summaryrefslogtreecommitdiff
path: root/arch/arm64/kernel/fpsimd.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm64/kernel/fpsimd.c')
-rw-r--r--arch/arm64/kernel/fpsimd.c867
1 files changed, 432 insertions, 435 deletions
diff --git a/arch/arm64/kernel/fpsimd.c b/arch/arm64/kernel/fpsimd.c
index 520b681a07bb..c154f72634e0 100644
--- a/arch/arm64/kernel/fpsimd.c
+++ b/arch/arm64/kernel/fpsimd.c
@@ -85,13 +85,13 @@
* softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
* flag the register state as invalid.
*
- * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
- * save the task's FPSIMD context back to task_struct from softirq context.
- * To prevent this from racing with the manipulation of the task's FPSIMD state
- * from task context and thereby corrupting the state, it is necessary to
- * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
- * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
- * run but prevent them to use FPSIMD.
+ * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may be
+ * called from softirq context, which will save the task's FPSIMD context back
+ * to task_struct. To prevent this from racing with the manipulation of the
+ * task's FPSIMD state from task context and thereby corrupting the state, it
+ * is necessary to protect any manipulation of a task's fpsimd_state or
+ * TIF_FOREIGN_FPSTATE flag with get_cpu_fpsimd_context(), which will suspend
+ * softirq servicing entirely until put_cpu_fpsimd_context() is called.
*
* For a certain task, the sequence may look something like this:
* - the task gets scheduled in; if both the task's fpsimd_cpu field
@@ -119,7 +119,7 @@
* whatever is in the FPSIMD registers is not saved to memory, but discarded.
*/
-static DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
+DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
__ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
#ifdef CONFIG_ARM64_SVE
@@ -180,12 +180,12 @@ static inline void set_sve_default_vl(int val)
set_default_vl(ARM64_VEC_SVE, val);
}
-static void __percpu *efi_sve_state;
+static u8 *efi_sve_state;
#else /* ! CONFIG_ARM64_SVE */
/* Dummy declaration for code that will be optimised out: */
-extern void __percpu *efi_sve_state;
+extern u8 *efi_sve_state;
#endif /* ! CONFIG_ARM64_SVE */
@@ -209,27 +209,14 @@ static inline void sme_free(struct task_struct *t) { }
#endif
-DEFINE_PER_CPU(bool, fpsimd_context_busy);
-EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
-
static void fpsimd_bind_task_to_cpu(void);
-static void __get_cpu_fpsimd_context(void)
-{
- bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
-
- WARN_ON(busy);
-}
-
/*
* Claim ownership of the CPU FPSIMD context for use by the calling context.
*
* The caller may freely manipulate the FPSIMD context metadata until
* put_cpu_fpsimd_context() is called.
*
- * The double-underscore version must only be called if you know the task
- * can't be preempted.
- *
* On RT kernels local_bh_disable() is not sufficient because it only
* serializes soft interrupt related sections via a local lock, but stays
* preemptible. Disabling preemption is the right choice here as bottom
@@ -238,18 +225,21 @@ static void __get_cpu_fpsimd_context(void)
*/
static void get_cpu_fpsimd_context(void)
{
- if (!IS_ENABLED(CONFIG_PREEMPT_RT))
- local_bh_disable();
- else
+ if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
+ /*
+ * The softirq subsystem lacks a true unmask/mask API, and
+ * re-enabling softirq processing using local_bh_enable() will
+ * not only unmask softirqs, it will also result in immediate
+ * delivery of any pending softirqs.
+ * This is undesirable when running with IRQs disabled, but in
+ * that case, there is no need to mask softirqs in the first
+ * place, so only bother doing so when IRQs are enabled.
+ */
+ if (!irqs_disabled())
+ local_bh_disable();
+ } else {
preempt_disable();
- __get_cpu_fpsimd_context();
-}
-
-static void __put_cpu_fpsimd_context(void)
-{
- bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
-
- WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
+ }
}
/*
@@ -261,16 +251,12 @@ static void __put_cpu_fpsimd_context(void)
*/
static void put_cpu_fpsimd_context(void)
{
- __put_cpu_fpsimd_context();
- if (!IS_ENABLED(CONFIG_PREEMPT_RT))
- local_bh_enable();
- else
+ if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
+ if (!irqs_disabled())
+ local_bh_enable();
+ } else {
preempt_enable();
-}
-
-static bool have_cpu_fpsimd_context(void)
-{
- return !preemptible() && __this_cpu_read(fpsimd_context_busy);
+ }
}
unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
@@ -383,19 +369,18 @@ static void task_fpsimd_load(void)
bool restore_ffr;
WARN_ON(!system_supports_fpsimd());
- WARN_ON(!have_cpu_fpsimd_context());
+ WARN_ON(preemptible());
+ WARN_ON(test_thread_flag(TIF_KERNEL_FPSTATE));
if (system_supports_sve() || system_supports_sme()) {
switch (current->thread.fp_type) {
case FP_STATE_FPSIMD:
/* Stop tracking SVE for this task until next use. */
- if (test_and_clear_thread_flag(TIF_SVE))
- sve_user_disable();
+ clear_thread_flag(TIF_SVE);
break;
case FP_STATE_SVE:
- if (!thread_sm_enabled(&current->thread) &&
- !WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE)))
- sve_user_enable();
+ if (!thread_sm_enabled(&current->thread))
+ WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE));
if (test_thread_flag(TIF_SVE))
sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
@@ -406,10 +391,10 @@ static void task_fpsimd_load(void)
default:
/*
* This indicates either a bug in
- * fpsimd_save() or memory corruption, we
+ * fpsimd_save_user_state() or memory corruption, we
* should always record an explicit format
* when we save. We always at least have the
- * memory allocated for FPSMID registers so
+ * memory allocated for FPSIMD registers so
* try that and hope for the best.
