summaryrefslogtreecommitdiff
path: root/arch/arm64/include/asm/kvm_mmu.h
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm64/include/asm/kvm_mmu.h')
-rw-r--r--arch/arm64/include/asm/kvm_mmu.h417
1 files changed, 341 insertions, 76 deletions
diff --git a/arch/arm64/include/asm/kvm_mmu.h b/arch/arm64/include/asm/kvm_mmu.h
index efe609c6a3c9..2dc5e6e742bb 100644
--- a/arch/arm64/include/asm/kvm_mmu.h
+++ b/arch/arm64/include/asm/kvm_mmu.h
@@ -1,18 +1,7 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2012,2013 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __ARM64_KVM_MMU_H__
@@ -20,116 +9,392 @@
#include <asm/page.h>
#include <asm/memory.h>
+#include <asm/mmu.h>
+#include <asm/cpufeature.h>
/*
- * As we only have the TTBR0_EL2 register, we cannot express
+ * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
* "negative" addresses. This makes it impossible to directly share
* mappings with the kernel.
*
* Instead, give the HYP mode its own VA region at a fixed offset from
* the kernel by just masking the top bits (which are all ones for a
- * kernel address).
+ * kernel address). We need to find out how many bits to mask.
+ *
+ * We want to build a set of page tables that cover both parts of the
+ * idmap (the trampoline page used to initialize EL2), and our normal
+ * runtime VA space, at the same time.
+ *
+ * Given that the kernel uses VA_BITS for its entire address space,
+ * and that half of that space (VA_BITS - 1) is used for the linear
+ * mapping, we can also limit the EL2 space to (VA_BITS - 1).
+ *
+ * The main question is "Within the VA_BITS space, does EL2 use the
+ * top or the bottom half of that space to shadow the kernel's linear
+ * mapping?". As we need to idmap the trampoline page, this is
+ * determined by the range in which this page lives.
+ *
+ * If the page is in the bottom half, we have to use the top half. If
+ * the page is in the top half, we have to use the bottom half:
+ *
+ * T = __pa_symbol(__hyp_idmap_text_start)
+ * if (T & BIT(VA_BITS - 1))
+ * HYP_VA_MIN = 0 //idmap in upper half
+ * else
+ * HYP_VA_MIN = 1 << (VA_BITS - 1)
+ * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
+ *
+ * When using VHE, there are no separate hyp mappings and all KVM
+ * functionality is already mapped as part of the main kernel
+ * mappings, and none of this applies in that case.
*/
-#define HYP_PAGE_OFFSET_SHIFT VA_BITS
-#define HYP_PAGE_OFFSET_MASK ((UL(1) << HYP_PAGE_OFFSET_SHIFT) - 1)
-#define HYP_PAGE_OFFSET (PAGE_OFFSET & HYP_PAGE_OFFSET_MASK)
+
+#ifdef __ASSEMBLER__
+
+#include <asm/alternative.h>
/*
- * Our virtual mapping for the idmap-ed MMU-enable code. Must be
- * shared across all the page-tables. Conveniently, we use the last
- * possible page, where no kernel mapping will ever exist.
+ * Convert a hypervisor VA to a PA
+ * reg: hypervisor address to be converted in place
+ * tmp: temporary register
*/
-#define TRAMPOLINE_VA (HYP_PAGE_OFFSET_MASK & PAGE_MASK)
-
-#ifdef __ASSEMBLY__
+.macro hyp_pa reg, tmp
+ ldr_l \tmp, hyp_physvirt_offset
+ add \reg, \reg, \tmp
+.endm
/*
- * Convert a kernel VA into a HYP VA.
- * reg: VA to be converted.
+ * Convert a hypervisor VA to a kernel image address
+ * reg: hypervisor address to be converted in place
+ * tmp: temporary register
+ *
+ * The actual code generation takes place in kvm_get_kimage_voffset, and
+ * the instructions below are only there to reserve the space and
+ * perform the register allocation (kvm_get_kimage_voffset uses the
+ * specific registers encoded in the instructions).
