu ioctl -Parameters: struct kvm_regs (out) -Returns: 0 on success, -1 on error - -Reads the general purpose registers from the vcpu. - -/* x86 */ -struct kvm_regs { - /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */ - __u64 rax, rbx, rcx, rdx; - __u64 rsi, rdi, rsp, rbp; - __u64 r8, r9, r10, r11; - __u64 r12, r13, r14, r15; - __u64 rip, rflags; -}; - - -4.12 KVM_SET_REGS - -Capability: basic -Architectures: all except ARM, arm64 -Type: vcpu ioctl -Parameters: struct kvm_regs (in) -Returns: 0 on success, -1 on error - -Writes the general purpose registers into the vcpu. - -See KVM_GET_REGS for the data structure. - - -4.13 KVM_GET_SREGS - -Capability: basic -Architectures: x86, ppc -Type: vcpu ioctl -Parameters: struct kvm_sregs (out) -Returns: 0 on success, -1 on error - -Reads special registers from the vcpu. - -/* x86 */ -struct kvm_sregs { - struct kvm_segment cs, ds, es, fs, gs, ss; - struct kvm_segment tr, ldt; - struct kvm_dtable gdt, idt; - __u64 cr0, cr2, cr3, cr4, cr8; - __u64 efer; - __u64 apic_base; - __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64]; -}; - -/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */ - -interrupt_bitmap is a bitmap of pending external interrupts. At most -one bit may be set. This interrupt has been acknowledged by the APIC -but not yet injected into the cpu core. - - -4.14 KVM_SET_SREGS - -Capability: basic -Architectures: x86, ppc -Type: vcpu ioctl -Parameters: struct kvm_sregs (in) -Returns: 0 on success, -1 on error - -Writes special registers into the vcpu. See KVM_GET_SREGS for the -data structures. - - -4.15 KVM_TRANSLATE - -Capability: basic -Architectures: x86 -Type: vcpu ioctl -Parameters: struct kvm_translation (in/out) -Returns: 0 on success, -1 on error - -Translates a virtual address according to the vcpu's current address -translation mode. - -struct kvm_translation { - /* in */ - __u64 linear_address; - - /* out */ - __u64 physical_address; - __u8 valid; - __u8 writeable; - __u8 usermode; - __u8 pad[5]; -}; - - -4.16 KVM_INTERRUPT - -Capability: basic -Architectures: x86, ppc -Type: vcpu ioctl -Parameters: struct kvm_interrupt (in) -Returns: 0 on success, -1 on error - -Queues a hardware interrupt vector to be injected. This is only -useful if in-kernel local APIC or equivalent is not used. - -/* for KVM_INTERRUPT */ -struct kvm_interrupt { - /* in */ - __u32 irq; -}; - -X86: - -Note 'irq' is an interrupt vector, not an interrupt pin or line. - -PPC: - -Queues an external interrupt to be injected. This ioctl is overleaded -with 3 different irq values: - -a) KVM_INTERRUPT_SET - - This injects an edge type external interrupt into the guest once it's ready - to receive interrupts. When injected, the interrupt is done. - -b) KVM_INTERRUPT_UNSET - - This unsets any pending interrupt. - - Only available with KVM_CAP_PPC_UNSET_IRQ. - -c) KVM_INTERRUPT_SET_LEVEL - - This injects a level type external interrupt into the guest context. The - interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET - is triggered. - - Only available with KVM_CAP_PPC_IRQ_LEVEL. - -Note that any value for 'irq' other than the ones stated above is invalid -and incurs unexpected behavior. - - -4.17 KVM_DEBUG_GUEST - -Capability: basic -Architectures: none -Type: vcpu ioctl -Parameters: none) -Returns: -1 on error - -Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead. - - -4.18 KVM_GET_MSRS - -Capability: basic -Architectures: x86 -Type: vcpu ioctl -Parameters: struct kvm_msrs (in/out) -Returns: 0 on success, -1 on error - -Reads model-specific registers from the vcpu. Supported msr indices can -be obtained using KVM_GET_MSR_INDEX_LIST. - -struct kvm_msrs { - __u32 nmsrs; /* number of msrs in entries */ - __u32 pad; - - struct kvm_msr_entry entries[0]; -}; - -struct kvm_msr_entry { - __u32 index; - __u32 reserved; - __u64 data; -}; - -Application code should set the 'nmsrs' member (which indicates the -size of the entries array) and the 'index' member of each array entry. -kvm will fill in the 'data' member. - - -4.19 KVM_SET_MSRS - -Capability: basic -Architectures: x86 -Type: vcpu ioctl -Parameters: struct kvm_msrs (in) -Returns: 0 on success, -1 on error - -Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the -data structures. - -Application code should set the 'nmsrs' member (which indicates the -size of the entries array), and the 'index' and 'data' members of each -array entry. - - -4.20 KVM_SET_CPUID - -Capability: basic -Architectures: x86 -Type: vcpu ioctl -Parameters: struct kvm_cpuid (in) -Returns: 0 on success, -1 on error - -Defines the vcpu responses to the cpuid instruction. Applications -should use the KVM_SET_CPUID2 ioctl if available. - - -struct kvm_cpuid_entry { - __u32 function; - __u32 eax; - __u32 ebx; - __u32 ecx; - __u32 edx; - __u32 padding; -}; - -/* for KVM_SET_CPUID */ -struct kvm_cpuid { - __u32 nent; - __u32 padding; - struct kvm_cpuid_entry entries[0]; -}; - - -4.21 KVM_SET_SIGNAL_MASK - -Capability: basic -Architectures: x86 -Type: vcpu ioctl -Parameters: struct kvm_signal_mask (in) -Returns: 0 on success, -1 on error - -Defines which signals are blocked during execution of KVM_RUN. This -signal mask temporarily overrides the threads signal mask. Any -unblocked signal received (except SIGKILL and SIGSTOP, which retain -their traditional behaviour) will cause KVM_RUN to return with -EINTR. - -Note the signal will only be delivered if not blocked by the original -signal mask. - -/* for KVM_SET_SIGNAL_MASK */ -struct kvm_signal_mask { - __u32 len; - __u8 sigset[0]; -}; - - -4.22 KVM_GET_FPU - -Capability: basic -Architectures: x86 -Type: vcpu ioctl -Parameters: struct kvm_fpu (out) -Returns: 0 on success, -1 on error - -Reads the floating point state from the vcpu. - -/* for KVM_GET_FPU and KVM_SET_FPU */ -struct kvm_fpu { - __u8 fpr[8][16]; - __u16 fcw; - __u16 fsw; - __u8 ftwx; /* in fxsave format */ - __u8 pad1; - __u16 last_opcode; - __u64 last_ip; - __u64 last_dp; - __u8 xmm[16][16]; - __u32 mxcsr; - __u32 pad2; -}; - - -4.23 KVM_SET_FPU - -Capability: basic -Architectures: x86 -Type: vcpu ioctl -Parameters: struct kvm_fpu (in) -Returns: 0 on success, -1 on error - -Writes the floating point state to the vcpu. - -/* for KVM_GET_FPU and KVM_SET_FPU */ -struct kvm_fpu { - __u8 fpr[8][16]; - __u16 fcw; - __u16 fsw; - __u8 ftwx; /* in fxsave format */ - __u8 pad1; - __u16 last_opcode; - __u64 last_ip; - __u64 last_dp; - __u8 xmm[16][16]; - __u32 mxcsr; - __u32 pad2; -}; - - -4.24 KVM_CREATE_IRQCHIP - -Capability: KVM_CAP_IRQCHIP -Architectures: x86, ia64, ARM, arm64 -Type: vm ioctl -Parameters: none -Returns: 0 on success, -1 on error - -Creates an interrupt controller model in the kernel. On x86, creates a virtual -ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a -local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23 -only go to the IOAPIC. On ia64, a IOSAPIC is created. On ARM/arm64, a GIC is -created. - - -4.25 KVM_IRQ_LINE - -Capability: KVM_CAP_IRQCHIP -Architectures: x86, ia64, arm, arm64 -Type: vm ioctl -Parameters: struct kvm_irq_level -Returns: 0 on success, -1 on error - -Sets the level of a GSI input to the interrupt controller model in the kernel. -On some architectures it is required that an interrupt controller model has -been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered -interrupts require the level to be set to 1 and then back to 0. - -ARM/arm64 can signal an interrupt either at the CPU level, or at the -in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to -use PPIs designated for specific cpus. The irq field is interpreted -like this: - - bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 | - field: | irq_type | vcpu_index | irq_id | - -The irq_type field has the following values: -- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ -- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.) - (the vcpu_index field is ignored) -- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.) - -(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs) - -In both cases, level is used to raise/lower the line. - -struct kvm_irq_level { - union { - __u32 irq; /* GSI */ - __s32 status; /* not used for KVM_IRQ_LEVEL */ - }; - __u32 level; /* 0 or 1 */ -}; - - -4.26 KVM_GET_IRQCHIP - -Capability: KVM_CAP_IRQCHIP -Architectures: x86, ia64 -Type: vm ioctl -Parameters: struct kvm_irqchip (in/out) -Returns: 0 on success, -1 on error - -Reads the state of a kernel interrupt controller created with -KVM_CREATE_IRQCHIP into a buffer provided by the caller. - -struct kvm_irqchip { - __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ - __u32 pad; - union { - char dummy[512]; /* reserving space */ - struct kvm_pic_state pic; - struct kvm_ioapic_state ioapic; - } chip; -}; - - -4.27 KVM_SET_IRQCHIP - -Capability: KVM_CAP_IRQCHIP -Architectures: x86, ia64 -Type: vm ioctl -Parameters: struct kvm_irqchip (in) -Returns: 0 on success, -1 on error - -Sets the state of a kernel interrupt controller created with -KVM_CREATE_IRQCHIP from a buffer provided by the caller. - -struct kvm_irqchip { - __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ - __u32 pad; - union { - char dummy[512]; /* reserving space */ - struct kvm_pic_state pic; - struct kvm_ioapic_state ioapic; - } chip; -}; - - -4.28 KVM_XEN_HVM_CONFIG - -Capability: KVM_CAP_XEN_HVM -Architectures: x86 -Type: vm ioctl -Parameters: struct kvm_xen_hvm_config (in) -Returns: 0 on