summaryrefslogtreecommitdiff
path: root/arch/arm/vfp/vfphw.S
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm/vfp/vfphw.S')
-rw-r--r--arch/arm/vfp/vfphw.S241
1 files changed, 35 insertions, 206 deletions
diff --git a/arch/arm/vfp/vfphw.S b/arch/arm/vfp/vfphw.S
index f74a8f7e5f84..d5a03f3c10c5 100644
--- a/arch/arm/vfp/vfphw.S
+++ b/arch/arm/vfp/vfphw.S
@@ -1,18 +1,9 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
/*
* linux/arch/arm/vfp/vfphw.S
*
* Copyright (C) 2004 ARM Limited.
* Written by Deep Blue Solutions Limited.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This code is called from the kernel's undefined instruction trap.
- * r9 holds the return address for successful handling.
- * lr holds the return address for unrecognised instructions.
- * r10 points at the start of the private FP workspace in the thread structure
- * sp points to a struct pt_regs (as defined in include/asm/proc/ptrace.h)
*/
#include <linux/init.h>
#include <linux/linkage.h>
@@ -22,43 +13,12 @@
#include <asm/assembler.h>
#include <asm/asm-offsets.h>
- .macro DBGSTR, str
-#ifdef DEBUG
- stmfd sp!, {r0-r3, ip, lr}
- ldr r0, =1f
- bl printk
- ldmfd sp!, {r0-r3, ip, lr}
-
- .pushsection .rodata, "a"
-1: .ascii KERN_DEBUG "VFP: \str\n"
- .byte 0
- .previous
-#endif
- .endm
-
.macro DBGSTR1, str, arg
#ifdef DEBUG
stmfd sp!, {r0-r3, ip, lr}
mov r1, \arg
ldr r0, =1f
- bl printk
- ldmfd sp!, {r0-r3, ip, lr}
-
- .pushsection .rodata, "a"
-1: .ascii KERN_DEBUG "VFP: \str\n"
- .byte 0
- .previous
-#endif
- .endm
-
- .macro DBGSTR3, str, arg1, arg2, arg3
-#ifdef DEBUG
- stmfd sp!, {r0-r3, ip, lr}
- mov r3, \arg3
- mov r2, \arg2
- mov r1, \arg1
- ldr r0, =1f
- bl printk
+ bl _printk
ldmfd sp!, {r0-r3, ip, lr}
.pushsection .rodata, "a"
@@ -68,162 +28,25 @@
#endif
.endm
-
-@ VFP hardware support entry point.
-@
-@ r0 = instruction opcode (32-bit ARM or two 16-bit Thumb)
-@ r2 = PC value to resume execution after successful emulation
-@ r9 = normal "successful" return address
-@ r10 = vfp_state union
-@ r11 = CPU number
-@ lr = unrecognised instruction return address
-@ IRQs enabled.
-ENTRY(vfp_support_entry)
- DBGSTR3 "instr %08x pc %08x state %p", r0, r2, r10
-
- ldr r3, [sp, #S_PSR] @ Neither lazy restore nor FP exceptions
- and r3, r3, #MODE_MASK @ are supported in kernel mode
- teq r3, #USR_MODE
- bne vfp_kmode_exception @ Returns through lr
-
- VFPFMRX r1, FPEXC @ Is the VFP enabled?
- DBGSTR1 "fpexc %08x", r1
- tst r1, #FPEXC_EN
- bne look_for_VFP_exceptions @ VFP is already enabled
-
- DBGSTR1 "enable %x", r10
- ldr r3, vfp_current_hw_state_address
- orr r1, r1, #FPEXC_EN @ user FPEXC has the enable bit set
- ldr r4, [r3, r11, lsl #2] @ vfp_current_hw_state pointer
- bic r5, r1, #FPEXC_EX @ make sure exceptions are disabled
- cmp r4, r10 @ this thread owns the hw context?
-#ifndef CONFIG_SMP
- @ For UP, checking that this thread owns the hw context is
- @ sufficient to determine that the hardware state is valid.
- beq vfp_hw_state_valid
-
- @ On UP, we lazily save the VFP context. As a different
- @ thread wants ownership of the VFP hardware, save the old
- @ state if there was a previous (valid) owner.
