diff options
Diffstat (limited to 'arch/arm64/kernel/process.c')
| -rw-r--r-- | arch/arm64/kernel/process.c | 746 |
1 files changed, 607 insertions, 139 deletions
diff --git a/arch/arm64/kernel/process.c b/arch/arm64/kernel/process.c index a0f985a6ac50..fba7ca102a8c 100644 --- a/arch/arm64/kernel/process.c +++ b/arch/arm64/kernel/process.c @@ -1,35 +1,25 @@ +// SPDX-License-Identifier: GPL-2.0-only /* * Based on arch/arm/kernel/process.c * * Original Copyright (C) 1995 Linus Torvalds * Copyright (C) 1996-2000 Russell King - Converted to ARM. * Copyright (C) 2012 ARM Ltd. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program. If not, see <http://www.gnu.org/licenses/>. */ - -#include <stdarg.h> - #include <linux/compat.h> #include <linux/efi.h> +#include <linux/elf.h> #include <linux/export.h> #include <linux/sched.h> #include <linux/sched/debug.h> #include <linux/sched/task.h> #include <linux/sched/task_stack.h> #include <linux/kernel.h> +#include <linux/mman.h> #include <linux/mm.h> +#include <linux/nospec.h> #include <linux/stddef.h> +#include <linux/sysctl.h> #include <linux/unistd.h> #include <linux/user.h> #include <linux/delay.h> @@ -49,20 +39,28 @@ #include <trace/events/power.h> #include <linux/percpu.h> #include <linux/thread_info.h> +#include <linux/prctl.h> +#include <linux/stacktrace.h> #include <asm/alternative.h> +#include <asm/arch_timer.h> #include <asm/compat.h> +#include <asm/cpufeature.h> #include <asm/cacheflush.h> #include <asm/exec.h> #include <asm/fpsimd.h> +#include <asm/gcs.h> #include <asm/mmu_context.h> +#include <asm/mte.h> #include <asm/processor.h> #include <asm/pointer_auth.h> #include <asm/stacktrace.h> +#include <asm/switch_to.h> +#include <asm/system_misc.h> #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) #include <linux/stackprotector.h> -unsigned long __stack_chk_guard __read_mostly; +unsigned long __stack_chk_guard __ro_after_init; EXPORT_SYMBOL(__stack_chk_guard); #endif @@ -72,25 +70,8 @@ EXPORT_SYMBOL(__stack_chk_guard); void (*pm_power_off)(void); EXPORT_SYMBOL_GPL(pm_power_off); -void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); - -/* - * This is our default idle handler. - */ -void arch_cpu_idle(void) -{ - /* - * This should do all the clock switching and wait for interrupt - * tricks - */ - trace_cpu_idle_rcuidle(1, smp_processor_id()); - cpu_do_idle(); - local_irq_enable(); - trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); -} - #ifdef CONFIG_HOTPLUG_CPU -void arch_cpu_idle_dead(void) +void __noreturn arch_cpu_idle_dead(void) { cpu_die(); } @@ -103,11 +84,11 @@ void arch_cpu_idle_dead(void) * to execute e.g. a RAM-based pin loop is not sufficient. This allows the * kexec'd kernel to use any and all RAM as it sees fit, without having to * avoid any code or data used by any SW CPU pin loop. The CPU hotplug - * functionality embodied in disable_nonboot_cpus() to achieve this. + * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. */ void machine_shutdown(void) { - disable_nonboot_cpus(); + smp_shutdown_nonboot_cpus(reboot_cpu); } /* @@ -132,8 +113,7 @@ void machine_power_off(void) { local_irq_disable(); smp_send_stop(); - if (pm_power_off) - pm_power_off(); + do_kernel_power_off(); } /* @@ -159,10 +139,7 @@ void machine_restart(char *cmd) efi_reboot(reboot_mode, NULL); /* Now call the architecture specific reboot code. */ - if (arm_pm_restart) - arm_pm_restart(reboot_mode, cmd); - else - do_kernel_restart(cmd); + do_kernel_restart(cmd); /* * Whoops - the architecture was unable to reboot. @@ -171,12 +148,21 @@ void machine_restart(char *cmd) while (1); } +#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str +static const char *const btypes[] = { + bstr(NONE, "--"), + bstr( JC, "jc"), + bstr( C, "-c"), + bstr( J , "j-") +}; +#undef bstr + static void print_pstate(struct pt_regs *regs) { u64 pstate = regs->pstate; if (compat_user_mode(regs)) { - printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n", + printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n", pstate, pstate & PSR_AA32_N_BIT ? 