*/
WARN_ON_ONCE(1);
@@ -436,6 +421,9 @@ static void task_fpsimd_load(void)
restore_ffr = system_supports_fa64();
}
+ if (system_supports_fpmr())
+ write_sysreg_s(current->thread.uw.fpmr, SYS_FPMR);
+
if (restore_sve_regs) {
WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
sve_load_state(sve_pffr(&current->thread),
@@ -457,7 +445,7 @@ static void task_fpsimd_load(void)
* than via current, if we are saving KVM state then it will have
* ensured that the type of registers to save is set in last->to_save.
*/
-static void fpsimd_save(void)
+static void fpsimd_save_user_state(void)
{
struct cpu_fp_state const *last =
this_cpu_ptr(&fpsimd_last_state);
@@ -467,18 +455,24 @@ static void fpsimd_save(void)
unsigned int vl;
WARN_ON(!system_supports_fpsimd());
- WARN_ON(!have_cpu_fpsimd_context());
+ WARN_ON(preemptible());
if (test_thread_flag(TIF_FOREIGN_FPSTATE))
return;
+ if (system_supports_fpmr())
+ *(last->fpmr) = read_sysreg_s(SYS_FPMR);
+
/*
- * If a task is in a syscall the ABI allows us to only
- * preserve the state shared with FPSIMD so don't bother
- * saving the full SVE state in that case.
+ * Save SVE state if it is live.
+ *
+ * The syscall ABI discards live SVE state at syscall entry. When
+ * entering a syscall, fpsimd_syscall_enter() sets to_save to
+ * FP_STATE_FPSIMD to allow the SVE state to be lazily discarded until
+ * either new SVE state is loaded+bound or fpsimd_syscall_exit() is
+ * called prior to a return to userspace.
*/
- if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE) &&
- !in_syscall(current_pt_regs())) ||
+ if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE)) ||
last->to_save == FP_STATE_SVE) {
save_sve_regs = true;
save_ffr = true;
@@ -555,7 +549,7 @@ static unsigned int find_supported_vector_length(enum vec_type type,
#if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
-static int vec_proc_do_default_vl(struct ctl_table *table, int write,
+static int vec_proc_do_default_vl(const struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
struct vl_info *info = table->extra1;
@@ -582,14 +576,13 @@ static int vec_proc_do_default_vl(struct ctl_table *table, int write,
return 0;
}
-static struct ctl_table sve_default_vl_table[] = {
+static const struct ctl_table sve_default_vl_table[] = {
{
.procname = "sve_default_vector_length",
.mode = 0644,
.proc_handler = vec_proc_do_default_vl,
.extra1 = &vl_info[ARM64_VEC_SVE],
},
- { }
};
static int __init sve_sysctl_init(void)
@@ -606,14 +599,13 @@ static int __init sve_sysctl_init(void) { return 0; }
#endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
#if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
-static struct ctl_table sme_default_vl_table[] = {
+static const struct ctl_table sme_default_vl_table[] = {
{
.procname = "sme_default_vector_length",
.mode = 0644,
.proc_handler = vec_proc_do_default_vl,
.extra1 = &vl_info[ARM64_VEC_SME],
},
- { }
};
static int __init sme_sysctl_init(void)
@@ -673,13 +665,13 @@ static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
* task->thread.uw.fpsimd_state must be up to date before calling this
* function.
*/
-static void fpsimd_to_sve(struct task_struct *task)
+static inline void fpsimd_to_sve(struct task_struct *task)
{
unsigned int vq;
void *sst = task->thread.sve_state;
struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
- if (!system_supports_sve())
+ if (!system_supports_sve() && !system_supports_sme())
return;
vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
@@ -697,7 +689,7 @@ static void fpsimd_to_sve(struct task_struct *task)
* bytes of allocated kernel memory.
* task->thread.sve_state must be up to date before calling this function.
*/
-static void sve_to_fpsimd(struct task_struct *task)
+static inline void sve_to_fpsimd(struct task_struct *task)
{
unsigned int vq, vl;
void const *sst = task->thread.sve_state;
@@ -705,7 +697,7 @@ static void sve_to_fpsimd(struct task_struct *task)
unsigned int i;
__uint128_t const *p;
- if (!system_supports_sve())
+ if (!system_supports_sve() && !system_supports_sme())
return;
vl = thread_get_cur_vl(&task->thread);
@@ -716,38 +708,39 @@ static void sve_to_fpsimd(struct task_struct *task)
}
}
-#ifdef CONFIG_ARM64_SVE
-/*
- * Call __sve_free() directly only if you know task can't be scheduled
- * or preempted.
- */
-static void __sve_free(struct task_struct *task)
+static inline void __fpsimd_zero_vregs(struct user_fpsimd_state *fpsimd)
{
- kfree(task->thread.sve_state);
- task->thread.sve_state = NULL;
+ memset(&fpsimd->vregs, 0, sizeof(fpsimd->vregs));
}
-static void sve_free(struct task_struct *task)
+/*
+ * Simulate the effects of an SMSTOP SM instruction.
+ */
+void task_smstop_sm(struct task_struct *task)
{
- WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
+ if (!thread_sm_enabled(&task->thread))
+ return;
- __sve_free(task);
+ __fpsimd_zero_vregs(&task->thread.uw.fpsimd_state);
+ task->thread.uw.fpsimd_state.fpsr = 0x0800009f;
+ if (system_supports_fpmr())
+ task->thread.uw.fpmr = 0;
+
+ task->thread.svcr &= ~SVCR_SM_MASK;
+ task->thread.fp_type = FP_STATE_FPSIMD;
}
-/*
- * Return how many bytes of memory are required to store the full SVE
- * state for task, given task's currently configured vector length.