-
- VFPFMXR FPEXC, r5 @ enable VFP, disable any pending
- @ exceptions, so we can get at the
- @ rest of it
-
- DBGSTR1 "save old state %p", r4
- cmp r4, #0 @ if the vfp_current_hw_state is NULL
- beq vfp_reload_hw @ then the hw state needs reloading
- VFPFSTMIA r4, r5 @ save the working registers
- VFPFMRX r5, FPSCR @ current status
-#ifndef CONFIG_CPU_FEROCEON
- tst r1, #FPEXC_EX @ is there additional state to save?
- beq 1f
- VFPFMRX r6, FPINST @ FPINST (only if FPEXC.EX is set)
- tst r1, #FPEXC_FP2V @ is there an FPINST2 to read?
- beq 1f
- VFPFMRX r8, FPINST2 @ FPINST2 if needed (and present)
-1:
-#endif
- stmia r4, {r1, r5, r6, r8} @ save FPEXC, FPSCR, FPINST, FPINST2
-vfp_reload_hw:
-
-#else
- @ For SMP, if this thread does not own the hw context, then we
- @ need to reload it. No need to save the old state as on SMP,
- @ we always save the state when we switch away from a thread.
- bne vfp_reload_hw
-
- @ This thread has ownership of the current hardware context.
- @ However, it may have been migrated to another CPU, in which
- @ case the saved state is newer than the hardware context.
- @ Check this by looking at the CPU number which the state was
- @ last loaded onto.
- ldr ip, [r10, #VFP_CPU]
- teq ip, r11
- beq vfp_hw_state_valid
-
-vfp_reload_hw:
- @ We're loading this threads state into the VFP hardware. Update
- @ the CPU number which contains the most up to date VFP context.
- str r11, [r10, #VFP_CPU]
-
- VFPFMXR FPEXC, r5 @ enable VFP, disable any pending
- @ exceptions, so we can get at the
- @ rest of it
-#endif
-
- DBGSTR1 "load state %p", r10
- str r10, [r3, r11, lsl #2] @ update the vfp_current_hw_state pointer
+ENTRY(vfp_load_state)
+ @ Load the current VFP state
+ @ r0 - load location
+ @ returns FPEXC
+ DBGSTR1 "load VFP state %p", r0
@ Load the saved state back into the VFP
- VFPFLDMIA r10, r5 @ reload the working registers while
+ VFPFLDMIA r0, r1 @ reload the working registers while
@ FPEXC is in a safe state
- ldmia r10, {r1, r5, r6, r8} @ load FPEXC, FPSCR, FPINST, FPINST2
-#ifndef CONFIG_CPU_FEROCEON
- tst r1, #FPEXC_EX @ is there additional state to restore?
+ ldmia r0, {r0-r3} @ load FPEXC, FPSCR, FPINST, FPINST2
+ tst r0, #FPEXC_EX @ is there additional state to restore?
beq 1f
- VFPFMXR FPINST, r6 @ restore FPINST (only if FPEXC.EX is set)
- tst r1, #FPEXC_FP2V @ is there an FPINST2 to write?
+ VFPFMXR FPINST, r2 @ restore FPINST (only if FPEXC.EX is set)
+ tst r0, #FPEXC_FP2V @ is there an FPINST2 to write?
beq 1f
- VFPFMXR FPINST2, r8 @ FPINST2 if needed (and present)
+ VFPFMXR FPINST2, r3 @ FPINST2 if needed (and present)
1:
-#endif
- VFPFMXR FPSCR, r5 @ restore status
-
-@ The context stored in the VFP hardware is up to date with this thread
-vfp_hw_state_valid:
- tst r1, #FPEXC_EX
- bne process_exception @ might as well handle the pending
- @ exception before retrying branch
- @ out before setting an FPEXC that
- @ stops us reading stuff
- VFPFMXR FPEXC, r1 @ Restore FPEXC last
- sub r2, r2, #4 @ Retry current instruction - if Thumb
- str r2, [sp, #S_PC] @ mode it's two 16-bit instructions,
- @ else it's one 32-bit instruction, so
- @ always subtract 4 from the following
- @ instruction address.
