diff options
Diffstat (limited to 'arch/arm64/kvm/vgic/vgic.c')
| -rw-r--r-- | arch/arm64/kvm/vgic/vgic.c | 1222 |
1 files changed, 1222 insertions, 0 deletions
diff --git a/arch/arm64/kvm/vgic/vgic.c b/arch/arm64/kvm/vgic/vgic.c new file mode 100644 index 000000000000..430aa98888fd --- /dev/null +++ b/arch/arm64/kvm/vgic/vgic.c @@ -0,0 +1,1222 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2015, 2016 ARM Ltd. + */ + +#include <linux/interrupt.h> +#include <linux/irq.h> +#include <linux/kvm.h> +#include <linux/kvm_host.h> +#include <linux/list_sort.h> +#include <linux/nospec.h> + +#include <asm/kvm_hyp.h> + +#include "vgic.h" + +#define CREATE_TRACE_POINTS +#include "trace.h" + +struct vgic_global kvm_vgic_global_state __ro_after_init = { + .gicv3_cpuif = STATIC_KEY_FALSE_INIT, +}; + +/* + * Locking order is always: + * kvm->lock (mutex) + * vcpu->mutex (mutex) + * kvm->arch.config_lock (mutex) + * its->cmd_lock (mutex) + * its->its_lock (mutex) + * vgic_dist->lpi_xa.xa_lock must be taken with IRQs disabled + * vgic_cpu->ap_list_lock must be taken with IRQs disabled + * vgic_irq->irq_lock must be taken with IRQs disabled + * + * As the ap_list_lock might be taken from the timer interrupt handler, + * we have to disable IRQs before taking this lock and everything lower + * than it. + * + * The config_lock has additional ordering requirements: + * kvm->slots_lock + * kvm->srcu + * kvm->arch.config_lock + * + * If you need to take multiple locks, always take the upper lock first, + * then the lower ones, e.g. first take the its_lock, then the irq_lock. + * If you are already holding a lock and need to take a higher one, you + * have to drop the lower ranking lock first and re-acquire it after having + * taken the upper one. + * + * When taking more than one ap_list_lock at the same time, always take the + * lowest numbered VCPU's ap_list_lock first, so: + * vcpuX->vcpu_id < vcpuY->vcpu_id: + * raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock); + * raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock); + * + * Since the VGIC must support injecting virtual interrupts from ISRs, we have + * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer + * spinlocks for any lock that may be taken while injecting an interrupt. + */ + +/* + * Index the VM's xarray of mapped LPIs and return a reference to the IRQ + * structure. The caller is expected to call vgic_put_irq() later once it's + * finished with the IRQ. + */ +static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + struct vgic_irq *irq = NULL; + + rcu_read_lock(); + + irq = xa_load(&dist->lpi_xa, intid); + if (!vgic_try_get_irq_ref(irq)) + irq = NULL; + + rcu_read_unlock(); + + return irq; +} + +/* + * This looks up the virtual interrupt ID to get the corresponding + * struct vgic_irq. It also increases the refcount, so any caller is expected + * to call vgic_put_irq() once it's finished with this IRQ. + */ +struct vgic_irq *vgic_get_irq(struct kvm *kvm, u32 intid) +{ + /* SPIs */ + if (intid >= VGIC_NR_PRIVATE_IRQS && + intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) { + intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS); + return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS]; + } + + /* LPIs */ + if (intid >= VGIC_MIN_LPI) + return vgic_get_lpi(kvm, intid); + + return NULL; +} + +struct vgic_irq *vgic_get_vcpu_irq(struct kvm_vcpu *vcpu, u32 intid) +{ + if (WARN_ON(!vcpu)) + return NULL; + + /* SGIs and PPIs */ + if (intid < VGIC_NR_PRIVATE_IRQS) { + intid = array_index_nospec(intid, VGIC_NR_PRIVATE_IRQS); + return &vcpu->arch.vgic_cpu.private_irqs[intid]; + } + + return vgic_get_irq(vcpu->kvm, intid); +} + +static void vgic_release_lpi_locked(struct vgic_dist *dist, struct vgic_irq *irq) +{ + lockdep_assert_held(&dist->lpi_xa.xa_lock); + __xa_erase(&dist->lpi_xa, irq->intid); + kfree_rcu(irq, rcu); +} + +static __must_check bool __vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq) +{ + if (irq->intid < VGIC_MIN_LPI) + return false; + + return refcount_dec_and_test(&irq->refcount); +} + +static __must_check bool vgic_put_irq_norelease(struct kvm *kvm, struct vgic_irq *irq) +{ + if (!