- */
-size_t sve_state_size(struct task_struct const *task)
+void cpu_enable_fpmr(const struct arm64_cpu_capabilities *__always_unused p)
{
- unsigned int vl = 0;
-
- if (system_supports_sve())
- vl = task_get_sve_vl(task);
- if (system_supports_sme())
- vl = max(vl, task_get_sme_vl(task));
+ write_sysreg_s(read_sysreg_s(SYS_SCTLR_EL1) | SCTLR_EL1_EnFPM_MASK,
+ SYS_SCTLR_EL1);
+}
- return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
+#ifdef CONFIG_ARM64_SVE
+static void sve_free(struct task_struct *task)
+{
+ kfree(task->thread.sve_state);
+ task->thread.sve_state = NULL;
}
/*
@@ -774,68 +767,34 @@ void sve_alloc(struct task_struct *task, bool flush)
kzalloc(sve_state_size(task), GFP_KERNEL);
}
-
-/*
- * Force the FPSIMD state shared with SVE to be updated in the SVE state
- * even if the SVE state is the current active state.
- *
- * This should only be called by ptrace. task must be non-runnable.
- * task->thread.sve_state must point to at least sve_state_size(task)
- * bytes of allocated kernel memory.
- */
-void fpsimd_force_sync_to_sve(struct task_struct *task)
-{
- fpsimd_to_sve(task);
-}
-
/*
- * Ensure that task->thread.sve_state is up to date with respect to
- * the user task, irrespective of when SVE is in use or not.
+ * Ensure that task->thread.uw.fpsimd_state is up to date with respect to the
+ * task's currently effective FPSIMD/SVE state.
*
- * This should only be called by ptrace. task must be non-runnable.
- * task->thread.sve_state must point to at least sve_state_size(task)
- * bytes of allocated kernel memory.
- */
-void fpsimd_sync_to_sve(struct task_struct *task)
-{
- if (!test_tsk_thread_flag(task, TIF_SVE) &&
- !thread_sm_enabled(&task->thread))
- fpsimd_to_sve(task);
-}
-
-/*
- * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
- * the user task, irrespective of whether SVE is in use or not.
- *
- * This should only be called by ptrace. task must be non-runnable.
- * task->thread.sve_state must point to at least sve_state_size(task)
- * bytes of allocated kernel memory.
+ * The task's FPSIMD/SVE/SME state must not be subject to concurrent
+ * manipulation.
*/
-void sve_sync_to_fpsimd(struct task_struct *task)
+void fpsimd_sync_from_effective_state(struct task_struct *task)
{
if (task->thread.fp_type == FP_STATE_SVE)
sve_to_fpsimd(task);
}
/*
- * Ensure that task->thread.sve_state is up to date with respect to
- * the task->thread.uw.fpsimd_state.
+ * Ensure that the task's currently effective FPSIMD/SVE state is up to date
+ * with respect to task->thread.uw.fpsimd_state, zeroing any effective
+ * non-FPSIMD (S)SVE state.
*
- * This should only be called by ptrace to merge new FPSIMD register
- * values into a task for which SVE is currently active.
- * task must be non-runnable.
- * task->thread.sve_state must point to at least sve_state_size(task)
- * bytes of allocated kernel memory.
- * task->thread.uw.fpsimd_state must already have been initialised with
- * the new FPSIMD register values to be merged in.
+ * The task's FPSIMD/SVE/SME state must not be subject to concurrent
+ * manipulation.
*/
-void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
+void fpsimd_sync_to_effective_state_zeropad(struct task_struct *task)
{
unsigned int vq;
void *sst = task->thread.sve_state;
struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
- if (!test_tsk_thread_flag(task, TIF_SVE))
+ if (task->thread.fp_type != FP_STATE_SVE)
return;
vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
@@ -844,10 +803,73 @@ void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
__fpsimd_to_sve(sst, fst, vq);
}
+static int change_live_vector_length(struct task_struct *task,
+ enum vec_type type,
+ unsigned long vl)
+{
+ unsigned int sve_vl = task_get_sve_vl(task);
+ unsigned int sme_vl = task_get_sme_vl(task);
+ void *sve_state = NULL, *sme_state = NULL;
+
+ if (type == ARM64_VEC_SME)
+ sme_vl = vl;
+ else
+ sve_vl = vl;
+
+ /*
+ * Allocate the new sve_state and sme_state before freeing the old
+ * copies so that allocation failure can be handled without needing to
+ * mutate the task's state in any way.
+ *
+ * Changes to the SVE vector length must not discard live ZA state or
+ * clear PSTATE.ZA, as userspace code which is unaware of the AAPCS64
+ * ZA lazy saving scheme may attempt to change the SVE vector length
+ * while unsaved/dormant ZA state exists.
+ */
+ sve_state = kzalloc(__sve_state_size(sve_vl, sme_vl), GFP_KERNEL);
+ if (!sve_state)
+ goto out_mem;
+
+ if (type == ARM64_VEC_SME) {
+ sme_state = kzalloc(__sme_state_size(sme_vl), GFP_KERNEL);
+ if (!sme_state)
+ goto out_mem;
+ }
+
+ if (task == current)
+ fpsimd_save_and_flush_current_state();
+ else
+ fpsimd_flush_task_state(task);
+
+ /*
+ * Always preserve PSTATE.SM and the effective FPSIMD state, zeroing
+ * other SVE state.