success, -1 on error - -Sets the MSR that the Xen HVM guest uses to initialize its hypercall -page, and provides the starting address and size of the hypercall -blobs in userspace. When the guest writes the MSR, kvm copies one -page of a blob (32- or 64-bit, depending on the vcpu mode) to guest -memory. - -struct kvm_xen_hvm_config { - __u32 flags; - __u32 msr; - __u64 blob_addr_32; - __u64 blob_addr_64; - __u8 blob_size_32; - __u8 blob_size_64; - __u8 pad2[30]; -}; - - -4.29 KVM_GET_CLOCK - -Capability: KVM_CAP_ADJUST_CLOCK -Architectures: x86 -Type: vm ioctl -Parameters: struct kvm_clock_data (out) -Returns: 0 on success, -1 on error - -Gets the current timestamp of kvmclock as seen by the current guest. In -conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios -such as migration. - -struct kvm_clock_data { - __u64 clock; /* kvmclock current value */ - __u32 flags; - __u32 pad[9]; -}; - - -4.30 KVM_SET_CLOCK - -Capability: KVM_CAP_ADJUST_CLOCK -Architectures: x86 -Type: vm ioctl -Parameters: struct kvm_clock_data (in) -Returns: 0 on success, -1 on error - -Sets the current timestamp of kvmclock to the value specified in its parameter. -In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios -such as migration. - -struct kvm_clock_data { - __u64 clock; /* kvmclock current value */ - __u32 flags; - __u32 pad[9]; -}; - - -4.31 KVM_GET_VCPU_EVENTS - -Capability: KVM_CAP_VCPU_EVENTS -Extended by: KVM_CAP_INTR_SHADOW -Architectures: x86 -Type: vm ioctl -Parameters: struct kvm_vcpu_event (out) -Returns: 0 on success, -1 on error - -Gets currently pending exceptions, interrupts, and NMIs as well as related -states of the vcpu. - -struct kvm_vcpu_events { - struct { - __u8 injected; - __u8 nr; - __u8 has_error_code; - __u8 pad; - __u32 error_code; - } exception; - struct { - __u8 injected; - __u8 nr; - __u8 soft; - __u8 shadow; - } interrupt; - struct { - __u8 injected; - __u8 pending; - __u8 masked; - __u8 pad; - } nmi; - __u32 sipi_vector; - __u32 flags; -}; - -KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that -interrupt.shadow contains a valid state. Otherwise, this field is undefined. - - -4.32 KVM_SET_VCPU_EVENTS - -Capability: KVM_CAP_VCPU_EVENTS -Extended by: KVM_CAP_INTR_SHADOW -Architectures: x86 -Type: vm ioctl -Parameters: struct kvm_vcpu_event (in) -Returns: 0 on success, -1 on error - -Set pending exceptions, interrupts, and NMIs as well as related states of the -vcpu. - -See KVM_GET_VCPU_EVENTS for the data structure. - -Fields that may be modified asynchronously by running VCPUs can be excluded -from the update. These fields are nmi.pending and sipi_vector. Keep the -corresponding bits in the flags field cleared to suppress overwriting the -current in-kernel state. The bits are: - -KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel -KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector - -If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in -the flags field to signal that interrupt.shadow contains a valid state and -shall be written into the VCPU. - - -4.33 KVM_GET_DEBUGREGS - -Capability: KVM_CAP_DEBUGREGS -Architectures: x86 -Type: vm ioctl -Parameters: struct kvm_debugregs (out) -Returns: 0 on success, -1 on error - -Reads debug registers from the vcpu. - -struct kvm_debugregs { - __u64 db[4]; - __u64 dr6; - __u64 dr7; - __u64 flags; - __u64 reserved[9]; -}; - - -4.34 KVM_SET_DEBUGREGS - -Capability: KVM_CAP_DEBUGREGS -Architectures: x86 -Type: vm ioctl -Parameters: struct kvm_debugregs (in) -Returns: 0 on success, -1 on error - -Writes debug registers into the vcpu. - -See KVM_GET_DEBUGREGS for the data structure. The flags field is unused -yet and must be cleared on entry. - - -4.35 KVM_SET_USER_MEMORY_REGION - -Capability: KVM_CAP_USER_MEM -Architectures: all -Type: vm ioctl -Parameters: struct kvm_userspace_memory_region (in) -Returns: 0 on success, -1 on error - -struct kvm_userspace_memory_region { - __u32 slot; - __u32 flags; - __u64 guest_phys_addr; - __u64 memory_size; /* bytes */ - __u64 userspace_addr; /* start of the userspace allocated memory */ -}; - -/* for kvm_memory_region::flags */ -#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0) -#define KVM_MEM_READONLY (1UL << 1) - -This ioctl allows the user to create or modify a guest physical memory -slot. When changing an existing slot, it may be moved in the guest -physical memory space, or its flags may be modified. It may not be -resized. Slots may not overlap in guest physical address space. - -Memory for the region is taken starting at the address denoted by the -field userspace_addr, which must point at user addressable memory for -the entire memory slot size. Any object may back this memory, including -anonymous memory, ordinary files, and hugetlbfs. - -It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr -be identical. This allows large pages in the guest to be backed by large -pages in the host. - -The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and -KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of -writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to -use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it, -to make a new slot read-only. In this case, writes to this memory will be -posted to userspace as KVM_EXIT_MMIO exits. - -When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of -the memory region are automatically reflected into the guest. For example, an -mmap() that affects the region will be made visible immediately. Another -example is madvise(MADV_DROP). - -It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl. -The KVM_SET_MEMORY_REGION does not allow fine grained control over memory -allocation and is deprecated. - - -4.36 KVM_SET_TSS_ADDR - -Capability: KVM_CAP_SET_TSS_ADDR -Architectures: x86 -Type: vm ioctl -Parameters: unsigned long tss_address (in) -Returns: 0 on success, -1 on error - -This ioctl defines the physical address of a three-page region in the guest -physical address space. The region must be within the first 4GB of the -guest physical address space and must not conflict with any memory slot -or any mmio address. The guest may malfunction if it accesses this memory -region. - -This ioctl is required on Intel-based hosts. This is needed on Intel hardware -because of a quirk in the virtualization implementation (see the internals -documentation when it pops into existence). - - -4.37 KVM_ENABLE_CAP - -Capability: KVM_CAP_ENABLE_CAP -Architectures: ppc, s390 -Type: vcpu ioctl -Parameters: struct kvm_enable_cap (in) -Returns: 0 on success; -1 on error - -+Not all extensions are enabled by default. Using this ioctl the application -can enable an extension, making it available to the guest. - -On systems that do not support this ioctl, it always fails. On systems that -do support it, it only works for extensions that are supported for enablement. - -To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should -be used. - -struct kvm_enable_cap { - /* in */ - __u32 cap; - -The capability that is supposed to get enabled. - - __u32 flags; - -A bitfield indicating future enhancements. Has to be 0 for now. - - __u64 args[4]; - -Arguments for enabling a feature. If a feature needs initial values to -function properly, this is the place to put them. - - __u8 pad[64]; -}; - - -4.38 KVM_GET_MP_STATE - -Capability: KVM_CAP_MP_STATE -Architectures: x86, ia64 -Type: vcpu ioctl -Parameters: struct kvm_mp_state (out) -Returns: 0 on success; -1 on error - -struct kvm_mp_state { - __u32 mp_state; -}; - -Returns the vcpu's current "multiprocessing state" (though also valid on -uniprocessor guests). - -Possible values are: - - - KVM_MP_STATE_RUNNABLE: the vcpu is currently running - - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP) - which has not yet received an INIT signal - - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is - now ready for a SIPI - - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and - is waiting for an interrupt - - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector - accessible via KVM_GET_VCPU_EVENTS) - -This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel -irqchip, the multiprocessing state must be maintained by userspace. - - -4.39 KVM_SET_MP_STATE - -Capability: KVM_CAP_MP_STATE -Architectures: x86, ia64 -Type: vcpu ioctl -Parameters: struct kvm_mp_state (in) -Returns: 0 on success; -1 on error - -Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for -arguments. - -This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel -irqchip, the multiprocessing state must be maintained by userspace. - - -4.40 KVM_SET_IDENTITY_MAP_ADDR - -Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR -Architectures: x86 -Type: vm ioctl -Parameters: unsigned long identity (in) -Returns: 0 on success, -1 on error - -This ioctl defines the physical address of a one-page region in the guest -physical address space. The region must be within the first 4GB of the -guest physical address space and must not conflict with any memory slot -or any mmio address. The guest may malfunction if it accesses this memory -region. - -This ioctl is required on Intel-based hosts. This is needed on Intel hardware -because of a quirk in the virtualization implementation (see the internals -documentation when it pops into existence). - - -4.41 KVM_SET_BOOT_CPU_ID - -Capability: KVM_CAP_SET_BOOT_CPU_ID -Architectures: x86, ia64 -Type: vm ioctl -Parameters: unsigned long