__vgic_put_irq(kvm, irq)) + return false; + + irq->pending_release = true; + return true; +} + +void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + unsigned long flags; + + /* + * Normally the lock is only taken when the refcount drops to 0. + * Acquire/release it early on lockdep kernels to make locking issues + * in rare release paths a bit more obvious. + */ + if (IS_ENABLED(CONFIG_LOCKDEP) && irq->intid >= VGIC_MIN_LPI) { + guard(spinlock_irqsave)(&dist->lpi_xa.xa_lock); + } + + if (!__vgic_put_irq(kvm, irq)) + return; + + xa_lock_irqsave(&dist->lpi_xa, flags); + vgic_release_lpi_locked(dist, irq); + xa_unlock_irqrestore(&dist->lpi_xa, flags); +} + +static void vgic_release_deleted_lpis(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + unsigned long flags, intid; + struct vgic_irq *irq; + + xa_lock_irqsave(&dist->lpi_xa, flags); + + xa_for_each(&dist->lpi_xa, intid, irq) { + if (irq->pending_release) + vgic_release_lpi_locked(dist, irq); + } + + xa_unlock_irqrestore(&dist->lpi_xa, flags); +} + +void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + struct vgic_irq *irq, *tmp; + bool deleted = false; + unsigned long flags; + + raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags); + + list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) { + if (irq->intid >= VGIC_MIN_LPI) { + raw_spin_lock(&irq->irq_lock); + list_del(&irq->ap_list); + irq->vcpu = NULL; + raw_spin_unlock(&irq->irq_lock); + deleted |= vgic_put_irq_norelease(vcpu->kvm, irq); + } + } + + raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags); + + if (deleted) + vgic_release_deleted_lpis(vcpu->kvm); +} + +void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending) +{ + WARN_ON(irq_set_irqchip_state(irq->host_irq, + IRQCHIP_STATE_PENDING, + pending)); +} + +bool vgic_get_phys_line_level(struct vgic_irq *irq) +{ + bool line_level; + + BUG_ON(!irq->hw); + + if (irq->ops && irq->ops->get_input_level) + return irq->ops->get_input_level(irq->intid); + + WARN_ON(irq_get_irqchip_state(irq->host_irq, + IRQCHIP_STATE_PENDING, + &line_level)); + return line_level; +} + +/* Set/Clear the physical active state */ +void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active) +{ + + BUG_ON(!irq->hw); + WARN_ON(irq_set_irqchip_state(irq->host_irq, + IRQCHIP_STATE_ACTIVE, + active)); +} + +/** + * vgic_target_oracle - compute the target vcpu for an irq + * + * @irq: The irq to route. Must be already locked. + * + * Based on the current state of the interrupt (enabled, pending, + * active, vcpu and target_vcpu), compute the next vcpu this should be + * given to. Return NULL if this shouldn't be injected at all. + * + * Requires the IRQ lock to be held. + */ +struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq) +{ + lockdep_assert_held(&irq->irq_lock); + + /* If the interrupt is active, it must stay on the current vcpu */ + if (irq->active) + return irq->vcpu ? : irq->target_vcpu; + + /* + * If the IRQ is not active but enabled and pending, we should direct + * it to its configured target VCPU. + * If the distributor is disabled, pending interrupts shouldn't be + * forwarded. + */ + if (irq->enabled && irq_is_pending(irq)) { + if (unlikely(irq->target_vcpu && + !irq->target_vcpu->kvm->arch.vgic.enabled)) + return NULL; + + return irq->target_vcpu; + } + + /* If neither active nor pending and enabled, then this IRQ should not + * be queued to any VCPU. + */ + return NULL; +} + +struct vgic_sort_info { + struct kvm_vcpu *vcpu; + struct vgic_vmcr vmcr; +}; + +/* + * The order of items in the ap_lists defines how we'll pack things in LRs as + * well, the first items in the list being the first things populated in the + * LRs. + * + * Pending, non-active interrupts must be placed at the head of the list. + * Otherwise things should be sorted by the priority field and the GIC + * hardware support will take care of preemption