+ */
+ fpsimd_sync_from_effective_state(task);
+ task_set_vl(task, type, vl);
+ kfree(task->thread.sve_state);
+ task->thread.sve_state = sve_state;
+ fpsimd_sync_to_effective_state_zeropad(task);
+
+ if (type == ARM64_VEC_SME) {
+ task->thread.svcr &= ~SVCR_ZA_MASK;
+ kfree(task->thread.sme_state);
+ task->thread.sme_state = sme_state;
+ }
+
+ return 0;
+
+out_mem:
+ kfree(sve_state);
+ kfree(sme_state);
+ return -ENOMEM;
+}
+
int vec_set_vector_length(struct task_struct *task, enum vec_type type,
unsigned long vl, unsigned long flags)
{
- bool free_sme = false;
+ bool onexec = flags & PR_SVE_SET_VL_ONEXEC;
+ bool inherit = flags & PR_SVE_VL_INHERIT;
if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
PR_SVE_SET_VL_ONEXEC))
@@ -867,73 +889,17 @@ int vec_set_vector_length(struct task_struct *task, enum vec_type type,
vl = find_supported_vector_length(type, vl);
- if (flags & (PR_SVE_VL_INHERIT |
- PR_SVE_SET_VL_ONEXEC))
+ if (!onexec && vl != task_get_vl(task, type)) {
+ if (change_live_vector_length(task, type, vl))
+ return -ENOMEM;
+ }
+
+ if (onexec || inherit)
task_set_vl_onexec(task, type, vl);
else
/* Reset VL to system default on next exec: */
task_set_vl_onexec(task, type, 0);
- /* Only actually set the VL if not deferred: */
- if (flags & PR_SVE_SET_VL_ONEXEC)
- goto out;
-
- if (vl == task_get_vl(task, type))
- goto out;
-
- /*
- * To ensure the FPSIMD bits of the SVE vector registers are preserved,
- * write any live register state back to task_struct, and convert to a
- * regular FPSIMD thread.
- */
- if (task == current) {
- get_cpu_fpsimd_context();
-
- fpsimd_save();
- }
-
- fpsimd_flush_task_state(task);
- if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
- thread_sm_enabled(&task->thread)) {
- sve_to_fpsimd(task);
- task->thread.fp_type = FP_STATE_FPSIMD;
- }
-
- if (system_supports_sme()) {
- if (type == ARM64_VEC_SME ||
- !(task->thread.svcr & (SVCR_SM_MASK | SVCR_ZA_MASK))) {
- /*
- * We are changing the SME VL or weren't using
- * SME anyway, discard the state and force a
- * reallocation.
- */
- task->thread.svcr &= ~(SVCR_SM_MASK |
- SVCR_ZA_MASK);
- clear_thread_flag(TIF_SME);
- free_sme = true;
- }
- }
-
- if (task == current)
- put_cpu_fpsimd_context();
-
- task_set_vl(task, type, vl);
-
- /*
- * Free the changed states if they are not in use, SME will be
- * reallocated to the correct size on next use and we just
- * allocate SVE now in case it is needed for use in streaming
- * mode.
- */
- if (system_supports_sve()) {
- sve_free(task);
- sve_alloc(task, true);
- }
-
- if (free_sme)
- sme_free(task);
-
-out:
update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
flags & PR_SVE_VL_INHERIT);
@@ -1148,60 +1114,31 @@ static void __init sve_efi_setup(void)
if (!sve_vl_valid(max_vl))
goto fail;
- efi_sve_state = __alloc_percpu(
- SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
+ efi_sve_state = kmalloc(SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)),
+ GFP_KERNEL);
if (!efi_sve_state)
goto fail;
return;
fail:
- panic("Cannot allocate percpu memory for EFI SVE save/restore");
+ panic("Cannot allocate memory for EFI SVE save/restore");
}
-/*
- * Enable SVE for EL1.
- * Intended for use by the cpufeatures code during CPU boot.
- */
-void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
+void cpu_enable_sve(const struct arm64_cpu_capabilities *__always_unused p)
{
write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
isb();
-}
-
-/*
- * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
- * vector length.
- *
- * Use only if SVE is present.
- * This function clobbers the SVE vector length.
- */
-u64 read_zcr_features(void)
-{
- u64 zcr;
- unsigned int vq_max;
-
- /*
- * Set the maximum possible VL, and write zeroes to all other
- * bits to see if they stick.
- */
- sve_kernel_enable(NULL);
- write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
- zcr = read_sysreg_s(SYS_ZCR_EL1);
- zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
- vq_max = sve_vq_from_vl(sve_get_vl());
- zcr |= vq_max - 1; /* set LEN field to maximum effective value */
-
- return zcr;
+ write_sysreg_s(0, SYS_ZCR_EL1);
}
void __init sve_setup(void)
{
struct vl_info *info = &vl_info[ARM64_VEC_SVE];
- u64 zcr;
DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
unsigned long b;
+ int max_bit;
if (!system_supports_sve())
return;
@@ -1214,17 +1151,8 @@ void __init sve_setup(void)
if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
- zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
- info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
-
- /*
- * Sanity-check that the max VL we determined through CPU features
- * corresponds properly to sve_vq_map. If not, do our best:
- */
- if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
- info->max_vl)))
- info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
- info->max_vl);
+ max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
+ info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
/*
* For the default VL, pick the maximum supported value <= 64.
@@ -1267,7 +1195,7 @@ void __init sve_setup(void)
*/
void fpsimd_release_task(struct task_struct *dead_task)
{
- __sve_free(dead_task);
+ sve_free(dead_task);
sme_free(dead_task);
}
@@ -1284,10 +1212,12 @@ void fpsimd_release_task(struct task_struct *dead_task)
* the interest of testability and predictability, the architecture
* guarantees that when ZA is enabled it will be zeroed.
*/
-void sme_alloc(struct task_struct *task)
+void sme_alloc(struct task_struct *task, bool flush)
{
if (task->thread.sme_state) {
- memset(task->thread.sme_state, 0, sme_state_size(task));
+ if (flush)
+ memset(task->thread.sme_state, 0,
+ sme_state_size(task));
return;
}
@@ -1302,7 +1232,7 @@ static void sme_free(struct task_struct *task)
task->thread.sme_state = NULL;
}
-void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
+void cpu_enable_sme(const struct arm64_cpu_capabilities *__always_unused p)
{
/* Set priority for all PEs to architecturally defined minimum */
write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
@@ -1312,92 +1242,57 @@ void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
isb();
+ /* Ensure all bits in SMCR are set to known values */
+ write_sysreg_s(0, SYS_SMCR_EL1);
+
/* Allow EL0 to access TPIDR2 */
write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
isb();
}
-/*
- * This must be called after sme_kernel_enable(), we rely on the
- * feature table being sorted to ensure this.