vcpu_id -Returns: 0 on success, -1 on error - -Define which vcpu is the Bootstrap Processor (BSP). Values are the same -as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default -is vcpu 0. - - -4.42 KVM_GET_XSAVE - -Capability: KVM_CAP_XSAVE -Architectures: x86 -Type: vcpu ioctl -Parameters: struct kvm_xsave (out) -Returns: 0 on success, -1 on error - -struct kvm_xsave { - __u32 region[1024]; -}; - -This ioctl would copy current vcpu's xsave struct to the userspace. - - -4.43 KVM_SET_XSAVE - -Capability: KVM_CAP_XSAVE -Architectures: x86 -Type: vcpu ioctl -Parameters: struct kvm_xsave (in) -Returns: 0 on success, -1 on error - -struct kvm_xsave { - __u32 region[1024]; -}; - -This ioctl would copy userspace's xsave struct to the kernel. - - -4.44 KVM_GET_XCRS - -Capability: KVM_CAP_XCRS -Architectures: x86 -Type: vcpu ioctl -Parameters: struct kvm_xcrs (out) -Returns: 0 on success, -1 on error - -struct kvm_xcr { - __u32 xcr; - __u32 reserved; - __u64 value; -}; - -struct kvm_xcrs { - __u32 nr_xcrs; - __u32 flags; - struct kvm_xcr xcrs[KVM_MAX_XCRS]; - __u64 padding[16]; -}; - -This ioctl would copy current vcpu's xcrs to the userspace. - - -4.45 KVM_SET_XCRS - -Capability: KVM_CAP_XCRS -Architectures: x86 -Type: vcpu ioctl -Parameters: struct kvm_xcrs (in) -Returns: 0 on success, -1 on error - -struct kvm_xcr { - __u32 xcr; - __u32 reserved; - __u64 value; -}; - -struct kvm_xcrs { - __u32 nr_xcrs; - __u32 flags; - struct kvm_xcr xcrs[KVM_MAX_XCRS]; - __u64 padding[16]; -}; - -This ioctl would set vcpu's xcr to the value userspace specified. - - -4.46 KVM_GET_SUPPORTED_CPUID - -Capability: KVM_CAP_EXT_CPUID -Architectures: x86 -Type: system ioctl -Parameters: struct kvm_cpuid2 (in/out) -Returns: 0 on success, -1 on error - -struct kvm_cpuid2 { - __u32 nent; - __u32 padding; - struct kvm_cpuid_entry2 entries[0]; -}; - -#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 1 -#define KVM_CPUID_FLAG_STATEFUL_FUNC 2 -#define KVM_CPUID_FLAG_STATE_READ_NEXT 4 - -struct kvm_cpuid_entry2 { - __u32 function; - __u32 index; - __u32 flags; - __u32 eax; - __u32 ebx; - __u32 ecx; - __u32 edx; - __u32 padding[3]; -}; - -This ioctl returns x86 cpuid features which are supported by both the hardware -and kvm. Userspace can use the information returned by this ioctl to -construct cpuid information (for KVM_SET_CPUID2) that is consistent with -hardware, kernel, and userspace capabilities, and with user requirements (for -example, the user may wish to constrain cpuid to emulate older hardware, -or for feature consistency across a cluster). - -Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure -with the 'nent' field indicating the number of entries in the variable-size -array 'entries'. If the number of entries is too low to describe the cpu -capabilities, an error (E2BIG) is returned. If the number is too high, -the 'nent' field is adjusted and an error (ENOMEM) is returned. If the -number is just right, the 'nent' field is adjusted to the number of valid -entries in the 'entries' array, which is then filled. - -The entries returned are the host cpuid as returned by the cpuid instruction, -with unknown or unsupported features masked out. Some features (for example, -x2apic), may not be present in the host cpu, but are exposed by kvm if it can -emulate them efficiently. The fields in each entry are defined as follows: - - function: the eax value used to obtain the entry - index: the ecx value used to obtain the entry (for entries that are - affected by ecx) - flags: an OR of zero or more of the following: - KVM_CPUID_FLAG_SIGNIFCANT_INDEX: - if the index field is valid - KVM_CPUID_FLAG_STATEFUL_FUNC: - if cpuid for this function returns different values for successive - invocations; there will be several entries with the same function, - all with this flag set - KVM_CPUID_FLAG_STATE_READ_NEXT: - for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is - the first entry to be read by a cpu - eax, ebx, ecx, edx: the values returned by the cpuid instruction for - this function/index combination - -The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned -as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC -support. Instead it is reported via - - ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER) - -if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the -feature in userspace, then you can enable the feature for KVM_SET_CPUID2. - - -4.47 KVM_PPC_GET_PVINFO - -Capability: KVM_CAP_PPC_GET_PVINFO -Architectures: ppc -Type: vm ioctl -Parameters: struct kvm_ppc_pvinfo (out) -Returns: 0 on success, !0 on error - -struct kvm_ppc_pvinfo { - __u32 flags; - __u32 hcall[4]; - __u8 pad[108]; -}; - -This ioctl fetches PV specific information that need to be passed to the guest -using the device tree or other means from vm context. - -The hcall array defines 4 instructions that make up a hypercall. - -If any additional field gets added to this structure later on, a bit for that -additional piece of information will be set in the flags bitmap. - -The flags bitmap is defined as: - - /* the host supports the ePAPR idle hcall - #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0) - -4.48 KVM_ASSIGN_PCI_DEVICE - -Capability: KVM_CAP_DEVICE_ASSIGNMENT -Architectures: x86 ia64 -Type: vm ioctl -Parameters: struct kvm_assigned_pci_dev (in) -Returns: 0 on success, -1 on error - -Assigns a host PCI device to the VM. - -struct kvm_assigned_pci_dev { - __u32 assigned_dev_id; - __u32 busnr; - __u32 devfn; - __u32 flags; - __u32 segnr; - union { - __u32 reserved[11]; - }; -}; - -The PCI device is specified by the triple segnr, busnr, and devfn. -Identification in succeeding service requests is done via assigned_dev_id. The -following flags are specified: - -/* Depends on KVM_CAP_IOMMU */ -#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0) -/* The following two depend on KVM_CAP_PCI_2_3 */ -#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1) -#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2) - -If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts -via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other -assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the -guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details. - -The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure -isolation of the device. Usages not specifying this flag are deprecated. - -Only PCI header type 0 devices with PCI BAR resources are supported by -device assignment. The user requesting this ioctl must have read/write -access to the PCI sysfs resource files associated with the device. - - -4.49 KVM_DEASSIGN_PCI_DEVICE - -Capability: KVM_CAP_DEVICE_DEASSIGNMENT -Architectures: x86 ia64 -Type: vm ioctl -Parameters: struct kvm_assigned_pci_dev (in) -Returns: 0 on success, -1 on error - -Ends PCI device assignment, releasing all associated resources. - -See KVM_CAP_DEVICE_ASSIGNMENT for the data structure. Only assigned_dev_id is -used in kvm_assigned_pci_dev to identify the device. - - -4.50 KVM_ASSIGN_DEV_IRQ - -Capability: KVM_CAP_ASSIGN_DEV_IRQ -Architectures: x86 ia64 -Type: vm ioctl -Parameters: struct kvm_assigned_irq (in) -Returns: 0 on success, -1 on error - -Assigns an IRQ to a passed-through device. - -struct kvm_assigned_irq { - __u32 assigned_dev_id; - __u32 host_irq; /* ignored (legacy field) */ - __u32 guest_irq; - __u32 flags; - union { - __u32 reserved[12]; - }; -}; - -The following flags are defined: - -#define KVM_DEV_IRQ_HOST_INTX (1 << 0) -#define KVM_DEV_IRQ_HOST_MSI (1 << 1) -#define KVM_DEV_IRQ_HOST_MSIX (1 << 2) - -#define KVM_DEV_IRQ_GUEST_INTX (1 << 8) -#define KVM_DEV_IRQ_GUEST_MSI (1 << 9) -#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10) - -It is not valid to specify multiple types per host or guest IRQ. However, the -IRQ type of host and guest can differ or can even be null. - - -4.51 KVM_DEASSIGN_DEV_IRQ - -Capability: KVM_CAP_ASSIGN_DEV_IRQ -Architectures: x86 ia64 -Type: vm ioctl -Parameters: struct kvm_assigned_irq (in) -Returns: 0 on success, -1 on error - -Ends an IRQ assignment to a passed-through device. - -See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified -by assigned_dev_id, flags must correspond to the IRQ type specified on -KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed. - - -4.52 KVM_SET_GSI_ROUTING - -Capability: KVM_CAP_IRQ_ROUTING -Architectures: x86 ia64 -Type: vm ioctl -Parameters: struct kvm_irq_routing (in) -Returns: 0 on success, -1 on error - -Sets the GSI routing table entries, overwriting any previously set entries. - -struct kvm_irq_routing { - __u32 nr; - __u32 flags; - struct kvm_irq_routing_entry entries[0]; -}; - -No flags are specified so far, the corresponding field must be set to zero. - -struct kvm_irq_routing_entry { - __u32 gsi; - __u32 type; - __u32 flags; - __u32 pad; - union { - struct kvm_irq_routing_irqchip irqchip; - struct kvm_irq_routing_msi msi; - __u32 pad[8]; - } u; -}; - -/* gsi routing entry types */ -#define KVM_IRQ_ROUTING_IRQCHIP 1 -#define KVM_IRQ_ROUTING_MSI 2 - -No flags are specified so far, the corresponding field must be set to zero. - -struct kvm_irq_routing_irqchip { - __u32 irqchip; - __u32 pin; -}; - -struct kvm_irq_routing_msi { - __u32 address_lo; - __u32 address_hi; - __u32 data; - __u32 pad; -}; - - -4.53 KVM_ASSIGN_SET_MSIX_NR - -Capability: KVM_CAP_DEVICE_MSIX -Architectures: x86 ia64 -Type: vm ioctl -Parameters: struct kvm_assigned_msix_nr (in) -Returns: 0 on success, -1 on error - -Set the number of MSI-X interrupts for an assigned device. The number is -reset again by terminating the MSI-X assignment of the device via -KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier -point will fail. - -struct kvm_assigned_msix_nr { - __u32 assigned_dev_id; - __u16 entry_nr; - __u16 padding; -}; - -#define KVM_MAX_MSIX_PER_DEV 256 - - -4.54 KVM_ASSIGN_SET_MSIX_ENTRY - -Capability: KVM_CAP_DEVICE_MSIX -Architectures: x86 ia64 -Type: vm ioctl -Parameters: struct kvm_assigned_msix_entry (in) -Returns: 0 on success, -1 on error - -Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting -the GSI vector to zero means disabling the interrupt. - -struct kvm_assigned_msix_entry { - __u32 assigned_dev_id; - __u32 gsi; - __u16 entry; /* The index of entry in the MSI-X table */ - __u16 padding[3]; -}; - - -4.55 KVM_SET_TSC_KHZ - -Capability: KVM_CAP_TSC_CONTROL -Architectures: x86 -Type: vcpu ioctl -Parameters: virtual tsc_khz -Returns: 0 on success, -1 on error - -Specifies the tsc frequency for the virtual machine. The unit of the -frequency is KHz. - - -4.56 KVM_GET_TSC_KHZ - -Capability: KVM_CAP_GET_TSC_KHZ -Architectures: x86 -Type: vcpu ioctl -Parameters: none -Returns: virtual tsc-khz on success, negative value on error - -Returns the tsc frequency of the guest. The unit of the return value is -KHz. If the host has unstable tsc this ioctl returns -EIO instead as an -error. - - -4.57 KVM_GET_LAPIC - -Capability: KVM_CAP_IRQCHIP -Architectures: x86 -Type: vcpu ioctl -Parameters: struct kvm_lapic_state (out) -Returns: 0 on success, -1 on error - -#define KVM_APIC_REG_SIZE 0x400 -struct kvm_lapic_state { - char regs[KVM_APIC_REG_SIZE]; -}; - -Reads the Local APIC registers and copies them into the input argument. The -data format and layout are the same as documented in the architecture manual. - - -4.58 KVM_SET_LAPIC - -Capability: KVM_CAP_IRQCHIP -Architectures: x86 -Type: vcpu ioctl -Parameters: struct kvm_lapic_state (in) -Returns: 0 on success, -1 on error - -#define KVM_APIC_REG_SIZE 0x400 -struct kvm_lapic_state { - char regs[KVM_APIC_REG_SIZE]; -}; - -Copies the input argument into the the Local APIC registers. The data format -and layout are the same as documented in the architecture manual. - - -4.59 KVM_IOEVENTFD - -Capability: KVM_CAP_IOEVENTFD -Architectures: all -Type: vm ioctl -Parameters: struct kvm_ioeventfd (in) -Returns: 0 on success, !0 on error - -This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address -within the guest. A guest write in the registered address will signal the -provided event instead of triggering an exit. - -struct kvm_ioeventfd { - __u64 datamatch; - __u64 addr; /* legal pio/mmio address */ - __u32 len; /* 1, 2, 4, or 8 bytes */ - __s32 fd; - __u32 flags; - __u8 pad[36]; -}; - -For the special case of virtio-ccw devices on s390, the ioevent is matched -to a subchannel/virtqueue tuple instead. - -The following flags are defined: - -#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch) -#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio) -#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign) -#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \ - (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify) - -If datamatch flag is set, the event will be signaled only if the written value -to the registered address is equal to datamatch in struct kvm_ioeventfd. - -For virtio-ccw devices, addr contains the subchannel id and datamatch the -virtqueue index. - - -4.60 KVM_DIRTY_TLB - -Capability: KVM_CAP_SW_TLB -Architectures: ppc -Type: vcpu ioctl -Parameters: struct kvm_dirty_tlb (in) -Returns: 0 on success, -1 on error - -struct kvm_dirty_tlb { - __u64 bitmap; - __u32 num_dirty; -}; - -This must be called whenever userspace has changed an entry in the shared -TLB, prior to calling KVM_RUN on the associated vcpu. - -The "bitmap" field is the userspace address of an array. This array -consists of a number of bits, equal to the total number of TLB entries as -determined by the last successful call to KVM_CONFIG_TLB, rounded up to the -nearest multiple of 64. - -Each bit corresponds to one TLB entry, ordered the same as in the shared TLB -array. - -The array is little-endian: the bit 0 is the least significant bit of the -first byte, bit 8 is the least significant bit of the second byte, etc. -This avoids any complications with differing word sizes. - -The "num_dirty" field is a performance hint for KVM to determine whether it -should skip processing the bitmap and just invalidate everything. It must -be set to the number of set bits in the bitmap. - - -4.61 KVM_ASSIGN_SET_INTX_MASK - -Capability: KVM_CAP_PCI_2_3 -Architectures: x86 -Type: vm ioctl -Parameters: struct kvm_assigned_pci_dev (in) -Returns: 0 on success, -1 on error - -Allows userspace to mask PCI INTx interrupts from the assigned device. The -kernel will not deliver INTx interrupts to the guest between setting and -clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of -and emulation of PCI 2.3 INTx disable command register behavior. - -This may be used for both PCI 2.3 devices supporting INTx disable natively and -older devices lacking this support. Userspace is responsible for emulating the -read value of the INTx disable bit in the guest visible PCI command register. -When modifying the INTx disable state, userspace should precede updating the -physical device command register by calling this ioctl to inform the kernel of -the new intended INTx mask state. - -Note that the kernel uses the device INTx disable bit to internally manage the -device interrupt state for PCI 2.3 devices. Reads of this register may -therefore not match the expected value. Writes should always use the guest -intended INTx disable value rather than attempting to read-copy-update the -current physical device state. Races between user and kernel updates to the -INTx disable bit are handled lazily in the kernel. It's possible the device -may generate unintended interrupts, but they will not be injected into the -guest. - -See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified -by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is -evaluated. - - -4.62 KVM_CREATE_SPAPR_TCE - -Capability: KVM_CAP_SPAPR_TCE -Architectures: powerpc -Type: vm ioctl -Parameters: struct kvm_create_spapr_tce (in) -Returns: file descriptor for manipulating the created TCE table - -This creates a virtual TCE (translation control entry) table, which -is an IOMMU for PAPR-style virtual I/O. It is used to translate -logical addresses used in virtual I/O into guest physical addresses, -and provides a scatter/gather capability for PAPR virtual I/O. - -/* for KVM_CAP_SPAPR_TCE */ -struct kvm_create_spapr_tce { - __u64 liobn; - __u32 window_size; -}; - -The liobn field gives the logical IO bus number for which to create a -TCE table. The window_size field specifies the size of the DMA window -which this TCE table will translate - the table will contain one 64 -bit TCE entry for every 4kiB of the DMA window. - -When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE -table has been created using this ioctl(), the kernel will handle it -in real mode, updating the TCE table. H_PUT_TCE calls for other -liobns will cause a vm exit and must be handled by userspace. - -The return value is a file descriptor which can be passed to mmap(2) -to map the created TCE table into userspace. This lets userspace read -the entries written by kernel-handled H_PUT_TCE calls, and also lets -userspace update the TCE table directly which is useful in some -circumstances. - - -4.63 KVM_ALLOCATE_RMA - -Capability: KVM_CAP_PPC_RMA -Architectures: powerpc -Type: vm ioctl -Parameters: struct kvm_allocate_rma (out) -Returns: file descriptor for mapping the allocated RMA - -This allocates a Real Mode Area (RMA) from the pool allocated at boot -time by the kernel. An RMA is a physically-contiguous, aligned region -of memory used on older POWER processors to provide the memory which -will be accessed by real-mode (MMU off) accesses in a KVM guest. -POWER processors support a set of sizes for the RMA that usually -includes 64MB, 128MB, 256MB and some larger powers of two. - -/* for KVM_ALLOCATE_RMA */ -struct kvm_allocate_rma { - __u64 rma_size; -}; - -The return value is a file descriptor which can be passed to mmap(2) -to map the allocated RMA into userspace. The mapped area can then be -passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the -RMA for a virtual machine. The size of the RMA in bytes (which is -fixed at host kernel boot time) is returned in the rma_size field of -the argument structure. - -The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl -is supported; 2 if the processor requires all virtual machines to have -an RMA, or 1 if the processor can use an RMA but doesn't require it, -because it supports the Virtual RMA (VRMA) facility. - - -4.64 KVM_NMI - -Capability: KVM_CAP_USER_NMI -Architectures: x86 -Type: vcpu ioctl -Parameters: none -Returns: 0 on success, -1 on error - -Queues an NMI on the thread's vcpu. Note this is well defined only -when KVM_CREATE_IRQCHIP has not been called, since this is an interface -between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP -has been called, this interface is completely emulated within the kernel. - -To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the -following