of priority groups etc. + * Interrupts that are not deliverable should be at the end of the list. + * + * Return negative if "a" sorts before "b", 0 to preserve order, and positive + * to sort "b" before "a". + */ +static int vgic_irq_cmp(void *priv, const struct list_head *a, + const struct list_head *b) +{ + struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list); + struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list); + struct vgic_sort_info *info = priv; + struct kvm_vcpu *vcpu = info->vcpu; + bool penda, pendb; + int ret; + + /* + * list_sort may call this function with the same element when + * the list is fairly long. + */ + if (unlikely(irqa == irqb)) + return 0; + + raw_spin_lock(&irqa->irq_lock); + raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING); + + /* Undeliverable interrupts should be last */ + ret = (int)(vgic_target_oracle(irqb) == vcpu) - (int)(vgic_target_oracle(irqa) == vcpu); + if (ret) + goto out; + + /* Same thing for interrupts targeting a disabled group */ + ret = (int)(irqb->group ? info->vmcr.grpen1 : info->vmcr.grpen0); + ret -= (int)(irqa->group ? info->vmcr.grpen1 : info->vmcr.grpen0); + if (ret) + goto out; + + penda = irqa->enabled && irq_is_pending(irqa) && !irqa->active; + pendb = irqb->enabled && irq_is_pending(irqb) && !irqb->active; + + ret = (int)pendb - (int)penda; + if (ret) + goto out; + + /* Both pending and enabled, sort by priority (lower number first) */ + ret = (int)irqa->priority - (int)irqb->priority; + if (ret) + goto out; + + /* Finally, HW bit active interrupts have priority over non-HW ones */ + ret = (int)irqb->hw - (int)irqa->hw; + +out: + raw_spin_unlock(&irqb->irq_lock); + raw_spin_unlock(&irqa->irq_lock); + return ret; +} + +/* Must be called with the ap_list_lock held */ +static void vgic_sort_ap_list(struct kvm_vcpu *vcpu) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + struct vgic_sort_info info = { .vcpu = vcpu, }; + + lockdep_assert_held(&vgic_cpu->ap_list_lock); + + vgic_get_vmcr(vcpu, &info.vmcr); + list_sort(&info, &vgic_cpu->ap_list_head, vgic_irq_cmp); +} + +/* + * Only valid injection if changing level for level-triggered IRQs or for a + * rising edge, and in-kernel connected IRQ lines can only be controlled by + * their owner. + */ +static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner) +{ + if (irq->owner != owner) + return false; + + switch (irq->config) { + case VGIC_CONFIG_LEVEL: + return irq->line_level != level; + case VGIC_CONFIG_EDGE: + return level; + } + + return false; +} + +static bool vgic_model_needs_bcst_kick(struct kvm *kvm) +{ + /* + * A GICv3 (or GICv3-like) system exposing a GICv3 to the guest + * needs a broadcast kick to set TDIR globally. + * + * For systems that do not have TDIR (ARM's own v8.0 CPUs), the + * shadow TDIR bit is always set, and so is the register's TC bit, + * so no need to kick the CPUs. + */ + return (cpus_have_final_cap(ARM64_HAS_ICH_HCR_EL2_TDIR) && + kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3); +} + +/* + * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list. + * Do the queuing if necessary, taking the right locks in the right order. + * Returns true when the IRQ was queued, false otherwise. + * + * Needs to be entered with the IRQ lock already held, but will return + * with all locks dropped. + */ +bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq, + unsigned long flags) __releases(&irq->irq_lock) +{ + struct kvm_vcpu *vcpu; + bool bcast; + + lockdep_assert_held(&irq->irq_lock); + +retry: + vcpu = vgic_target_oracle(irq); + if (irq->vcpu || !vcpu) { + /* + * If this IRQ is already on a VCPU's ap_list, then it + * cannot be moved or modified and there is no more work for + * us to do. + * + * Otherwise, if the irq is not pending and enabled, it does + * not need to be inserted into an ap_list and there is also + * no more work for us to do. + */ + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + + /* + * We have to kick the VCPU here, because we could be + * queueing an