- dec_preempt_count_ti r10, r4
- ret r9 @ we think we have handled things
-
-
-look_for_VFP_exceptions:
- @ Check for synchronous or asynchronous exception
- tst r1, #FPEXC_EX | FPEXC_DEX
- bne process_exception
- @ On some implementations of the VFP subarch 1, setting FPSCR.IXE
- @ causes all the CDP instructions to be bounced synchronously without
- @ setting the FPEXC.EX bit
- VFPFMRX r5, FPSCR
- tst r5, #FPSCR_IXE
- bne process_exception
-
- tst r5, #FPSCR_LENGTH_MASK
- beq skip
- orr r1, r1, #FPEXC_DEX
- b process_exception
-skip:
-
- @ Fall into hand on to next handler - appropriate coproc instr
- @ not recognised by VFP
-
- DBGSTR "not VFP"
- dec_preempt_count_ti r10, r4
+ VFPFMXR FPSCR, r1 @ restore status
ret lr
-
-process_exception:
- DBGSTR "bounce"
- mov r2, sp @ nothing stacked - regdump is at TOS
- mov lr, r9 @ setup for a return to the user code.
-
- @ Now call the C code to package up the bounce to the support code
- @ r0 holds the trigger instruction
- @ r1 holds the FPEXC value
- @ r2 pointer to register dump
- b VFP_bounce @ we have handled this - the support
- @ code will raise an exception if
- @ required. If not, the user code will
- @ retry the faulted instruction
-ENDPROC(vfp_support_entry)
+ENDPROC(vfp_load_state)
ENTRY(vfp_save_state)
@ Save the current VFP state
@@ -243,10 +66,6 @@ ENTRY(vfp_save_state)
ret lr
ENDPROC(vfp_save_state)
- .align
-vfp_current_hw_state_address:
- .word vfp_current_hw_state
-
.macro tbl_branch, base, tmp, shift
#ifdef CONFIG_THUMB2_KERNEL
adr \tmp, 1f
@@ -261,11 +80,14 @@ vfp_current_hw_state_address:
ENTRY(vfp_get_float)
tbl_branch r0, r3, #3
+ .fpu vfpv2
.irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
-1: mrc p10, 0, r0, c\dr, c0, 0 @ fmrs r0, s0
+1: vmov r0, s\dr
ret lr
.org 1b + 8
-1: mrc p10, 0, r0, c\dr, c0, 4 @ fmrs r0, s1
+ .endr
+ .irp dr,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
+1: vmov r0, s\dr
ret lr
.org 1b + 8
.endr
@@ -273,11 +95,14 @@ ENDPROC(vfp_get_float)
ENTRY(vfp_put_float)
tbl_branch r1, r3, #3
+ .fpu vfpv2
.irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
-1: mcr p10, 0, r0, c\dr, c0, 0 @ fmsr r0, s0
+1: vmov s\dr, r0
ret lr
.org 1b + 8
-1: mcr p10, 0, r0, c\dr, c0, 4 @ fmsr r0, s1
+ .endr
+ .irp dr,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
+1: vmov s\dr, r0
ret lr
.org 1b + 8
.endr
@@ -285,15 +110,17 @@ ENDPROC(vfp_put_float)
ENTRY(vfp_get_double)
tbl_branch r0, r3, #3
+ .fpu vfpv2
.irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
-1: fmrrd r0, r1, d\dr
+1: vmov r0, r1, d\dr
ret lr
.org 1b + 8
.endr
#ifdef CONFIG_VFPv3
@ d16 - d31 registers
- .irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
-1: mrrc p11, 3, r0, r1, c\dr @ fmrrd r0, r1, d\dr
+ .fpu vfpv3
+ .irp dr,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
+1: vmov r0, r1, d\dr
ret lr
.org 1b + 8
.endr
@@ -307,15 +134,17 @@ ENDPROC(vfp_get_double)
ENTRY(vfp_put_double)
tbl_branch r2, r3, #3
+ .fpu vfpv2
.irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
-1: fmdrr d\dr, r0, r1
+1: vmov d\dr, r0, r1
ret lr
.org 1b + 8
.endr
#ifdef CONFIG_VFPv3
+ .fpu vfpv3
@ d16 - d31 registers
- .irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
-1: mcrr p11, 3, r0, r1, c\dr @ fmdrr r0, r1, d\dr
+ .irp dr,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
+1: vmov d\dr, r0, r1
ret lr
.org 1b + 8
.endr