'N' : 'n', pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', @@ -187,9 +173,14 @@ static void print_pstate(struct pt_regs *regs) pstate & PSR_AA32_E_BIT ? "BE" : "LE", pstate & PSR_AA32_A_BIT ? 'A' : 'a', pstate & PSR_AA32_I_BIT ? 'I' : 'i', - pstate & PSR_AA32_F_BIT ? 'F' : 'f'); + pstate & PSR_AA32_F_BIT ? 'F' : 'f', + pstate & PSR_AA32_DIT_BIT ? '+' : '-', + pstate & PSR_AA32_SSBS_BIT ? '+' : '-'); } else { - printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n", + const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> + PSR_BTYPE_SHIFT]; + + printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n", pstate, pstate & PSR_N_BIT ? 'N' : 'n', pstate & PSR_Z_BIT ? 'Z' : 'z', @@ -200,7 +191,11 @@ static void print_pstate(struct pt_regs *regs) pstate & PSR_I_BIT ? 'I' : 'i', pstate & PSR_F_BIT ? 'F' : 'f', pstate & PSR_PAN_BIT ? '+' : '-', - pstate & PSR_UAO_BIT ? '+' : '-'); + pstate & PSR_UAO_BIT ? '+' : '-', + pstate & PSR_TCO_BIT ? '+' : '-', + pstate & PSR_DIT_BIT ? '+' : '-', + pstate & PSR_SSBS_BIT ? '+' : '-', + btype_str); } } @@ -224,7 +219,7 @@ void __show_regs(struct pt_regs *regs) if (!user_mode(regs)) { printk("pc : %pS\n", (void *)regs->pc); - printk("lr : %pS\n", (void *)lr); + printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr)); } else { printk("pc : %016llx\n", regs->pc); printk("lr : %016llx\n", lr); @@ -232,30 +227,32 @@ void __show_regs(struct pt_regs *regs) printk("sp : %016llx\n", sp); + if (system_uses_irq_prio_masking()) + printk("pmr: %08x\n", regs->pmr); + i = top_reg; while (i >= 0) { - printk("x%-2d: %016llx ", i, regs->regs[i]); - i--; + printk("x%-2d: %016llx", i, regs->regs[i]); - if (i % 2 == 0) { - pr_cont("x%-2d: %016llx ", i, regs->regs[i]); - i--; - } + while (i-- % 3) + pr_cont(" x%-2d: %016llx", i, regs->regs[i]); pr_cont("\n"); } } -void show_regs(struct pt_regs * regs) +void show_regs(struct pt_regs *regs) { __show_regs(regs); - dump_backtrace(regs, NULL); + dump_backtrace(regs, NULL, KERN_DEFAULT); } static void tls_thread_flush(void) { write_sysreg(0, tpidr_el0); + if (system_supports_tpidr2()) + write_sysreg_s(0, SYS_TPIDR2_EL0); if (is_compat_task()) { current->thread.uw.tp_value = 0; @@ -270,15 +267,75 @@ static void tls_thread_flush(void) } } +static void flush_tagged_addr_state(void) +{ + if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) + clear_thread_flag(TIF_TAGGED_ADDR); +} + +static void flush_poe(void) +{ + if (!system_supports_poe()) + return; + + write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0); +} + +#ifdef CONFIG_ARM64_GCS + +static void flush_gcs(void) +{ + if (!system_supports_gcs()) + return; + + current->thread.gcspr_el0 = 0; + current->thread.gcs_base = 0; + current->thread.gcs_size = 0; + current->thread.gcs_el0_mode = 0; + write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1); + write_sysreg_s(0, SYS_GCSPR_EL0); +} + +static int copy_thread_gcs(struct task_struct *p, + const struct kernel_clone_args *args) +{ + unsigned long gcs; + + if (!system_supports_gcs()) + return 0; + + p->thread.gcs_base = 0; + p->thread.gcs_size = 0; + + p->thread.gcs_el0_mode = current->thread.gcs_el0_mode; + p->thread.gcs_el0_locked = current->thread.gcs_el0_locked; + + gcs = gcs_alloc_thread_stack(p, args); + if (IS_ERR_VALUE(gcs)) + return PTR_ERR((void *)gcs); + + return 0; +} + +#else + +static void flush_gcs(void) { } +static int copy_thread_gcs(struct task_struct *p, + const struct kernel_clone_args *args) +{ + return 0; +} + +#endif + void flush_thread(void) { fpsimd_flush_thread(); tls_thread_flush(); flush_ptrace_hw_breakpoint(current); -} - -void release_thread(struct