- */
-void sme2_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
+void cpu_enable_sme2(const struct arm64_cpu_capabilities *__always_unused p)
{
+ /* This must be enabled after SME */
+ BUILD_BUG_ON(ARM64_SME2 <= ARM64_SME);
+
/* Allow use of ZT0 */
write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK,
SYS_SMCR_EL1);
}
-/*
- * This must be called after sme_kernel_enable(), we rely on the
- * feature table being sorted to ensure this.
- */
-void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
+void cpu_enable_fa64(const struct arm64_cpu_capabilities *__always_unused p)
{
+ /* This must be enabled after SME */
+ BUILD_BUG_ON(ARM64_SME_FA64 <= ARM64_SME);
+
/* Allow use of FA64 */
write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
SYS_SMCR_EL1);
}
-/*
- * Read the pseudo-SMCR used by cpufeatures to identify the supported
- * vector length.
- *
- * Use only if SME is present.
- * This function clobbers the SME vector length.
- */
-u64 read_smcr_features(void)
-{
- u64 smcr;
- unsigned int vq_max;
-
- sme_kernel_enable(NULL);
-
- /*
- * Set the maximum possible VL.
- */
- write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK,
- SYS_SMCR_EL1);
-
- smcr = read_sysreg_s(SYS_SMCR_EL1);
- smcr &= ~(u64)SMCR_ELx_LEN_MASK; /* Only the LEN field */
- vq_max = sve_vq_from_vl(sme_get_vl());
- smcr |= vq_max - 1; /* set LEN field to maximum effective value */
-
- return smcr;
-}
-
void __init sme_setup(void)
{
struct vl_info *info = &vl_info[ARM64_VEC_SME];
- u64 smcr;
- int min_bit;
+ int min_bit, max_bit;
if (!system_supports_sme())
return;
+ min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
+
/*
* SME doesn't require any particular vector length be
* supported but it does require at least one. We should have
* disabled the feature entirely while bringing up CPUs but
- * let's double check here.
+ * let's double check here. The bitmap is SVE_VQ_MAP sized for
+ * sharing with SVE.
*/
- WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
+ WARN_ON(min_bit >= SVE_VQ_MAX);
- min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
- smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
- info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1);
-
- /*
- * Sanity-check that the max VL we determined through CPU features
- * corresponds properly to sme_vq_map. If not, do our best:
- */
- if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME,
- info->max_vl)))
- info->max_vl = find_supported_vector_length(ARM64_VEC_SME,
- info->max_vl);
+ max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
+ info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
WARN_ON(info->min_vl > info->max_vl);
@@ -1417,6 +1312,22 @@ void __init sme_setup(void)
get_sme_default_vl());
}
+void sme_suspend_exit(void)
+{
+ u64 smcr = 0;
+
+ if (!system_supports_sme())
+ return;
+
+ if (system_supports_fa64())
+ smcr |= SMCR_ELx_FA64;
+ if (system_supports_sme2())
+ smcr |= SMCR_ELx_EZT0;
+
+ write_sysreg_s(smcr, SYS_SMCR_EL1);
+ write_sysreg_s(0, SYS_SMPRI_EL1);
+}
+
#endif /* CONFIG_ARM64_SME */
static void sve_init_regs(void)
@@ -1440,6 +1351,7 @@ static void sve_init_regs(void)
} else {
fpsimd_to_sve(current);
current->thread.fp_type = FP_STATE_SVE;
+ fpsimd_flush_task_state(current);
}
}
@@ -1508,13 +1420,13 @@ void do_sme_acc(unsigned long esr, struct pt_regs *regs)
* If this not a trap due to SME being disabled then something
* is being used in the wrong mode, report as SIGILL.
*/
- if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
+ if (ESR_ELx_SME_ISS_SMTC(esr) != ESR_ELx_SME_ISS_SMTC_SME_DISABLED) {
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
return;
}
sve_alloc(current, false);
- sme_alloc(current);
+ sme_alloc(current, true);
if (!current->thread.sve_state || !current->thread.sme_state) {
force_sig(SIGKILL);
return;
@@ -1532,6 +1444,8 @@ void do_sme_acc(unsigned long esr, struct pt_regs *regs)
sme_set_vq(vq_minus_one);
fpsimd_bind_task_to_cpu();
+ } else {
+ fpsimd_flush_task_state(current);
}
put_cpu_fpsimd_context();
@@ -1542,8 +1456,17 @@ void do_sme_acc(unsigned long esr, struct pt_regs *regs)
*/
void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
{
- /* TODO: implement lazy context saving/restoring */
- WARN_ON(1);
+ /* Even if we chose not to use FPSIMD, the hardware could still trap: */
+ if (!system_supports_fpsimd()) {
+ force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
+ return;
+ }
+
+ /*
+ * When FPSIMD is enabled, we should never take a trap unless something
+ * has gone very wrong.
+ */
+ BUG();
}
/*
@@ -1571,6 +1494,57 @@ void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
current);
}
+static void fpsimd_load_kernel_state(struct task_struct *task)
+{
+ struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
+
+ /*
+ * Elide the load if this CPU holds the most recent kernel mode
+ * FPSIMD context of the current task.