*/
-.macro kern_hyp_va reg
- and \reg, \reg, #HYP_PAGE_OFFSET_MASK
+.macro hyp_kimg_va reg, tmp
+ /* Convert hyp VA -> PA. */
+ hyp_pa \reg, \tmp
+
+ /* Load kimage_voffset. */
+alternative_cb ARM64_ALWAYS_SYSTEM, kvm_get_kimage_voffset
+ movz \tmp, #0
+ movk \tmp, #0, lsl #16
+ movk \tmp, #0, lsl #32
+ movk \tmp, #0, lsl #48
+alternative_cb_end
+
+ /* Convert PA -> kimg VA. */
+ add \reg, \reg, \tmp
.endm
#else
-#include <asm/cachetype.h>
+#include <linux/pgtable.h>
+#include <asm/pgalloc.h>
+#include <asm/cache.h>
#include <asm/cacheflush.h>
+#include <asm/mmu_context.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_host.h>
+#include <asm/kvm_nested.h>
+
+void kvm_update_va_mask(struct alt_instr *alt,
+ __le32 *origptr, __le32 *updptr, int nr_inst);
+void kvm_compute_layout(void);
+void kvm_apply_hyp_relocations(void);
-#define KERN_TO_HYP(kva) ((unsigned long)kva - PAGE_OFFSET + HYP_PAGE_OFFSET)
+#define __hyp_pa(x) (((phys_addr_t)(x)) + hyp_physvirt_offset)
/*
- * Align KVM with the kernel's view of physical memory. Should be
- * 40bit IPA, with PGD being 8kB aligned in the 4KB page configuration.
+ * Convert a kernel VA into a HYP VA.
+ *
+ * Can be called from hyp or non-hyp context.
+ *
+ * The actual code generation takes place in kvm_update_va_mask(), and
+ * the instructions below are only there to reserve the space and
+ * perform the register allocation (kvm_update_va_mask() uses the
+ * specific registers encoded in the instructions).
+ */
+static __always_inline unsigned long __kern_hyp_va(unsigned long v)
+{
+/*
+ * This #ifndef is an optimisation for when this is called from VHE hyp
+ * context. When called from a VHE non-hyp context, kvm_update_va_mask() will
+ * replace the instructions with `nop`s.
*/
-#define KVM_PHYS_SHIFT PHYS_MASK_SHIFT
-#define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT)
-#define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL)
+#ifndef __KVM_VHE_HYPERVISOR__
+ asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n" /* mask with va_mask */
+ "ror %0, %0, #1\n" /* rotate to the first tag bit */
+ "add %0, %0, #0\n" /* insert the low 12 bits of the tag */
+ "add %0, %0, #0, lsl 12\n" /* insert the top 12 bits of the tag */
+ "ror %0, %0, #63\n", /* rotate back */
+ ARM64_ALWAYS_SYSTEM,
+ kvm_update_va_mask)
+ : "+r" (v));
+#endif
+ return v;
+}
-/* Make sure we get the right size, and thus the right alignment */
-#define PTRS_PER_S2_PGD (1 << (KVM_PHYS_SHIFT - PGDIR_SHIFT))
-#define S2_PGD_ORDER get_order(PTRS_PER_S2_PGD * sizeof(pgd_t))
+#define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
-int create_hyp_mappings(void *from, void *to);
-int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
-void free_boot_hyp_pgd(void);
-void free_hyp_pgds(void);
+extern u32 __hyp_va_bits;
-int kvm_alloc_stage2_pgd(struct kvm *kvm);
-void kvm_free_stage2_pgd(struct kvm *kvm);
-int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
- phys_addr_t pa, unsigned long size);
+/*
+ * We currently support using a VM-specified IPA size. For backward
+ * compatibility, the default IPA size is fixed to 40bits.