task_struct *dead_task) -{ + flush_tagged_addr_state(); + flush_poe(); + flush_gcs(); } void arch_release_task_struct(struct task_struct *tsk) @@ -286,42 +343,81 @@ void arch_release_task_struct(struct task_struct *tsk) fpsimd_release_task(tsk); } -/* - * src and dst may temporarily have aliased sve_state after task_struct - * is copied. We cannot fix this properly here, because src may have - * live SVE state and dst's thread_info may not exist yet, so tweaking - * either src's or dst's TIF_SVE is not safe. - * - * The unaliasing is done in copy_thread() instead. This works because - * dst is not schedulable or traceable until both of these functions - * have been called. - */ int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) { - if (current->mm) - fpsimd_preserve_current_state(); + /* + * The current/src task's FPSIMD state may or may not be live, and may + * have been altered by ptrace after entry to the kernel. Save the + * effective FPSIMD state so that this will be copied into dst. + */ + fpsimd_save_and_flush_current_state(); + fpsimd_sync_from_effective_state(src); + *dst = *src; + /* + * Drop stale reference to src's sve_state and convert dst to + * non-streaming FPSIMD mode. + */ + dst->thread.fp_type = FP_STATE_FPSIMD; + dst->thread.sve_state = NULL; + clear_tsk_thread_flag(dst, TIF_SVE); + task_smstop_sm(dst); + + /* + * Drop stale reference to src's sme_state and ensure dst has ZA + * disabled. + * + * When necessary, ZA will be inherited later in copy_thread_za(). + */ + dst->thread.sme_state = NULL; + clear_tsk_thread_flag(dst, TIF_SME); + dst->thread.svcr &= ~SVCR_ZA_MASK; + + /* clear any pending asynchronous tag fault raised by the parent */ + clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); + + return 0; +} + +static int copy_thread_za(struct task_struct *dst, struct task_struct *src) +{ + if (!thread_za_enabled(&src->thread)) + return 0; + + dst->thread.sve_state = kzalloc(sve_state_size(src), + GFP_KERNEL); + if (!dst->thread.sve_state) + return -ENOMEM; + + dst->thread.sme_state = kmemdup(src->thread.sme_state, + sme_state_size(src), + GFP_KERNEL); + if (!dst->thread.sme_state) { + kfree(dst->thread.sve_state); + dst->thread.sve_state = NULL; + return -ENOMEM; + } + + set_tsk_thread_flag(dst, TIF_SME); + dst->thread.svcr |= SVCR_ZA_MASK; + return 0; } asmlinkage void ret_from_fork(void) asm("ret_from_fork"); -int copy_thread(unsigned long clone_flags, unsigned long stack_start, - unsigned long stk_sz, struct task_struct *p) +int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) { + u64 clone_flags = args->flags; + unsigned long stack_start = args->stack; + unsigned long tls = args->tls; struct pt_regs *childregs = task_pt_regs(p); + int ret; memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); /* - * Unalias p->thread.sve_state (if any) from the parent task - * and disable discard SVE state for p: - */ - clear_tsk_thread_flag(p, TIF_SVE); - p->thread.sve_state = NULL; - - /* * In case p was allocated the same task_struct pointer as some * other recently-exited task, make sure p is disassociated from * any cpu that may have run that now-exited task recently. @@ -330,7 +426,9 @@ int copy_thread(unsigned long clone_flags, unsigned long stack_start, */ fpsimd_flush_task_state(p); - if (likely(!