+ */
+ if (last->st == task->thread.kernel_fpsimd_state &&
+ task->thread.kernel_fpsimd_cpu == smp_processor_id())
+ return;
+
+ fpsimd_load_state(task->thread.kernel_fpsimd_state);
+}
+
+static void fpsimd_save_kernel_state(struct task_struct *task)
+{
+ struct cpu_fp_state cpu_fp_state = {
+ .st = task->thread.kernel_fpsimd_state,
+ .to_save = FP_STATE_FPSIMD,
+ };
+
+ BUG_ON(!cpu_fp_state.st);
+
+ fpsimd_save_state(task->thread.kernel_fpsimd_state);
+ fpsimd_bind_state_to_cpu(&cpu_fp_state);
+
+ task->thread.kernel_fpsimd_cpu = smp_processor_id();
+}
+
+/*
+ * Invalidate any task's FPSIMD state that is present on this cpu.
+ * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
+ * before calling this function.
+ */
+static void fpsimd_flush_cpu_state(void)
+{
+ WARN_ON(!system_supports_fpsimd());
+ __this_cpu_write(fpsimd_last_state.st, NULL);
+
+ /*
+ * Leaving streaming mode enabled will cause issues for any kernel
+ * NEON and leaving streaming mode or ZA enabled may increase power
+ * consumption.
+ */
+ if (system_supports_sme())
+ sme_smstop();
+
+ set_thread_flag(TIF_FOREIGN_FPSTATE);
+}
+
void fpsimd_thread_switch(struct task_struct *next)
{
bool wrong_task, wrong_cpu;
@@ -1578,24 +1552,31 @@ void fpsimd_thread_switch(struct task_struct *next)
if (!system_supports_fpsimd())
return;
- __get_cpu_fpsimd_context();
+ WARN_ON_ONCE(!irqs_disabled());
/* Save unsaved fpsimd state, if any: */
- fpsimd_save();
-
- /*
- * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
- * state. For kernel threads, FPSIMD registers are never loaded
- * and wrong_task and wrong_cpu will always be true.
- */
- wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
- &next->thread.uw.fpsimd_state;
- wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
+ if (test_thread_flag(TIF_KERNEL_FPSTATE))
+ fpsimd_save_kernel_state(current);
+ else
+ fpsimd_save_user_state();
- update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
- wrong_task || wrong_cpu);
+ if (test_tsk_thread_flag(next, TIF_KERNEL_FPSTATE)) {
+ fpsimd_flush_cpu_state();
+ fpsimd_load_kernel_state(next);
+ } else {
+ /*
+ * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
+ * state. For kernel threads, FPSIMD registers are never
+ * loaded with user mode FPSIMD state and so wrong_task and
+ * wrong_cpu will always be true.
+ */
+ wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
+ &next->thread.uw.fpsimd_state;
+ wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
- __put_cpu_fpsimd_context();
+ update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
+ wrong_task || wrong_cpu);
+ }
}
static void fpsimd_flush_thread_vl(enum vec_type type)
@@ -1668,6 +1649,9 @@ void fpsimd_flush_thread(void)
current->thread.svcr = 0;
}
+ if (system_supports_fpmr())
+ current->thread.uw.fpmr = 0;
+
current->thread.fp_type = FP_STATE_FPSIMD;
put_cpu_fpsimd_context();
@@ -1685,44 +1669,7 @@ void fpsimd_preserve_current_state(void)
return;
get_cpu_fpsimd_context();
- fpsimd_save();
- put_cpu_fpsimd_context();
-}
-
-/*
- * Like fpsimd_preserve_current_state(), but ensure that
- * current->thread.uw.fpsimd_state is updated so that it can be copied to
- * the signal frame.
- */
-void fpsimd_signal_preserve_current_state(void)
-{
- fpsimd_preserve_current_state();
- if (test_thread_flag(TIF_SVE))
- sve_to_fpsimd(current);
-}
-
-/*
- * Called by KVM when entering the guest.
- */
-void fpsimd_kvm_prepare(void)
-{
- if (!system_supports_sve())
- return;
-
- /*
- * KVM does not save host SVE state since we can only enter
- * the guest from a syscall so the ABI means that only the
- * non-saved SVE state needs to be saved. If we have left
- * SVE enabled for performance reasons then update the task
- * state to be FPSIMD only.
- */
- get_cpu_fpsimd_context();
-
- if (test_and_clear_thread_flag(TIF_SVE)) {
- sve_to_fpsimd(current);
- current->thread.fp_type = FP_STATE_FPSIMD;
- }
-
+ fpsimd_save_user_state();
put_cpu_fpsimd_context();
}
@@ -1742,6 +1689,7 @@ static void fpsimd_bind_task_to_cpu(void)
last->sve_vl = task_get_sve_vl(current);
last->sme_vl = task_get_sme_vl(current);
last->svcr = &current->thread.svcr;
+ last->fpmr = &current->thread.uw.fpmr;
last->fp_type = &current->thread.fp_type;
last->to_save = FP_STATE_CURRENT;
current->thread.fpsimd_cpu = smp_processor_id();
@@ -1784,13 +1732,23 @@ void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
void fpsimd_restore_current_state(void)
{
/*
- * For the tasks that were created before we detected the absence of
- * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
- * e.g, init. This could be then inherited by the children processes.
- * If we later detect that the system doesn't support FP/SIMD,
- * we must clear the flag for all the tasks to indicate that the
- * FPSTATE is clean (as we can't have one) to avoid looping for ever in
- * do_notify_resume().
+ * TIF_FOREIGN_FPSTATE is set on the init task and copied by
+ * arch_dup_task_struct() regardless of whether FP/SIMD is detected.
+ * Thus user threads can have this set even when FP/SIMD hasn't been
+ * detected.