+ */
+#define KVM_PHYS_SHIFT (40)
+
+#define kvm_phys_shift(mmu) VTCR_EL2_IPA((mmu)->vtcr)
+#define kvm_phys_size(mmu) (_AC(1, ULL) << kvm_phys_shift(mmu))
+#define kvm_phys_mask(mmu) (kvm_phys_size(mmu) - _AC(1, ULL))
+
+#include <asm/kvm_pgtable.h>
+#include <asm/stage2_pgtable.h>
+
+int kvm_share_hyp(void *from, void *to);
+void kvm_unshare_hyp(void *from, void *to);
+int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot);
+int __create_hyp_mappings(unsigned long start, unsigned long size,
+ unsigned long phys, enum kvm_pgtable_prot prot);
+int hyp_alloc_private_va_range(size_t size, unsigned long *haddr);
+int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
+ void __iomem **kaddr,
+ void __iomem **haddr);
+int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
+ void **haddr);
+int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr);
+void __init free_hyp_pgds(void);
-int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
+void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start,
+ u64 size, bool may_block);
+void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end);
+void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end);
-void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
+void stage2_unmap_vm(struct kvm *kvm);
+int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type);
+void kvm_uninit_stage2_mmu(struct kvm *kvm);
+void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
+int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
+ phys_addr_t pa, unsigned long size, bool writable);
+
+int kvm_handle_guest_sea(struct kvm_vcpu *vcpu);
+int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
phys_addr_t kvm_mmu_get_httbr(void);
-phys_addr_t kvm_mmu_get_boot_httbr(void);
phys_addr_t kvm_get_idmap_vector(void);
-int kvm_mmu_init(void);
-void kvm_clear_hyp_idmap(void);
+int __init kvm_mmu_init(u32 *hyp_va_bits);
+
+static inline void *__kvm_vector_slot2addr(void *base,
+ enum arm64_hyp_spectre_vector slot)
+{
+ int idx = slot - (slot != HYP_VECTOR_DIRECT);
+
+ return base + (idx * SZ_2K);
+}
-#define kvm_set_pte(ptep, pte) set_pte(ptep, pte)
+struct kvm;
+
+#define kvm_flush_dcache_to_poc(a,l) \
+ dcache_clean_inval_poc((unsigned long)(a), (unsigned long)(a)+(l))
-static inline bool kvm_is_write_fault(unsigned long esr)
+static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
{
- unsigned long esr_ec = esr >> ESR_EL2_EC_SHIFT;
+ u64 cache_bits = SCTLR_ELx_M | SCTLR_ELx_C;
+ int reg;
+
+ if (vcpu_is_el2(vcpu))
+ reg = SCTLR_EL2;
+ else
+ reg = SCTLR_EL1;
- if (esr_ec == ESR_EL2_EC_IABT)
- return false;
+ return (vcpu_read_sys_reg(vcpu, reg) & cache_bits) == cache_bits;
+}
- if ((esr & ESR_EL2_ISV) && !(esr & ESR_EL2_WNR))
- return false;
+static inline void __clean_dcache_guest_page(void *va, size_t size)
+{
+ /*
+ * With FWB, we ensure that the guest always accesses memory using
+ * cacheable attributes, and we don't have to clean to PoC when
+ * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
+ * PoU is not required either in this case.
+ */
+ if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
+ return;
- return true;
+ kvm_flush_dcache_to_poc(va, size);
}
-static inline void kvm_clean_dcache_area(void *addr, size_t size) {}
-static inline void kvm_clean_pgd(pgd_t *pgd) {}
-static inline void kvm_clean_pmd_entry(pmd_t *pmd) {}
-static inline void kvm_clean_pte(pte_t *pte) {}
-static inline void kvm_clean_pte_entry(pte_t *pte) {}
+static inline size_t __invalidate_icache_max_range(void)
+{
+ u8 iminline;
+ u64 ctr;
+
+ asm volatile(ALTERNATIVE_CB("movz %0, #0\n"
+ "movk %0, #0, lsl #16\n"
+ "movk %0, #0, lsl #32\n"
+ "movk %0, #0, lsl #48\n",
+ ARM64_ALWAYS_SYSTEM,
+ kvm_compute_final_ctr_el0)
+ : "=r" (ctr));
+
+ iminline = SYS_FIELD_GET(CTR_EL0, IminLine, ctr) + 2;
+ return MAX_DVM_OPS << iminline;
+}
-static inline void kvm_set_s2pte_writable(pte_t *pte)
+static inline void __invalidate_icache_guest_page(void *va, size_t size)
{
- pte_val(*pte) |= PTE_S2_RDWR;
+ /*
+ * Blow the whole I-cache if it is aliasing (i.e. VIPT) or the
+ * invalidation range exceeds our arbitrary limit on invadations by
+ * cache line.
+ */
+ if (icache_is_aliasing() || size > __invalidate_icache_max_range())
+ icache_inval_all_pou();
+ else
+ icache_inval_pou((unsigned long)va, (unsigned long)va + size);
}
-struct kvm;
+void kvm_set_way_flush(struct kvm_vcpu *vcpu);
+void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
+
+static inline unsigned int kvm_get_vmid_bits(void)
+{
+ int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
-static inline void coherent_icache_guest_page(struct kvm *kvm, gfn_t gfn)
+ return get_vmid_bits(reg);
+}
+
+/*
+ * We are not in the kvm->srcu critical section most of the time, so we take
+ * the SRCU read lock here. Since we copy the data from the user page, we
+ * can immediately drop the lock again.