algorithm: - - - pause the vpcu - - read the local APIC's state (KVM_GET_LAPIC) - - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1) - - if so, issue KVM_NMI - - resume the vcpu - -Some guests configure the LINT1 NMI input to cause a panic, aiding in -debugging. - - -4.65 KVM_S390_UCAS_MAP - -Capability: KVM_CAP_S390_UCONTROL -Architectures: s390 -Type: vcpu ioctl -Parameters: struct kvm_s390_ucas_mapping (in) -Returns: 0 in case of success - -The parameter is defined like this: - struct kvm_s390_ucas_mapping { - __u64 user_addr; - __u64 vcpu_addr; - __u64 length; - }; - -This ioctl maps the memory at "user_addr" with the length "length" to -the vcpu's address space starting at "vcpu_addr". All parameters need to -be aligned by 1 megabyte. - - -4.66 KVM_S390_UCAS_UNMAP - -Capability: KVM_CAP_S390_UCONTROL -Architectures: s390 -Type: vcpu ioctl -Parameters: struct kvm_s390_ucas_mapping (in) -Returns: 0 in case of success - -The parameter is defined like this: - struct kvm_s390_ucas_mapping { - __u64 user_addr; - __u64 vcpu_addr; - __u64 length; - }; - -This ioctl unmaps the memory in the vcpu's address space starting at -"vcpu_addr" with the length "length". The field "user_addr" is ignored. -All parameters need to be aligned by 1 megabyte. - - -4.67 KVM_S390_VCPU_FAULT - -Capability: KVM_CAP_S390_UCONTROL -Architectures: s390 -Type: vcpu ioctl -Parameters: vcpu absolute address (in) -Returns: 0 in case of success - -This call creates a page table entry on the virtual cpu's address space -(for user controlled virtual machines) or the virtual machine's address -space (for regular virtual machines). This only works for minor faults, -thus it's recommended to access subject memory page via the user page -table upfront. This is useful to handle validity intercepts for user -controlled virtual machines to fault in the virtual cpu's lowcore pages -prior to calling the KVM_RUN ioctl. - - -4.68 KVM_SET_ONE_REG - -Capability: KVM_CAP_ONE_REG -Architectures: all -Type: vcpu ioctl -Parameters: struct kvm_one_reg (in) -Returns: 0 on success, negative value on failure - -struct kvm_one_reg { - __u64 id; - __u64 addr; -}; - -Using this ioctl, a single vcpu register can be set to a specific value -defined by user space with the passed in struct kvm_one_reg, where id -refers to the register identifier as described below and addr is a pointer -to a variable with the respective size. There can be architecture agnostic -and architecture specific registers. Each have their own range of operation -and their own constants and width. To keep track of the implemented -registers, find a list below: - - Arch | Register | Width (bits) - | | - PPC | KVM_REG_PPC_HIOR | 64 - PPC | KVM_REG_PPC_IAC1 | 64 - PPC | KVM_REG_PPC_IAC2 | 64 - PPC | KVM_REG_PPC_IAC3 | 64 - PPC | KVM_REG_PPC_IAC4 | 64 - PPC | KVM_REG_PPC_DAC1 | 64 - PPC | KVM_REG_PPC_DAC2 | 64 - PPC | KVM_REG_PPC_DABR | 64 - PPC | KVM_REG_PPC_DSCR | 64 - PPC | KVM_REG_PPC_PURR | 64 - PPC | KVM_REG_PPC_SPURR | 64 - PPC | KVM_REG_PPC_DAR | 64 - PPC | KVM_REG_PPC_DSISR | 32 - PPC | KVM_REG_PPC_AMR | 64 - PPC | KVM_REG_PPC_UAMOR | 64 - PPC | KVM_REG_PPC_MMCR0 | 64 - PPC | KVM_REG_PPC_MMCR1 | 64 - PPC | KVM_REG_PPC_MMCRA | 64 - PPC | KVM_REG_PPC_PMC1 | 32 - PPC | KVM_REG_PPC_PMC2 | 32 - PPC | KVM_REG_PPC_PMC3 | 32 - PPC | KVM_REG_PPC_PMC4 | 32 - PPC | KVM_REG_PPC_PMC5 | 32 - PPC | KVM_REG_PPC_PMC6 | 32 - PPC | KVM_REG_PPC_PMC7 | 32 - PPC | KVM_REG_PPC_PMC8 | 32 - PPC | KVM_REG_PPC_FPR0 | 64 - ... - PPC | KVM_REG_PPC_FPR31 | 64 - PPC | KVM_REG_PPC_VR0 | 128 - ... - PPC | KVM_REG_PPC_VR31 | 128 - PPC | KVM_REG_PPC_VSR0 | 128 - ... - PPC | KVM_REG_PPC_VSR31 | 128 - PPC | KVM_REG_PPC_FPSCR | 64 - PPC | KVM_REG_PPC_VSCR | 32 - PPC | KVM_REG_PPC_VPA_ADDR | 64 - PPC | KVM_REG_PPC_VPA_SLB | 128 - PPC | KVM_REG_PPC_VPA_DTL | 128 - PPC | KVM_REG_PPC_EPCR | 32 - PPC | KVM_REG_PPC_EPR | 32 - PPC | KVM_REG_PPC_TCR | 32 - PPC | KVM_REG_PPC_TSR | 32 - PPC | KVM_REG_PPC_OR_TSR | 32 - PPC | KVM_REG_PPC_CLEAR_TSR | 32 - PPC | KVM_REG_PPC_MAS0 | 32 - PPC | KVM_REG_PPC_MAS1 | 32 - PPC | KVM_REG_PPC_MAS2 | 64 - PPC | KVM_REG_PPC_MAS7_3 | 64 - PPC | KVM_REG_PPC_MAS4 | 32 - PPC | KVM_REG_PPC_MAS6 | 32 - PPC | KVM_REG_PPC_MMUCFG | 32 - PPC | KVM_REG_PPC_TLB0CFG | 32 - PPC | KVM_REG_PPC_TLB1CFG | 32 - PPC | KVM_REG_PPC_TLB2CFG | 32 - PPC | KVM_REG_PPC_TLB3CFG | 32 - PPC | KVM_REG_PPC_TLB0PS | 32 - PPC | KVM_REG_PPC_TLB1PS | 32 - PPC | KVM_REG_PPC_TLB2PS | 32 - PPC | KVM_REG_PPC_TLB3PS | 32 - PPC | KVM_REG_PPC_EPTCFG | 32 - PPC | KVM_REG_PPC_ICP_STATE | 64 - -ARM registers are mapped using the lower 32 bits. The upper 16 of that -is the register group type, or coprocessor number: - -ARM core registers have the following id bit patterns: - 0x4020 0000 0010 <index into the kvm_regs struct:16> - -ARM 32-bit CP15 registers have the following id bit patterns: - 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3> - -ARM 64-bit CP15 registers have the following id bit patterns: - 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3> - -ARM CCSIDR registers are demultiplexed by CSSELR value: - 0x4020 0000 0011 00 <csselr:8> - -ARM 32-bit VFP control registers have the following id bit patterns: - 0x4020 0000 0012 1 <regno:12> - -ARM 64-bit FP registers have the following id bit patterns: - 0x4030 0000 0012 0 <regno:12> - - -arm64 registers are mapped using the lower 32 bits. The upper 16 of -that is the register group type, or coprocessor number: - -arm64 core/FP-SIMD registers have the following id bit patterns. Note -that the size of the access is variable, as the kvm_regs structure -contains elements ranging from 32 to 128 bits. The index is a 32bit -value in the kvm_regs structure seen as a 32bit array. - 0x60x0 0000 0010 <index into the kvm_regs struct:16> - -arm64 CCSIDR registers are demultiplexed by CSSELR value: - 0x6020 0000 0011 00 <csselr:8> - -arm64 system registers have the following id bit patterns: - 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3> - -4.69 KVM_GET_ONE_REG - -Capability: KVM_CAP_ONE_REG -Architectures: all -Type: vcpu ioctl -Parameters: struct kvm_one_reg (in and out) -Returns: 0 on success, negative value on failure - -This ioctl allows to receive the value of a single register implemented -in a vcpu. The register to read is indicated by the "id" field of the -kvm_one_reg struct passed in. On success, the register value can be found -at the memory location pointed to by "addr". - -The list of registers accessible using this interface is identical to the -list in 4.68. - - -4.70 KVM_KVMCLOCK_CTRL - -Capability: KVM_CAP_KVMCLOCK_CTRL -Architectures: Any that implement pvclocks (currently x86 only) -Type: vcpu ioctl -Parameters: None -Returns: 0 on success, -1 on error - -This signals to the host kernel that the specified guest is being paused by -userspace. The host will set a flag in the pvclock structure that is checked -from the soft lockup watchdog. The flag is part of the pvclock structure that -is shared between guest and host, specifically the second bit of the flags -field of the pvclock_vcpu_time_info structure. It will be set exclusively by -the host and read/cleared exclusively by the guest. The guest operation of -checking and clearing the flag must an atomic operation so -load-link/store-conditional, or equivalent must be used. There are two cases -where the guest will clear the flag: when the soft lockup watchdog timer resets -itself or when a soft lockup is detected. This ioctl can be called any time -after pausing the vcpu, but before it is resumed. - - -4.71 KVM_SIGNAL_MSI - -Capability: KVM_CAP_SIGNAL_MSI -Architectures: x86 -Type: vm ioctl -Parameters: struct kvm_msi (in) -Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error - -Directly inject a MSI message. Only valid with in-kernel irqchip that handles -MSI messages. - -struct kvm_msi { - __u32 address_lo; - __u32 address_hi; - __u32 data; - __u32 flags; - __u8 pad[16]; -}; - -No flags are defined so far. The corresponding field must be 0. - - -4.71 KVM_CREATE_PIT2 - -Capability: KVM_CAP_PIT2 -Architectures: x86 -Type: vm ioctl -Parameters: struct kvm_pit_config (in) -Returns: 0 on success, -1 on error - -Creates an in-kernel device model for the i8254 PIT. This call is only valid -after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following -parameters have to be passed: - -struct kvm_pit_config { - __u32 flags; - __u32 pad[15]; -}; - -Valid flags are: - -#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */ - -PIT timer interrupts may use a per-VM kernel thread for injection. If it -exists, this thread will have a name of the following pattern: - -kvm-pit/<owner-process-pid> - -When running a guest with elevated priorities, the scheduling parameters of -this thread may have to be adjusted accordingly. - -This IOCTL replaces the obsolete KVM_CREATE_PIT. - - -4.72 KVM_GET_PIT2 - -Capability: KVM_CAP_PIT_STATE2 -Architectures: x86 -Type: vm ioctl -Parameters: struct kvm_pit_state2 (out) -Returns: 0 on success, -1 on error - -Retrieves the state of the in-kernel PIT model. Only valid after -KVM_CREATE_PIT2. The state is returned in the following structure: - -struct kvm_pit_state2 { - struct kvm_pit_channel_state channels[3]; - __u32 flags; - __u32 reserved[9]; -}; - -Valid flags are: - -/* disable PIT in HPET legacy mode */ -#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001 - -This IOCTL replaces the obsolete