(p->flags & PF_KTHREAD))) { + ptrauth_thread_init_kernel(p); + + if (likely(!args->fn)) { *childregs = *current_pt_regs(); childregs->regs[0] = 0; @@ -340,6 +438,9 @@ int copy_thread(unsigned long clone_flags, unsigned long stack_start, */ *task_user_tls(p) = read_sysreg(tpidr_el0); + if (system_supports_poe()) + p->thread.por_el0 = read_sysreg_s(SYS_POR_EL0); + if (stack_start) { if (is_compat_thread(task_thread_info(p))) childregs->compat_sp = stack_start; @@ -348,26 +449,68 @@ int copy_thread(unsigned long clone_flags, unsigned long stack_start, } /* - * If a TLS pointer was passed to clone (4th argument), use it - * for the new thread. + * Due to the AAPCS64 "ZA lazy saving scheme", PSTATE.ZA and + * TPIDR2 need to be manipulated as a pair, and either both + * need to be inherited or both need to be reset. + * + * Within a process, child threads must not inherit their + * parent's TPIDR2 value or they may clobber their parent's + * stack at some later point. + * + * When a process is fork()'d, the child must inherit ZA and + * TPIDR2 from its parent in case there was dormant ZA state. + * + * Use CLONE_VM to determine when the child will share the + * address space with the parent, and cannot safely inherit the + * state. + */ + if (system_supports_sme()) { + if (!(clone_flags & CLONE_VM)) { + p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); + ret = copy_thread_za(p, current); + if (ret) + return ret; + } else { + p->thread.tpidr2_el0 = 0; + WARN_ON_ONCE(p->thread.svcr & SVCR_ZA_MASK); + } + } + + /* + * If a TLS pointer was passed to clone, use it for the new + * thread. */ if (clone_flags & CLONE_SETTLS) - p->thread.uw.tp_value = childregs->regs[3]; + p->thread.uw.tp_value = tls; + + ret = copy_thread_gcs(p, args); + if (ret != 0) + return ret; } else { + /* + * A kthread has no context to ERET to, so ensure any buggy + * ERET is treated as an illegal exception return. + * + * When a user task is created from a kthread, childregs will + * be initialized by start_thread() or start_compat_thread(). + */ memset(childregs, 0, sizeof(struct pt_regs)); - childregs->pstate = PSR_MODE_EL1h; - if (IS_ENABLED(CONFIG_ARM64_UAO) && - cpus_have_const_cap(ARM64_HAS_UAO)) - childregs->pstate |= PSR_UAO_BIT; + childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; + childregs->stackframe.type = FRAME_META_TYPE_FINAL; - if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) - childregs->pstate |= PSR_SSBS_BIT; + p->thread.cpu_context.x19 = (unsigned long)args->fn; + p->thread.cpu_context.x20 = (unsigned long)args->fn_arg; - p->thread.cpu_context.x19 = stack_start; - p->thread.cpu_context.x20 = stk_sz; + if (system_supports_poe()) + p->thread.por_el0 = POR_EL0_INIT; } p->thread.cpu_context.pc = (unsigned long)ret_from_fork; p->thread.cpu_context.sp = (unsigned long)childregs; + /* + * For the benefit of the unwinder, set up childregs->stackframe + * as the final frame for the new task. + */ + p->thread.cpu_context.fp = (unsigned long)&childregs->stackframe; ptrace_hw_copy_thread(p); @@ -377,6 +520,8 @@ int copy_thread(unsigned long clone_flags, unsigned long stack_start, void tls_preserve_current_state(void) { *task_user_tls(current) = read_sysreg(tpidr_el0); + if (system_supports_tpidr2() && !is_compat_task()) + current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); } static void tls_thread_switch(struct task_struct *next) @@ -385,21 +530,35 @@ static void tls_thread_switch(struct task_struct *next) if (is_compat_thread(task_thread_info(next))) write_sysreg(next->thread.uw.tp_value, tpidrro_el0); - else if (!arm64_kernel_unmapped_at_el0()) + else write_sysreg(0, tpidrro_el0); write_sysreg(*task_user_tls(next), tpidr_el0); + if (system_supports_tpidr2()) + write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0); } -/* Restore the UAO state depending on next's addr_limit */ -void uao_thread_switch(struct task_struct *next) +/* + * Force SSBS state on context-switch, since it may be lost after migrating + * from a CPU which treats the bit as RES0 in a heterogeneous system. + */ +static void ssbs_thread_switch(struct task_struct *next) { - if (IS_ENABLED(CONFIG_ARM64_UAO)) { - if (task_thread_info(next)->addr_limit == KERNEL_DS) - asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO)); - else - asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO)); - } + /* + * Nothing to do for kernel