+ *
+ * When FP/SIMD is detected, begin_new_exec() will set
+ * TIF_FOREIGN_FPSTATE via flush_thread() -> fpsimd_flush_thread(),
+ * and fpsimd_thread_switch() will set TIF_FOREIGN_FPSTATE when
+ * switching tasks. We detect FP/SIMD before we exec the first user
+ * process, ensuring this has TIF_FOREIGN_FPSTATE set and
+ * do_notify_resume() will call fpsimd_restore_current_state() to
+ * install the user FP/SIMD context.
+ *
+ * When FP/SIMD is not detected, nothing else will clear or set
+ * TIF_FOREIGN_FPSTATE prior to the first return to userspace, and
+ * we must clear TIF_FOREIGN_FPSTATE to avoid do_notify_resume()
+ * looping forever calling fpsimd_restore_current_state().
*/
if (!system_supports_fpsimd()) {
clear_thread_flag(TIF_FOREIGN_FPSTATE);
@@ -1807,30 +1765,14 @@ void fpsimd_restore_current_state(void)
put_cpu_fpsimd_context();
}
-/*
- * Load an updated userland FPSIMD state for 'current' from memory and set the
- * flag that indicates that the FPSIMD register contents are the most recent
- * FPSIMD state of 'current'. This is used by the signal code to restore the
- * register state when returning from a signal handler in FPSIMD only cases,
- * any SVE context will be discarded.
- */
void fpsimd_update_current_state(struct user_fpsimd_state const *state)
{
if (WARN_ON(!system_supports_fpsimd()))
return;
- get_cpu_fpsimd_context();
-
current->thread.uw.fpsimd_state = *state;
- if (test_thread_flag(TIF_SVE))
+ if (current->thread.fp_type == FP_STATE_SVE)
fpsimd_to_sve(current);
-
- task_fpsimd_load();
- fpsimd_bind_task_to_cpu();
-
- clear_thread_flag(TIF_FOREIGN_FPSTATE);
-
- put_cpu_fpsimd_context();
}
/*
@@ -1847,6 +1789,7 @@ void fpsimd_update_current_state(struct user_fpsimd_state const *state)
void fpsimd_flush_task_state(struct task_struct *t)
{
t->thread.fpsimd_cpu = NR_CPUS;
+ t->thread.kernel_fpsimd_state = NULL;
/*
* If we don't support fpsimd, bail out after we have
* reset the fpsimd_cpu for this task and clear the
@@ -1860,25 +1803,15 @@ void fpsimd_flush_task_state(struct task_struct *t)
barrier();
}
-/*
- * Invalidate any task's FPSIMD state that is present on this cpu.
- * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
- * before calling this function.
- */
-static void fpsimd_flush_cpu_state(void)
+void fpsimd_save_and_flush_current_state(void)
{
- WARN_ON(!system_supports_fpsimd());
- __this_cpu_write(fpsimd_last_state.st, NULL);
-
- /*
- * Leaving streaming mode enabled will cause issues for any kernel
- * NEON and leaving streaming mode or ZA enabled may increase power
- * consumption.
- */
- if (system_supports_sme())
- sme_smstop();
+ if (!system_supports_fpsimd())
+ return;
- set_thread_flag(TIF_FOREIGN_FPSTATE);
+ get_cpu_fpsimd_context();
+ fpsimd_save_user_state();
+ fpsimd_flush_task_state(current);
+ put_cpu_fpsimd_context();
}
/*
@@ -1887,13 +1820,15 @@ static void fpsimd_flush_cpu_state(void)
*/
void fpsimd_save_and_flush_cpu_state(void)
{
+ unsigned long flags;
+
if (!system_supports_fpsimd())
return;
WARN_ON(preemptible());
- __get_cpu_fpsimd_context();
- fpsimd_save();
+ local_irq_save(flags);
+ fpsimd_save_user_state();
fpsimd_flush_cpu_state();
- __put_cpu_fpsimd_context();
+ local_irq_restore(flags);
}
#ifdef CONFIG_KERNEL_MODE_NEON
@@ -1914,21 +1849,63 @@ void fpsimd_save_and_flush_cpu_state(void)
*
* The caller may freely use the FPSIMD registers until kernel_neon_end() is
* called.
+ *
+ * Unless called from non-preemptible task context, @state must point to a
+ * caller provided buffer that will be used to preserve the task's kernel mode
+ * FPSIMD context when it is scheduled out, or if it is interrupted by kernel
+ * mode FPSIMD occurring in softirq context. May be %NULL otherwise.
*/
-void kernel_neon_begin(void)
+void kernel_neon_begin(struct user_fpsimd_state *state)
{
if (WARN_ON(!system_supports_fpsimd()))
return;
+ WARN_ON((preemptible() || in_serving_softirq()) && !state);
+
BUG_ON(!may_use_simd());
get_cpu_fpsimd_context();
/* Save unsaved fpsimd state, if any: */
- fpsimd_save();
+ if (test_thread_flag(TIF_KERNEL_FPSTATE)) {
+ BUG_ON(IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq());
+ fpsimd_save_state(state);
+ } else {
+ fpsimd_save_user_state();
+
+ /*
+ * Set the thread flag so that the kernel mode FPSIMD state
+ * will be context switched along with the rest of the task
+ * state.
+ *
+ * On non-PREEMPT_RT, softirqs may interrupt task level kernel
+ * mode FPSIMD, but the task will not be preemptible so setting
+ * TIF_KERNEL_FPSTATE for those would be both wrong (as it
+ * would mark the task context FPSIMD state as requiring a
+ * context switch) and unnecessary.
+ *
+ * On PREEMPT_RT, softirqs are serviced from a separate thread,
+ * which is scheduled as usual, and this guarantees that these
+ * softirqs are not interrupting use of the FPSIMD in kernel
+ * mode in task context. So in this case, setting the flag here
+ * is always appropriate.
+ */
+ if (IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq()) {
+ /*
+ * Record the caller provided buffer as the kernel mode
+ * FP/SIMD buffer for this task, so that the state can
+ * be preserved and restored on a context switch.