KVM_GET_PIT. - - -4.73 KVM_SET_PIT2 - -Capability: KVM_CAP_PIT_STATE2 -Architectures: x86 -Type: vm ioctl -Parameters: struct kvm_pit_state2 (in) -Returns: 0 on success, -1 on error - -Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2. -See KVM_GET_PIT2 for details on struct kvm_pit_state2. - -This IOCTL replaces the obsolete KVM_SET_PIT. - - -4.74 KVM_PPC_GET_SMMU_INFO - -Capability: KVM_CAP_PPC_GET_SMMU_INFO -Architectures: powerpc -Type: vm ioctl -Parameters: None -Returns: 0 on success, -1 on error - -This populates and returns a structure describing the features of -the "Server" class MMU emulation supported by KVM. -This can in turn be used by userspace to generate the appropriate -device-tree properties for the guest operating system. - -The structure contains some global informations, followed by an -array of supported segment page sizes: - - struct kvm_ppc_smmu_info { - __u64 flags; - __u32 slb_size; - __u32 pad; - struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ]; - }; - -The supported flags are: - - - KVM_PPC_PAGE_SIZES_REAL: - When that flag is set, guest page sizes must "fit" the backing - store page sizes. When not set, any page size in the list can - be used regardless of how they are backed by userspace. - - - KVM_PPC_1T_SEGMENTS - The emulated MMU supports 1T segments in addition to the - standard 256M ones. - -The "slb_size" field indicates how many SLB entries are supported - -The "sps" array contains 8 entries indicating the supported base -page sizes for a segment in increasing order. Each entry is defined -as follow: - - struct kvm_ppc_one_seg_page_size { - __u32 page_shift; /* Base page shift of segment (or 0) */ - __u32 slb_enc; /* SLB encoding for BookS */ - struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ]; - }; - -An entry with a "page_shift" of 0 is unused. Because the array is -organized in increasing order, a lookup can stop when encoutering -such an entry. - -The "slb_enc" field provides the encoding to use in the SLB for the -page size. The bits are in positions such as the value can directly -be OR'ed into the "vsid" argument of the slbmte instruction. - -The "enc" array is a list which for each of those segment base page -size provides the list of supported actual page sizes (which can be -only larger or equal to the base page size), along with the -corresponding encoding in the hash PTE. Similarly, the array is -8 entries sorted by increasing sizes and an entry with a "0" shift -is an empty entry and a terminator: - - struct kvm_ppc_one_page_size { - __u32 page_shift; /* Page shift (or 0) */ - __u32 pte_enc; /* Encoding in the HPTE (>>12) */ - }; - -The "pte_enc" field provides a value that can OR'ed into the hash -PTE's RPN field (ie, it needs to be shifted left by 12 to OR it -into the hash PTE second double word). - -4.75 KVM_IRQFD - -Capability: KVM_CAP_IRQFD -Architectures: x86 -Type: vm ioctl -Parameters: struct kvm_irqfd (in) -Returns: 0 on success, -1 on error - -Allows setting an eventfd to directly trigger a guest interrupt. -kvm_irqfd.fd specifies the file descriptor to use as the eventfd and -kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When -an event is tiggered on the eventfd, an interrupt is injected into -the guest using the specified gsi pin. The irqfd is removed using -the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd -and kvm_irqfd.gsi. - -With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify -mechanism allowing emulation of level-triggered, irqfd-based -interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an -additional eventfd in the kvm_irqfd.resamplefd field. When operating -in resample mode, posting of an interrupt through kvm_irq.fd asserts -the specified gsi in the irqchip. When the irqchip is resampled, such -as from an EOI, the gsi is de-asserted and the user is notifed via -kvm_irqfd.resamplefd. It is the user's responsibility to re-queue -the interrupt if the device making use of it still requires service. -Note that closing the resamplefd is not sufficient to disable the -irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment -and need not be specified with KVM_IRQFD_FLAG_DEASSIGN. - -4.76 KVM_PPC_ALLOCATE_HTAB - -Capability: KVM_CAP_PPC_ALLOC_HTAB -Architectures: powerpc -Type: vm ioctl -Parameters: Pointer to u32 containing hash table order (in/out) -Returns: 0 on success, -1 on error - -This requests the host kernel to allocate an MMU hash table for a -guest using the PAPR paravirtualization interface. This only does -anything if the kernel is configured to use the Book 3S HV style of -virtualization. Otherwise the capability doesn't exist and the ioctl -returns an ENOTTY error. The rest of this description assumes Book 3S -HV. - -There must be no vcpus running when this ioctl is called; if there -are, it will do nothing and return an EBUSY error. - -The parameter is a pointer to a 32-bit unsigned integer variable -containing the order (log base 2) of the desired size of the hash -table, which must be between 18 and 46. On successful return from the -ioctl, it will have been updated with the order of the hash table that -was allocated. - -If no hash table has been allocated when any vcpu is asked to run -(with the KVM_RUN ioctl), the host kernel will allocate a -default-sized hash table (16 MB). - -If this ioctl is called when a hash table has already been allocated, -the kernel will clear out the existing hash table (zero all HPTEs) and -return the hash table order in the parameter. (If the guest is using -the virtualized real-mode area (VRMA) facility, the kernel will -re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.) - -4.77 KVM_S390_INTERRUPT - -Capability: basic -Architectures: s390 -Type: vm ioctl, vcpu ioctl -Parameters: struct kvm_s390_interrupt (in) -Returns: 0 on success, -1 on error - -Allows to inject an interrupt to the guest. Interrupts can be floating -(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type. - -Interrupt parameters are passed via kvm_s390_interrupt: - -struct kvm_s390_interrupt { - __u32 type; - __u32 parm; - __u64 parm64; -}; - -type can be one of the following: - -KVM_S390_SIGP_STOP (vcpu) - sigp restart -KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm -KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm -KVM_S390_RESTART (vcpu) - restart -KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt - parameters in parm and parm64 -KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm -KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm -KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm -KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an - I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel); - I/O interruption parameters in parm (subchannel) and parm64 (intparm, - interruption subclass) -KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm, - machine check interrupt code in parm64 (note that - machine checks needing further payload are not - supported by this ioctl) - -Note that the vcpu ioctl is asynchronous to vcpu execution. - -4.78 KVM_PPC_GET_HTAB_FD - -Capability: KVM_CAP_PPC_HTAB_FD -Architectures: powerpc -Type: vm ioctl -Parameters: Pointer to struct kvm_get_htab_fd (in) -Returns: file descriptor number (>= 0) on success, -1 on error - -This returns a file descriptor that can be used either to read out the -entries in the guest's hashed page table (HPT), or to write entries to -initialize the HPT. The returned fd can only be written to if the -KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and -can only be read if that bit is clear. The argument struct looks like -this: - -/* For KVM_PPC_GET_HTAB_FD */ -struct kvm_get_htab_fd { - __u64 flags; - __u64 start_index; - __u64 reserved[2]; -}; - -/* Values for kvm_get_htab_fd.flags */ -#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1) -#define KVM_GET_HTAB_WRITE ((__u64)0x2) - -The `start_index' field gives the index in the HPT of the entry at -which to start reading. It is ignored when writing. - -Reads on the fd will initially supply information about all -"interesting" HPT entries. Interesting entries are those with the -bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise -all entries. When the end of the HPT is reached, the read() will -return. If read() is called again on the fd, it will start again from -the beginning of the HPT, but will only return HPT entries that have -changed since they were last read. - -Data read or written is structured as a header (8 bytes) followed by a -series of valid HPT entries (16 bytes) each. The header indicates how -many valid HPT entries there are and how many invalid entries follow -the valid entries. The invalid entries are not represented explicitly -in the stream. The header format is: - -struct kvm_get_htab_header { - __u32 index; - __u16 n_valid; - __u16 n_invalid; -}; - -Writes to the fd create HPT entries starting at the index given in the -header; first `n_valid' valid entries with contents from the data -written, then `n_invalid' invalid entries, invalidating any previously -valid entries found. - -4.79 KVM_CREATE_DEVICE - -Capability: KVM_CAP_DEVICE_CTRL -Type: vm ioctl -Parameters: struct kvm_create_device (in/out) -Returns: 0 on success, -1 on error -Errors: - ENODEV: The device type is unknown or unsupported - EEXIST: Device already created, and this type of device may not - be instantiated multiple times - - Other error conditions may be defined by individual device types or - have their standard meanings. - -Creates an emulated device in the kernel. The file descriptor returned -in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR. - -If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the -device type is supported (not necessarily whether it can be created -in the current vm). - -Individual devices should not define flags. Attributes should be used -for specifying any behavior that is not implied by the device type -number. - -struct kvm_create_device { - __u32 type; /* in: KVM_DEV_TYPE_xxx */ - __u32 fd; /* out: device handle */ - __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */ -}; - -4.