edge-triggered interrupt for which we + * get no EOI maintenance interrupt. In that case, + * while the IRQ is already on the VCPU's AP list, the + * VCPU could have EOI'ed the original interrupt and + * won't see this one until it exits for some other + * reason. + */ + if (vcpu) { + kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); + kvm_vcpu_kick(vcpu); + } + return false; + } + + /* + * We must unlock the irq lock to take the ap_list_lock where + * we are going to insert this new pending interrupt. + */ + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + + /* someone can do stuff here, which we re-check below */ + + raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags); + raw_spin_lock(&irq->irq_lock); + + /* + * Did something change behind our backs? + * + * There are two cases: + * 1) The irq lost its pending state or was disabled behind our + * backs and/or it was queued to another VCPU's ap_list. + * 2) Someone changed the affinity on this irq behind our + * backs and we are now holding the wrong ap_list_lock. + * + * In both cases, drop the locks and retry. + */ + + if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) { + raw_spin_unlock(&irq->irq_lock); + raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, + flags); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + goto retry; + } + + /* + * Grab a reference to the irq to reflect the fact that it is + * now in the ap_list. This is safe as the caller must already hold a + * reference on the irq. + */ + vgic_get_irq_ref(irq); + list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head); + irq->vcpu = vcpu; + + /* A new SPI may result in deactivation trapping on all vcpus */ + bcast = (vgic_model_needs_bcst_kick(vcpu->kvm) && + vgic_valid_spi(vcpu->kvm, irq->intid) && + atomic_fetch_inc(&vcpu->kvm->arch.vgic.active_spis) == 0); + + raw_spin_unlock(&irq->irq_lock); + raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags); + + if (!bcast) { + kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); + kvm_vcpu_kick(vcpu); + } else { + kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_IRQ_PENDING); + } + + return true; +} + +/** + * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic + * @kvm: The VM structure pointer + * @vcpu: The CPU for PPIs or NULL for global interrupts + * @intid: The INTID to inject a new state to. + * @level: Edge-triggered: true: to trigger the interrupt + * false: to ignore the call + * Level-sensitive true: raise the input signal + * false: lower the input signal + * @owner: The opaque pointer to the owner of the IRQ being raised to verify + * that the caller is allowed to inject this IRQ. Userspace + * injections will have owner == NULL. + * + * The VGIC is not concerned with devices being active-LOW or active-HIGH for + * level-sensitive interrupts. You can think of the level parameter as 1 + * being HIGH and 0 being LOW and all devices being active-HIGH. + */ +int kvm_vgic_inject_irq(struct kvm *kvm, struct kvm_vcpu *vcpu, + unsigned int intid, bool level, void *owner) +{ + struct vgic_irq *irq; + unsigned long flags; + int ret; + + ret = vgic_lazy_init(kvm); + if (ret) + return ret; + + if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS) + return -EINVAL; + + trace_vgic_update_irq_pending(vcpu ? vcpu->vcpu_idx : 0, intid, level); + + if (intid < VGIC_NR_PRIVATE_IRQS) + irq = vgic_get_vcpu_irq(vcpu, intid); + else + irq = vgic_get_irq(kvm, intid); + if (!irq) + return -EINVAL; + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + + if (!vgic_validate_injection(irq, level, owner)) { + /* Nothing to see here, move along... */ + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(kvm, irq); + return 0; + } + + if (irq->config == VGIC_CONFIG_LEVEL) + irq->line_level = level; + else + irq->pending_latch = true; + + vgic_queue_irq_unlock(kvm, irq, flags); + vgic_put_irq(kvm, irq); + + return 0; +} + +/* @irq->irq_lock must be held */ +static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq, + unsigned int