threads, but 'regs' may be junk + * (e.g. idle task) so check the flags and bail early. + */ + if (unlikely(next->flags & PF_KTHREAD)) + return; + + /* + * If all CPUs implement the SSBS extension, then we just need to + * context-switch the PSTATE field. + */ + if (alternative_has_cap_unlikely(ARM64_SSBS)) + return; + + spectre_v4_enable_task_mitigation(next); } /* @@ -416,10 +575,134 @@ static void entry_task_switch(struct task_struct *next) __this_cpu_write(__entry_task, next); } +#ifdef CONFIG_ARM64_GCS + +void gcs_preserve_current_state(void) +{ + current->thread.gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0); +} + +static void gcs_thread_switch(struct task_struct *next) +{ + if (!system_supports_gcs()) + return; + + /* GCSPR_EL0 is always readable */ + gcs_preserve_current_state(); + write_sysreg_s(next->thread.gcspr_el0, SYS_GCSPR_EL0); + + if (current->thread.gcs_el0_mode != next->thread.gcs_el0_mode) + gcs_set_el0_mode(next); + + /* + * Ensure that GCS memory effects of the 'prev' thread are + * ordered before other memory accesses with release semantics + * (or preceded by a DMB) on the current PE. In addition, any + * memory accesses with acquire semantics (or succeeded by a + * DMB) are ordered before GCS memory effects of the 'next' + * thread. This will ensure that the GCS memory effects are + * visible to other PEs in case of migration. + */ + if (task_gcs_el0_enabled(current) || task_gcs_el0_enabled(next)) + gcsb_dsync(); +} + +#else + +static void gcs_thread_switch(struct task_struct *next) +{ +} + +#endif + +/* + * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of + * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0} + * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is + * required or PR_TSC_SIGSEGV is set. + */ +static void update_cntkctl_el1(struct task_struct *next) +{ + struct thread_info *ti = task_thread_info(next); + + if (test_ti_thread_flag(ti, TIF_TSC_SIGSEGV) || + has_erratum_handler(read_cntvct_el0) || + (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) && + this_cpu_has_cap(ARM64_WORKAROUND_1418040) && + is_compat_thread(ti))) + sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0); + else + sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN); +} + +static void cntkctl_thread_switch(struct task_struct *prev, + struct task_struct *next) +{ + if ((read_ti_thread_flags(task_thread_info(prev)) & + (_TIF_32BIT | _TIF_TSC_SIGSEGV)) != + (read_ti_thread_flags(task_thread_info(next)) & + (_TIF_32BIT | _TIF_TSC_SIGSEGV))) + update_cntkctl_el1(next); +} + +static int do_set_tsc_mode(unsigned int val) +{ + bool tsc_sigsegv; + + if (val == PR_TSC_SIGSEGV) + tsc_sigsegv = true; + else if (val == PR_TSC_ENABLE) + tsc_sigsegv = false; + else + return -EINVAL; + + preempt_disable(); + update_thread_flag(TIF_TSC_SIGSEGV, tsc_sigsegv); + update_cntkctl_el1(current); + preempt_enable(); + + return 0; +} + +static void permission_overlay_switch(struct task_struct *next) +{ + if (!system_supports_poe()) + return; + + current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0); + if (current->thread.por_el0 != next->thread.por_el0) { + write_sysreg_s(next->thread.por_el0, SYS_POR_EL0); + /* + * No ISB required as we can tolerate spurious Overlay faults - + * the fault handler will check again based on the new value + * of POR_EL0. + */ + } +} + +/* + * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore + * this function must be called with preemption disabled and the update to + * sctlr_user must be made in the same preemption disabled block so that + * __switch_to() does not see the variable update before the SCTLR_EL1 one. + */ +void update_sctlr_el1(u64 sctlr) +{ + /* + * EnIA must not be cleared while in the kernel as this is necessary for + * in-kernel PAC. It will be cleared on kernel exit if needed. + */ + sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr); + + /* ISB required for the kernel uaccess routines when setting TCF0. */ + isb(); +} + /* * Thread switching. */ -__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, +__notrace_funcgraph __sched +struct task_struct *__switch_to(struct task_struct *prev, struct task_struct *next) { struct task_struct *last; @@ -429,75 +712,260 @@ __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev, hw_breakpoint_thread_switch(next); contextidr_thread_switch(next); entry_task_switch(next); - uao_thread_switch(next); - ptrauth_thread_switch(next); + ssbs_thread_switch(next); + cntkctl_thread_switch(prev, next); + ptrauth_thread_switch_user(next); + permission_overlay_switch(next); + gcs_thread_switch(next); /* - * Complete any pending TLB or cache maintenance on this CPU in case - * the thread migrates to a different CPU. - * This full barrier is also required by the membarrier system - * call. + * Complete any pending TLB or cache maintenance on this CPU in case the + * thread migrates to a different CPU. This full barrier is also + * required by the membarrier system call. Additionally it makes any + * in-progress pgtable writes visible to the table walker; See + * emit_pte_barriers(). */ dsb(ish); + /* + * MTE thread switching must happen after the DSB above to ensure that + * any asynchronous tag check faults have been logged in the TFSR*_EL1 + * registers. + */ + mte_thread_switch(next); + /* avoid expensive SCTLR_EL1 accesses if no change */ + if (prev->thread.sctlr_user != next->thread.sctlr_user) + update_sctlr_el1(next->thread.sctlr_user); + /* the actual thread switch */ last = cpu_switch_to(prev, next); return last; } -unsigned long get_wchan(struct task_struct *p) +struct wchan_info { + unsigned long pc; + int count; +}; + +static bool get_wchan_cb(void *arg, unsigned long pc) { - struct stackframe frame; - unsigned long stack_page, ret = 0; - int count = 0; - if (!p || p == current || p->state == TASK_RUNNING) - return 0; + struct wchan_info *wchan_info = arg; + + if (!in_sched_functions(pc)) { + wchan_info->pc = pc; + return false; + } + return wchan_info->count++ < 16; +} - stack_page = (unsigned long)try_get_task_stack(p); - if (!stack_page) +unsigned long __get_wchan(struct task_struct *p) +{ + struct wchan_info wchan_info = { + .pc = 0, + .count = 0, + }; + + if (!try_get_task_stack(p)) return 0; - frame.fp = thread_saved_fp(p); - frame.pc = thread_saved_pc(p); -#ifdef CONFIG_FUNCTION_GRAPH_TRACER - frame.graph = 0; -#endif - do { - if (unwind_frame(p, &frame)) - goto out; - if (!in_sched_functions(frame.pc)) { - ret = frame.pc; - goto out; - } - } while (count ++ < 16); + arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL); -out: put_task_stack(p); - return ret; + + return wchan_info.pc; } unsigned long arch_align_stack(unsigned long sp) { if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) - sp -= get_random_int() & ~PAGE_MASK; + sp -= get_random_u32_below(PAGE_SIZE); return sp & ~0xf; } -unsigned long arch_randomize_brk(struct mm_struct *mm) +#ifdef CONFIG_COMPAT +int compat_elf_check_arch(const struct elf32_hdr *hdr) { - if (is_compat_task()) - return randomize_page(mm->brk, SZ_32M); - else - return randomize_page(mm->brk, SZ_1G); + if (!system_supports_32bit_el0()) + return false; + + if ((hdr)->e_machine != EM_ARM) + return false; + + if (!