+ */
+ WARN_ON(current->thread.kernel_fpsimd_state != NULL);
+ current->thread.kernel_fpsimd_state = state;
+ set_thread_flag(TIF_KERNEL_FPSTATE);
+ }
+ }
/* Invalidate any task state remaining in the fpsimd regs: */
fpsimd_flush_cpu_state();
+
+ put_cpu_fpsimd_context();
}
EXPORT_SYMBOL_GPL(kernel_neon_begin);
@@ -1940,22 +1917,39 @@ EXPORT_SYMBOL_GPL(kernel_neon_begin);
*
* The caller must not use the FPSIMD registers after this function is called,
* unless kernel_neon_begin() is called again in the meantime.
+ *
+ * The value of @state must match the value passed to the preceding call to
+ * kernel_neon_begin().
*/
-void kernel_neon_end(void)
+void kernel_neon_end(struct user_fpsimd_state *state)
{
if (!system_supports_fpsimd())
return;
- put_cpu_fpsimd_context();
+ if (!test_thread_flag(TIF_KERNEL_FPSTATE))
+ return;
+
+ /*
+ * If we are returning from a nested use of kernel mode FPSIMD, restore
+ * the task context kernel mode FPSIMD state. This can only happen when
+ * running in softirq context on non-PREEMPT_RT.
+ */
+ if (!IS_ENABLED(CONFIG_PREEMPT_RT) && in_serving_softirq()) {
+ fpsimd_load_state(state);
+ } else {
+ clear_thread_flag(TIF_KERNEL_FPSTATE);
+ WARN_ON(current->thread.kernel_fpsimd_state != state);
+ current->thread.kernel_fpsimd_state = NULL;
+ }
}
EXPORT_SYMBOL_GPL(kernel_neon_end);
#ifdef CONFIG_EFI
-static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
-static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
-static DEFINE_PER_CPU(bool, efi_sve_state_used);
-static DEFINE_PER_CPU(bool, efi_sm_state);
+static struct user_fpsimd_state efi_fpsimd_state;
+static bool efi_fpsimd_state_used;
+static bool efi_sve_state_used;
+static bool efi_sm_state;
/*
* EFI runtime services support functions
@@ -1979,27 +1973,25 @@ void __efi_fpsimd_begin(void)
if (!system_supports_fpsimd())
return;
- WARN_ON(preemptible());
-
if (may_use_simd()) {
- kernel_neon_begin();
+ kernel_neon_begin(&efi_fpsimd_state);
} else {
+ WARN_ON(preemptible());
+
/*
* If !efi_sve_state, SVE can't be in use yet and doesn't need
* preserving:
*/
- if (system_supports_sve() && likely(efi_sve_state)) {
- char *sve_state = this_cpu_ptr(efi_sve_state);
+ if (system_supports_sve() && efi_sve_state != NULL) {
bool ffr = true;
u64 svcr;
- __this_cpu_write(efi_sve_state_used, true);
+ efi_sve_state_used = true;
if (system_supports_sme()) {
svcr = read_sysreg_s(SYS_SVCR);
- __this_cpu_write(efi_sm_state,
- svcr & SVCR_SM_MASK);
+ efi_sm_state = svcr & SVCR_SM_MASK;
/*
* Unless we have FA64 FFR does not
@@ -2009,19 +2001,18 @@ void __efi_fpsimd_begin(void)
ffr = !(svcr & SVCR_SM_MASK);
}
- sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
- &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
- ffr);
+ sve_save_state(efi_sve_state + sve_ffr_offset(sve_max_vl()),
+ &efi_fpsimd_state.fpsr, ffr);
if (system_supports_sme())
sysreg_clear_set_s(SYS_SVCR,
SVCR_SM_MASK, 0);
} else {
- fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
+ fpsimd_save_state(&efi_fpsimd_state);
}
- __this_cpu_write(efi_fpsimd_state_used, true);
+ efi_fpsimd_state_used = true;
}
}
@@ -2033,12 +2024,10 @@ void __efi_fpsimd_end(void)
if (!system_supports_fpsimd())
return;
- if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
- kernel_neon_end();
+ if (!efi_fpsimd_state_used) {
+ kernel_neon_end(&efi_fpsimd_state);
} else {
- if (system_supports_sve() &&
- likely(__this_cpu_read(efi_sve_state_used))) {
- char const *sve_state = this_cpu_ptr(efi_sve_state);
+ if (system_supports_sve() && efi_sve_state_used) {
bool ffr = true;
/*
@@ -2047,7 +2036,7 @@ void __efi_fpsimd_end(void)
* streaming mode.
*/
if (system_supports_sme()) {
- if (__this_cpu_read(efi_sm_state)) {
+ if (efi_sm_state) {
sysreg_clear_set_s(SYS_SVCR,
0,
SVCR_SM_MASK);
@@ -2061,14 +2050,15 @@ void __efi_fpsimd_end(void)
}
}
- sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
- &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
- ffr);
+ sve_load_state(efi_sve_state + sve_ffr_offset(sve_max_vl()),
+ &efi_fpsimd_state.fpsr, ffr);
- __this_cpu_write(efi_sve_state_used, false);
+ efi_sve_state_used = false;
} else {
- fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
+ fpsimd_load_state(&efi_fpsimd_state);
}
+
+ efi_fpsimd_state_used = false;
}
}
@@ -2123,6 +2113,13 @@ static inline void fpsimd_hotplug_init(void)
static inline void fpsimd_hotplug_init(void) { }
#endif
+void cpu_enable_fpsimd(const struct arm64_cpu_capabilities *__always_unused p)
+{
+ unsigned long enable = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_FPEN_EL0EN;
+ write_sysreg(read_sysreg(CPACR_EL1) | enable, CPACR_EL1);
+ isb();
+}
+
/*
* FP/SIMD support code initialisation.
*/