host_irq, + struct irq_ops *ops) +{ + struct irq_desc *desc; + struct irq_data *data; + + /* + * Find the physical IRQ number corresponding to @host_irq + */ + desc = irq_to_desc(host_irq); + if (!desc) { + kvm_err("%s: no interrupt descriptor\n", __func__); + return -EINVAL; + } + data = irq_desc_get_irq_data(desc); + while (data->parent_data) + data = data->parent_data; + + irq->hw = true; + irq->host_irq = host_irq; + irq->hwintid = data->hwirq; + irq->ops = ops; + return 0; +} + +/* @irq->irq_lock must be held */ +static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq) +{ + irq->hw = false; + irq->hwintid = 0; + irq->ops = NULL; +} + +int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq, + u32 vintid, struct irq_ops *ops) +{ + struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid); + unsigned long flags; + int ret; + + BUG_ON(!irq); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops); + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(vcpu->kvm, irq); + + return ret; +} + +/** + * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ + * @vcpu: The VCPU pointer + * @vintid: The INTID of the interrupt + * + * Reset the active and pending states of a mapped interrupt. Kernel + * subsystems injecting mapped interrupts should reset their interrupt lines + * when we are doing a reset of the VM. + */ +void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid) +{ + struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid); + unsigned long flags; + + if (!irq->hw) + goto out; + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + irq->active = false; + irq->pending_latch = false; + irq->line_level = false; + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); +out: + vgic_put_irq(vcpu->kvm, irq); +} + +int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid) +{ + struct vgic_irq *irq; + unsigned long flags; + + if (!vgic_initialized(vcpu->kvm)) + return -EAGAIN; + + irq = vgic_get_vcpu_irq(vcpu, vintid); + BUG_ON(!irq); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + kvm_vgic_unmap_irq(irq); + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(vcpu->kvm, irq); + + return 0; +} + +int kvm_vgic_get_map(struct kvm_vcpu *vcpu, unsigned int vintid) +{ + struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid); + unsigned long flags; + int ret = -1; + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + if (irq->hw) + ret = irq->hwintid; + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + + vgic_put_irq(vcpu->kvm, irq); + return ret; +} + +/** + * kvm_vgic_set_owner - Set the owner of an interrupt for a VM + * + * @vcpu: Pointer to the VCPU (used for PPIs) + * @intid: The virtual INTID identifying the interrupt (PPI or SPI) + * @owner: Opaque pointer to the owner + * + * Returns 0 if intid is not already used by another in-kernel device and the + * owner is set, otherwise returns an error code. + */ +int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner) +{ + struct vgic_irq *irq; + unsigned long flags; + int ret = 0; + + if (!vgic_initialized(vcpu->kvm)) + return -EAGAIN; + + /* SGIs and LPIs cannot be wired up to any device */ + if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid)) + return -EINVAL; + + irq = vgic_get_vcpu_irq(vcpu, intid); + raw_spin_lock_irqsave(&irq->irq_lock, flags); + if (irq->owner && irq->owner != owner) + ret = -EEXIST; + else + irq->owner = owner; + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + + return ret; +} + +/** + * vgic_prune_ap_list - Remove non-relevant interrupts from the list + * + * @vcpu: The VCPU pointer + * + * Go over the list of "interesting" interrupts, and prune those that we + * won't have to consider in the near future. + */ +static void vgic_prune_ap_list(struct kvm_vcpu *vcpu) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + struct vgic_irq *irq, *tmp; + bool deleted_lpis = false; + + DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); + +retry: + raw_spin_lock(&vgic_cpu->ap_list_lock); + + list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) { + struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB; + bool