((hdr)->e_flags & EF_ARM_EABI_MASK)) + return false; + + /* + * Prevent execve() of a 32-bit program from a deadline task + * if the restricted affinity mask would be inadmissible on an + * asymmetric system. + */ + return !static_branch_unlikely(&arm64_mismatched_32bit_el0) || + !dl_task_check_affinity(current, system_32bit_el0_cpumask()); } +#endif /* * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. */ void arch_setup_new_exec(void) { - current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0; + unsigned long mmflags = 0; + + if (is_compat_task()) { + mmflags = MMCF_AARCH32; + + /* + * Restrict the CPU affinity mask for a 32-bit task so that + * it contains only 32-bit-capable CPUs. + * + * From the perspective of the task, this looks similar to + * what would happen if the 64-bit-only CPUs were hot-unplugged + * at the point of execve(), although we try a bit harder to + * honour the cpuset hierarchy. + */ + if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) + force_compatible_cpus_allowed_ptr(current); + } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) { + relax_compatible_cpus_allowed_ptr(current); + } + + current->mm->context.flags = mmflags; + ptrauth_thread_init_user(); + mte_thread_init_user(); + do_set_tsc_mode(PR_TSC_ENABLE); + + if (task_spec_ssb_noexec(current)) { + arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, + PR_SPEC_ENABLE); + } +} + +#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI +/* + * Control the relaxed ABI allowing tagged user addresses into the kernel. + */ +static unsigned int tagged_addr_disabled; + +long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) +{ + unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; + struct thread_info *ti = task_thread_info(task); + + if (is_compat_thread(ti)) + return -EINVAL; + + if (system_supports_mte()) { + valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \ + | PR_MTE_TAG_MASK; + + if (cpus_have_cap(ARM64_MTE_STORE_ONLY)) + valid_mask |= PR_MTE_STORE_ONLY; + } + + if (arg & ~valid_mask) + return -EINVAL; + + /* + * Do not allow the enabling of the tagged address ABI if globally + * disabled via sysctl abi.tagged_addr_disabled. + */ + if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) + return -EINVAL; + + if (set_mte_ctrl(task, arg) != 0) + return -EINVAL; + + update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); + + return 0; +} + +long get_tagged_addr_ctrl(struct task_struct *task) +{ + long ret = 0; + struct thread_info *ti = task_thread_info(task); + + if (is_compat_thread(ti)) + return -EINVAL; + + if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) + ret = PR_TAGGED_ADDR_ENABLE; + + ret |= get_mte_ctrl(task); + + return ret; +} + +/* + * Global sysctl to disable the tagged user addresses support. This control + * only prevents the tagged address ABI enabling via prctl() and does not + * disable it for tasks that already opted in to the relaxed ABI. + */ + +static const struct ctl_table tagged_addr_sysctl_table[] = { + { + .procname = "tagged_addr_disabled", + .mode = 0644, + .data = &tagged_addr_disabled, + .maxlen = sizeof(int), + .proc_handler = proc_dointvec_minmax, + .extra1 = SYSCTL_ZERO, + .extra2 = SYSCTL_ONE, + }, +}; + +static int __init tagged_addr_init(void) +{ + if (!register_sysctl("abi", tagged_addr_sysctl_table)) + return -EINVAL; + return 0; +} + +core_initcall(tagged_addr_init); +#endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ + +#ifdef CONFIG_BINFMT_ELF +int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, + bool has_interp, bool is_interp) +{ + /* + * For dynamically linked executables the interpreter is + * responsible for setting PROT_BTI on everything except + * itself. + */ + if (is_interp != has_interp) + return prot; + + if (!(state->flags & ARM64_ELF_BTI)) + return prot; + + if (prot & PROT_EXEC) + prot |= PROT_BTI; + + return prot; +} +#endif + +int get_tsc_mode(unsigned long adr) +{ + unsigned int val; + + if (is_compat_task()) + return -EINVAL; + + if (test_thread_flag(TIF_TSC_SIGSEGV)) + val = PR_TSC_SIGSEGV; + else + val = PR_TSC_ENABLE; + + return put_user(val, (unsigned int __user *)adr); +} + +int set_tsc_mode(unsigned int val) +{ + if (is_compat_task()) + return -EINVAL; - ptrauth_thread_init_user(current); + return do_set_tsc_mode(val); } |