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR - -Capability: KVM_CAP_DEVICE_CTRL -Type: device ioctl -Parameters: struct kvm_device_attr -Returns: 0 on success, -1 on error -Errors: - ENXIO: The group or attribute is unknown/unsupported for this device - EPERM: The attribute cannot (currently) be accessed this way - (e.g. read-only attribute, or attribute that only makes - sense when the device is in a different state) - - Other error conditions may be defined by individual device types. - -Gets/sets a specified piece of device configuration and/or state. The -semantics are device-specific. See individual device documentation in -the "devices" directory. As with ONE_REG, the size of the data -transferred is defined by the particular attribute. - -struct kvm_device_attr { - __u32 flags; /* no flags currently defined */ - __u32 group; /* device-defined */ - __u64 attr; /* group-defined */ - __u64 addr; /* userspace address of attr data */ -}; - -4.81 KVM_HAS_DEVICE_ATTR - -Capability: KVM_CAP_DEVICE_CTRL -Type: device ioctl -Parameters: struct kvm_device_attr -Returns: 0 on success, -1 on error -Errors: - ENXIO: The group or attribute is unknown/unsupported for this device - -Tests whether a device supports a particular attribute. A successful -return indicates the attribute is implemented. It does not necessarily -indicate that the attribute can be read or written in the device's -current state. "addr" is ignored. - -4.82 KVM_ARM_VCPU_INIT - -Capability: basic -Architectures: arm, arm64 -Type: vcpu ioctl -Parameters: struct struct kvm_vcpu_init (in) -Returns: 0 on success; -1 on error -Errors: - EINVAL: the target is unknown, or the combination of features is invalid. - ENOENT: a features bit specified is unknown. - -This tells KVM what type of CPU to present to the guest, and what -optional features it should have. This will cause a reset of the cpu -registers to their initial values. If this is not called, KVM_RUN will -return ENOEXEC for that vcpu. - -Note that because some registers reflect machine topology, all vcpus -should be created before this ioctl is invoked. - -Possible features: - - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state. - Depends on KVM_CAP_ARM_PSCI. - - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode. - Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only). - - -4.83 KVM_GET_REG_LIST - -Capability: basic -Architectures: arm, arm64 -Type: vcpu ioctl -Parameters: struct kvm_reg_list (in/out) -Returns: 0 on success; -1 on error -Errors: - E2BIG: the reg index list is too big to fit in the array specified by - the user (the number required will be written into n). - -struct kvm_reg_list { - __u64 n; /* number of registers in reg[] */ - __u64 reg[0]; -}; - -This ioctl returns the guest registers that are supported for the -KVM_GET_ONE_REG/KVM_SET_ONE_REG calls. - - -4.84 KVM_ARM_SET_DEVICE_ADDR - -Capability: KVM_CAP_ARM_SET_DEVICE_ADDR -Architectures: arm, arm64 -Type: vm ioctl -Parameters: struct kvm_arm_device_address (in) -Returns: 0 on success, -1 on error -Errors: - ENODEV: The device id is unknown - ENXIO: Device not supported on current system - EEXIST: Address already set - E2BIG: Address outside guest physical address space - EBUSY: Address overlaps with other device range - -struct kvm_arm_device_addr { - __u64 id; - __u64 addr; -}; - -Specify a device address in the guest's physical address space where guests -can access emulated or directly exposed devices, which the host kernel needs -to know about. The id field is an architecture specific identifier for a -specific device. - -ARM/arm64 divides the id field into two parts, a device id and an -address type id specific to the individual device. - - bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 | - field: | 0x00000000 | device id | addr type id | - -ARM/arm64 currently only require this when using the in-kernel GIC -support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2 -as the device id. When setting the base address for the guest's -mapping of the VGIC virtual CPU and distributor interface, the ioctl -must be called after calling KVM_CREATE_IRQCHIP, but before calling -KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the -base addresses will return -EEXIST. - -4.85 KVM_PPC_RTAS_DEFINE_TOKEN - -Capability: KVM_CAP_PPC_RTAS -Architectures: ppc -Type: vm ioctl -Parameters: struct kvm_rtas_token_args -Returns: 0 on success, -1 on error - -Defines a token value for a RTAS (Run Time Abstraction Services) -service in order to allow it to be handled in the kernel. The -argument struct gives the name of the service, which must be the name -of a service that has a kernel-side implementation. If the token -value is non-zero, it will be associated with that service, and -subsequent RTAS calls by the guest specifying that token will be -handled by the kernel. If the token value is 0, then any token -associated with the service will be forgotten, and subsequent RTAS -calls by the guest for that service will be passed to userspace to be -handled. - - -5. The kvm_run structure ------------------------- - -Application code obtains a pointer to the kvm_run structure by -mmap()ing a vcpu fd. From that point, application code can control -execution by changing fields in kvm_run prior to calling the KVM_RUN -ioctl, and obtain information about the reason KVM_RUN returned by -looking up structure members. - -struct kvm_run { - /* in */ - __u8 request_interrupt_window; - -Request that KVM_RUN return when it becomes possible to inject external -interrupts into the guest. Useful in conjunction with KVM_INTERRUPT. - - __u8 padding1[7]; - - /* out */ - __u32 exit_reason; - -When KVM_RUN has returned successfully (return value 0), this informs -application code why KVM_RUN has returned. Allowable values for this -field are detailed below. - - __u8 ready_for_interrupt_injection; - -If request_interrupt_window has been specified, this field indicates -an interrupt can be injected now with KVM_INTERRUPT. - - __u8 if_flag; - -The value of the current interrupt flag. Only valid if in-kernel -local APIC is not used. - - __u8 padding2[2]; - - /* in (pre_kvm_run), out (post_kvm_run) */ - __u64 cr8; - -The value of the cr8 register. Only valid if in-kernel local APIC is -not used. Both input and output. - - __u64 apic_base; - -The value of the APIC BASE msr. Only valid if in-kernel local -APIC is not used. Both input and output. - - union { - /* KVM_EXIT_UNKNOWN */ - struct { - __u64 hardware_exit_reason; - } hw; - -If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown -reasons. Further architecture-specific information is available in -hardware_exit_reason. - - /* KVM_EXIT_FAIL_ENTRY */ - struct { - __u64 hardware_entry_failure_reason; - } fail_entry; - -If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due -to unknown reasons. Further architecture-specific information is -available in hardware_entry_failure_reason. - - /* KVM_EXIT_EXCEPTION */ - struct { - __u32 exception; - __u32 error_code; - } ex; - -Unused. - - /* KVM_EXIT_IO */ - struct { -#define KVM_EXIT_IO_IN 0 -#define KVM_EXIT_IO_OUT 1 - __u8 direction; - __u8 size; /* bytes */ - __u16 port; - __u32 count; - __u64 data_offset; /* relative to kvm_run start */ - } io; - -If exit_reason is KVM_EXIT_IO, then the vcpu has -executed a port I/O instruction which could not be satisfied by kvm. -data_offset describes where the data is located (KVM_EXIT_IO_OUT) or -where kvm expects application code to place the data for the next -KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array. - - struct { - struct kvm_debug_exit_arch arch; - } debug; - -Unused. - - /* KVM_EXIT_MMIO */ - struct { - __u64 phys_addr; - __u8 data[8]; - __u32 len; - __u8 is_write; - } mmio; - -If exit_reason is KVM_EXIT_MMIO, then the vcpu has -executed a memory-mapped I/O instruction which could not be satisfied -by kvm. The 'data' member contains the written data if 'is_write' is -true, and should be filled by application code otherwise. - -NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_DCR, - KVM_EXIT_PAPR and KVM_EXIT_EPR the corresponding -operations are complete (and guest state is consistent) only after userspace -has re-entered the kernel with KVM_RUN. The kernel side will first finish -incomplete operations and then check for pending signals. Userspace -can re-enter the guest with an unmasked signal pending to complete -pending operations. - - /* KVM_EXIT_HYPERCALL */ - struct { - __u64 nr; - __u64 args[6]; - __u64 ret; - __u32 longmode; - __u32 pad; - } hypercall; - -Unused. This was once used for 'hypercall to userspace'. To implement -such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390). -Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO. - - /* KVM_EXIT_TPR_ACCESS */ - struct { - __u64 rip; - __u32 is_write; - __u32 pad; - } tpr_access; - -To be documented (KVM_TPR_ACCESS_REPORTING). - - /* KVM_EXIT_S390_SIEIC */ - struct { - __u8 icptcode; - __u64 mask; /* psw upper half */ - __u64 addr; /* psw lower half */ - __u16 ipa; - __u32 ipb; - } s390_sieic; - -s390 specific. - - /* KVM_EXIT_S390_RESET */ -#define KVM_S390_RESET_POR 1 -#define KVM_S390_RESET_CLEAR 2 -#define KVM_S390_RESET_SUBSYSTEM 4 -#define KVM_S390_RESET_CPU_INIT 8 -#define KVM_S390_RESET_IPL 16 - __u64 s390_reset_flags; - -s390 specific. - - /* KVM_EXIT_S390_UCONTROL */ - struct { - __u64 trans_exc_code; - __u32 pgm_code; - } s390_ucontrol; - -s390 specific. A page fault has occurred for a user controlled virtual -machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be -resolved by the kernel. -The program code and the translation exception code that were placed -in the cpu's lowcore are presented here as defined by the z Architecture -Principles of Operation Book in the Chapter for Dynamic Address Translation -(DAT) - - /* KVM_EXIT_DCR */ - struct { - __u32 dcrn; - __u32 data; - __u8 is_write; - } dcr; - -powerpc specific. - - /* KVM_EXIT_OSI */ - struct { - __u64 gprs[32]; - } osi; - -MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch -hypercalls and exit with this exit struct that contains all the guest gprs. - -If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall. -Userspace can now handle the hypercall and when it's done modify the gprs as -necessary. Upon guest entry all guest GPRs will then be replaced by the values -in this struct. - - /* KVM_EXIT_PAPR_HCALL */ - struct { - __u64 nr; - __u64 ret; - __u64 args[9]; - } papr_hcall; - -This is used on 64-bit PowerPC when emulating a pSeries partition, -e.g. with the 'pseries' machine type in qemu. It occurs when the -guest does a hypercall using the 'sc 1' instruction. The 'nr' field -contains the hypercall number (from the guest R3), and 'args' contains -the arguments (from the guest R4 - R12). Userspace should put the -return code in 'ret' and any extra returned values in args[]. -The possible hypercalls are defined in the Power Architecture Platform -Requirements (PAPR) document available from www.power.org (free -developer registration required to access it). - - /* KVM_EXIT_S390_TSCH */ - struct { - __u16 subchannel_id; - __u16 subchannel_nr; - __u32 io_int_parm; - __u32 io_int_word; - __u32 ipb; - __u8 dequeued; - } s390_tsch; - -s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled -and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O -interrupt for the target subchannel has been dequeued and subchannel_id, -subchannel_nr, io_int_parm and io_int_word contain the parameters for that -interrupt. ipb is needed for instruction parameter decoding. - - /* KVM_EXIT_EPR */ - struct { - __u32 epr; - } epr; - -On FSL BookE PowerPC chips, the interrupt controller has a fast patch -interrupt acknowledge path to the core. When the core successfully -delivers an interrupt, it automatically populates the EPR register with -the interrupt vector number and acknowledges the interrupt inside -the interrupt controller. - -In case the interrupt controller lives in user space, we need to do -the interrupt acknowledge cycle through it to fetch the next to be -delivered interrupt vector using this exit. - -It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an -external interrupt has just been delivered into the guest. User space -should put the acknowledged interrupt vector into the 'epr' field. - - /* Fix the size of the union. */ - char padding[256]; - }; - - /* - * shared registers between kvm and userspace. - * kvm_valid_regs specifies the register classes set by the host - * kvm_dirty_regs specified the register classes dirtied by userspace - * struct kvm_sync_regs is architecture specific, as well as the - * bits for kvm_valid_regs and kvm_dirty_regs - */ - __u64 kvm_valid_regs; - __u64 kvm_dirty_regs; - union { - struct kvm_sync_regs regs; - char padding[1024]; - } s; - -If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access -certain guest registers without having to call SET/GET_*REGS. Thus we can -avoid some system call overhead if userspace has to handle the exit. -Userspace can query the validity of the structure by checking -kvm_valid_regs for specific bits. These bits are architecture specific -and usually define the validity of a groups of registers. (e.g. one bit - for general purpose registers) - -}; - - -6. Capabilities that can be enabled ------------------------------------ - -There are certain capabilities that change the behavior of the virtual CPU when -enabled. To enable them, please see section 4.37. Below you can find a list of -capabilities and what their effect on the vCPU is when enabling them. - -The following information is provided along with the description: - - Architectures: which instruction set architectures provide this ioctl. - x86 includes both i386 and x86_64. - - Parameters: what parameters are accepted by the capability. - - Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL) - are not detailed, but errors with specific meanings are. - - -6.1 KVM_CAP_PPC_OSI - -Architectures: ppc -Parameters: none -Returns: 0 on success; -1 on error - -This capability enables interception of OSI hypercalls that otherwise would -be treated as normal system calls to be injected into the guest. OSI hypercalls -were invented by Mac-on-Linux to have a standardized communication mechanism -between the guest and the host. - -When this capability is enabled, KVM_EXIT_OSI can occur. - - -6.2 KVM_CAP_PPC_PAPR - -Architectures: ppc -Parameters: none -Returns: 0 on success; -1 on error - -This capability enables interception of PAPR hypercalls. PAPR hypercalls are -done using the hypercall instruction "sc 1". - -It also sets the guest privilege level to "supervisor" mode. Usually the guest -runs in "hypervisor" privilege mode with a few missing features. - -In addition to the above, it changes the semantics of SDR1. In this mode, the -HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the -HTAB invisible to the guest. - -When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur. - - -6.3 KVM_CAP_SW_TLB - -Architectures: ppc -Parameters: args[0] is the address of a struct kvm_config_tlb -Returns: 0 on success; -1 on error - -struct kvm_config_tlb { - __u64 params; - __u64 array; - __u32 mmu_type; - __u32 array_len; -}; - -Configures the virtual CPU's TLB array, establishing a shared memory area -between userspace and KVM. The "params" and "array" fields are userspace -addresses of mmu-type-specific data structures. The "array_len" field is an -safety mechanism, and should be set to the size in bytes of the memory that -userspace has reserved for the array. It must be at least the size dictated -by "mmu_type" and "params". - -While KVM_RUN is active, the shared region is under control of KVM. Its -contents are undefined, and any modification by userspace results in -boundedly undefined behavior. - -On return from KVM_RUN, the shared region will reflect the current state of -the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB -to tell KVM which entries have been changed, prior to calling KVM_RUN again -on this vcpu. - -For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV: - - The "params" field is of type "struct kvm_book3e_206_tlb_params". - - The "array" field points to an array of type "struct - kvm_book3e_206_tlb_entry". - - The array consists of all entries in the first TLB, followed by all - entries in the second TLB. - - Within a TLB, entries are ordered first by increasing set number. Within a - set, entries are ordered by way (increasing ESEL). - - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1) - where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value. - - The tsize field of mas1 shall be set to 4K on TLB0, even though the - hardware ignores this value for TLB0. - -6.4 KVM_CAP_S390_CSS_SUPPORT - -Architectures: s390 -Parameters: none -Returns: 0 on success; -1 on error - -This capability enables support for handling of channel I/O instructions. - -TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are -handled in-kernel, while the other I/O instructions are passed to userspace. - -When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST -SUBCHANNEL intercepts. - -6.5 KVM_CAP_PPC_EPR - -Architectures: ppc -Parameters: args[0] defines whether the proxy facility is active -Returns: 0 on success; -1 on error - -This capability enables or disables the delivery of interrupts through the -external proxy facility. - -When enabled (args[0] != 0), every time the guest gets an external interrupt -delivered, it automatically exits into user space with a KVM_EXIT_EPR exit -to receive the topmost interrupt vector. - -When disabled (args[0] == 0), behavior is as if this facility is unsupported. - -When this capability is enabled, KVM_EXIT_EPR can occur. - -6.6 KVM_CAP_IRQ_MPIC - -Architectures: ppc -Parameters: args[0] is the MPIC device fd - args[1] is the MPIC CPU number for this vcpu - -This capability connects the vcpu to an in-kernel MPIC device. - -6.7 KVM_CAP_IRQ_XICS - -Architectures: ppc -Parameters: args[0] is the XICS device fd - args[1] is the XICS CPU number (server ID) for this vcpu - -This capability connects the vcpu to an in-kernel XICS device. |