target_vcpu_needs_kick = false; + + raw_spin_lock(&irq->irq_lock); + + BUG_ON(vcpu != irq->vcpu); + + target_vcpu = vgic_target_oracle(irq); + + if (!target_vcpu) { + /* + * We don't need to process this interrupt any + * further, move it off the list. + */ + list_del(&irq->ap_list); + irq->vcpu = NULL; + raw_spin_unlock(&irq->irq_lock); + + /* + * This vgic_put_irq call matches the + * vgic_get_irq_ref in vgic_queue_irq_unlock, + * where we added the LPI to the ap_list. As + * we remove the irq from the list, we drop + * also drop the refcount. + */ + deleted_lpis |= vgic_put_irq_norelease(vcpu->kvm, irq); + continue; + } + + if (target_vcpu == vcpu) { + /* We're on the right CPU */ + raw_spin_unlock(&irq->irq_lock); + continue; + } + + /* This interrupt looks like it has to be migrated. */ + + raw_spin_unlock(&irq->irq_lock); + raw_spin_unlock(&vgic_cpu->ap_list_lock); + + /* + * Ensure locking order by always locking the smallest + * ID first. + */ + if (vcpu->vcpu_id < target_vcpu->vcpu_id) { + vcpuA = vcpu; + vcpuB = target_vcpu; + } else { + vcpuA = target_vcpu; + vcpuB = vcpu; + } + + raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock); + raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock, + SINGLE_DEPTH_NESTING); + raw_spin_lock(&irq->irq_lock); + + /* + * If the affinity has been preserved, move the + * interrupt around. Otherwise, it means things have + * changed while the interrupt was unlocked, and we + * need to replay this. + * + * In all cases, we cannot trust the list not to have + * changed, so we restart from the beginning. + */ + if (target_vcpu == vgic_target_oracle(irq)) { + struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu; + + list_del(&irq->ap_list); + irq->vcpu = target_vcpu; + list_add_tail(&irq->ap_list, &new_cpu->ap_list_head); + target_vcpu_needs_kick = true; + } + + raw_spin_unlock(&irq->irq_lock); + raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock); + raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock); + + if (target_vcpu_needs_kick) { + kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu); + kvm_vcpu_kick(target_vcpu); + } + + goto retry; + } + + raw_spin_unlock(&vgic_cpu->ap_list_lock); + + if (unlikely(deleted_lpis)) + vgic_release_deleted_lpis(vcpu->kvm); +} + +static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu) +{ + if (kvm_vgic_global_state.type == VGIC_V2) + vgic_v2_fold_lr_state(vcpu); + else + vgic_v3_fold_lr_state(vcpu); +} + +/* Requires the irq_lock to be held. */ +static inline void vgic_populate_lr(struct kvm_vcpu *vcpu, + struct vgic_irq *irq, int lr) +{ + lockdep_assert_held(&irq->irq_lock); + + if (kvm_vgic_global_state.type == VGIC_V2) + vgic_v2_populate_lr(vcpu, irq, lr); + else + vgic_v3_populate_lr(vcpu, irq, lr); +} + +static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr) +{ + if (kvm_vgic_global_state.type == VGIC_V2) + vgic_v2_clear_lr(vcpu, lr); + else + vgic_v3_clear_lr(vcpu, lr); +} + +static void summarize_ap_list(struct kvm_vcpu *vcpu, + struct ap_list_summary *als) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + struct vgic_irq *irq; + + lockdep_assert_held(&vgic_cpu->ap_list_lock); + + *als = (typeof(*als)){}; + + list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { + guard(raw_spinlock)(&irq->irq_lock); + + if (unlikely(vgic_target_oracle(irq) != vcpu)) + continue; + + if (!irq->active) + als->nr_pend++; + else + als->nr_act++; + + if (irq->intid < VGIC_NR_SGIS) + als->nr_sgi++; + } +} + +/* + * Dealing with LR overflow is close to black magic -- dress accordingly. + * + * We have to present an almost infinite number of interrupts through a very + * limited number of registers. Therefore crucial decisions must be made to + * ensure we feed the most relevant interrupts into the LRs, and yet have + * some facilities to let the guest interact with those that are not there. + * + * All considerations below are in the context of interrupts