+ */
+static inline int kvm_read_guest_lock(struct kvm *kvm,
+ gpa_t gpa, void *data, unsigned long len)
{
- if (!icache_is_aliasing()) { /* PIPT */
- unsigned long hva = gfn_to_hva(kvm, gfn);
- flush_icache_range(hva, hva + PAGE_SIZE);
- } else if (!icache_is_aivivt()) { /* non ASID-tagged VIVT */
- /* any kind of VIPT cache */
- __flush_icache_all();
- }
+ int srcu_idx = srcu_read_lock(&kvm->srcu);
+ int ret = kvm_read_guest(kvm, gpa, data, len);
+
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+
+ return ret;
}
-#define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
+static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
+ const void *data, unsigned long len)
+{
+ int srcu_idx = srcu_read_lock(&kvm->srcu);
+ int ret = kvm_write_guest(kvm, gpa, data, len);
+
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+
+ return ret;
+}
+
+#define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
+
+/*
+ * When this is (directly or indirectly) used on the TLB invalidation
+ * path, we rely on a previously issued DSB so that page table updates
+ * and VMID reads are correctly ordered.
+ */
+static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
+{
+ struct kvm_vmid *vmid = &mmu->vmid;
+ u64 vmid_field, baddr;
+ u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
+
+ baddr = mmu->pgd_phys;
+ vmid_field = atomic64_read(&vmid->id) << VTTBR_VMID_SHIFT;
+ vmid_field &= VTTBR_VMID_MASK(kvm_arm_vmid_bits);
+ return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
+}
+
+/*
+ * Must be called from hyp code running at EL2 with an updated VTTBR
+ * and interrupts disabled.
+ */
+static __always_inline void __load_stage2(struct kvm_s2_mmu *mmu,
+ struct kvm_arch *arch)
+{
+ write_sysreg(mmu->vtcr, vtcr_el2);
+ write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
+
+ /*
+ * ARM errata 1165522 and 1530923 require the actual execution of the
+ * above before we can switch to the EL1/EL0 translation regime used by
+ * the guest.
+ */
+ asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
+}
+
+static inline struct kvm *kvm_s2_mmu_to_kvm(struct kvm_s2_mmu *mmu)
+{
+ return container_of(mmu->arch, struct kvm, arch);
+}
+
+static inline u64 get_vmid(u64 vttbr)
+{
+ return (vttbr & VTTBR_VMID_MASK(kvm_get_vmid_bits())) >>
+ VTTBR_VMID_SHIFT;
+}
+
+static inline bool kvm_s2_mmu_valid(struct kvm_s2_mmu *mmu)
+{
+ return !(mmu->tlb_vttbr & VTTBR_CNP_BIT);
+}
+
+static inline bool kvm_is_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
+{
+ /*
+ * Be careful, mmu may not be fully initialised so do look at
+ * *any* of its fields.
+ */
+ return &kvm->arch.mmu != mmu;
+}
+
+static inline void kvm_fault_lock(struct kvm *kvm)
+{
+ if (is_protected_kvm_enabled())
+ write_lock(&kvm->mmu_lock);
+ else
+ read_lock(&kvm->mmu_lock);
+}
+
+static inline void kvm_fault_unlock(struct kvm *kvm)
+{
+ if (is_protected_kvm_enabled())
+ write_unlock(&kvm->mmu_lock);
+ else
+ read_unlock(&kvm->mmu_lock);
+}
+
+/*
+ * ARM64 KVM relies on a simple conversion from physaddr to a kernel
+ * virtual address (KVA) when it does cache maintenance as the CMO
+ * instructions work on virtual addresses. This is incompatible with
+ * VM_PFNMAP VMAs which may not have a kernel direct mapping to a
+ * virtual address.
+ *
+ * With S2FWB and CACHE DIC features, KVM need not do cache flushing
+ * and CMOs are NOP'd. This has the effect of no longer requiring a
+ * KVA for addresses mapped into the S2. The presence of these features
+ * are thus necessary to support cacheable S2 mapping of VM_PFNMAP.
+ */
+static inline bool kvm_supports_cacheable_pfnmap(void)
+{
+ return cpus_have_final_cap(ARM64_HAS_STAGE2_FWB) &&
+ cpus_have_final_cap(ARM64_HAS_CACHE_DIC);
+}
+
+#ifdef CONFIG_PTDUMP_STAGE2_DEBUGFS
+void kvm_s2_ptdump_create_debugfs(struct kvm *kvm);
+#else
+static inline void kvm_s2_ptdump_create_debugfs(struct kvm *kvm) {}
+#endif /* CONFIG_PTDUMP_STAGE2_DEBUGFS */
-#endif /* __ASSEMBLY__ */
+#endif /* __ASSEMBLER__ */
#endif /* __ARM64_KVM_MMU_H__ */