targeting a + * single vcpu with non-idle state (either pending, active, or both), + * colloquially called the ap_list: + * + * - Pending interrupts must have priority over active interrupts. This also + * excludes pending+active interrupts. This ensures that a guest can + * perform priority drops on any number of interrupts, and yet be + * presented the next pending one. + * + * - Deactivation of interrupts outside of the LRs must be tracked by using + * either the EOIcount-driven maintenance interrupt, and sometimes by + * trapping the DIR register. + * + * - For EOImode=0, a non-zero EOIcount means walking the ap_list past the + * point that made it into the LRs, and deactivate interrupts that would + * have made it onto the LRs if we had the space. + * + * - The MI-generation bits must be used to try and force an exit when the + * guest has done enough changes to the LRs that we want to reevaluate the + * situation: + * + * - if the total number of pending interrupts exceeds the number of + * LR, NPIE must be set in order to exit once no pending interrupts + * are present in the LRs, allowing us to populate the next batch. + * + * - if there are active interrupts outside of the LRs, then LRENPIE + * must be set so that we exit on deactivation of one of these, and + * work out which one is to be deactivated. Note that this is not + * enough to deal with EOImode=1, see below. + * + * - if the overall number of interrupts exceeds the number of LRs, + * then UIE must be set to allow refilling of the LRs once the + * majority of them has been processed. + * + * - as usual, MI triggers are only an optimisation, since we cannot + * rely on the MI being delivered in timely manner... + * + * - EOImode=1 creates some additional problems: + * + * - deactivation can happen in any order, and we cannot rely on + * EOImode=0's coupling of priority-drop and deactivation which + * imposes strict reverse Ack order. This means that DIR must + * trap if we have active interrupts outside of the LRs. + * + * - deactivation of SPIs can occur on any CPU, while the SPI is only + * present in the ap_list of the CPU that actually ack-ed it. In that + * case, EOIcount doesn't provide enough information, and we must + * resort to trapping DIR even if we don't overflow the LRs. Bonus + * point for not trapping DIR when no SPIs are pending or active in + * the whole VM. + * + * - LPIs do not suffer the same problem as SPIs on deactivation, as we + * have to essentially discard the active state, see below. + * + * - Virtual LPIs have an active state (surprise!), which gets removed on + * priority drop (EOI). However, EOIcount doesn't get bumped when the LPI + * is not present in the LR (surprise again!). Special care must therefore + * be taken to remove the active state from any activated LPI when exiting + * from the guest. This is in a way no different from what happens on the + * physical side. We still rely on the running priority to have been + * removed from the APRs, irrespective of the LPI being present in the LRs + * or not. + * + * - Virtual SGIs directly injected via GICv4.1 must not affect EOIcount, as + * they are not managed in SW and don't have a true active state. So only + * set vSGIEOICount when no SGIs are in the ap_list. + * + * - GICv2 SGIs with multiple sources are injected one source at a time, as + * if they were made pending sequentially. This may mean that we don't + * always present the HPPI if other interrupts with lower priority are + * pending in the LRs. Big deal. + */ +static void vgic_flush_lr_state(struct kvm_vcpu *vcpu) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + struct ap_list_summary als; + struct vgic_irq *irq; + int count = 0; + + lockdep_assert_held(&vgic_cpu->ap_list_lock); + + summarize_ap_list(vcpu, &als); + + if (irqs_outside_lrs(&als)) + vgic_sort_ap_list(vcpu); + + list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { + scoped_guard(raw_spinlock, &irq->irq_lock) { + if (likely(vgic_target_oracle(irq) == vcpu)) { + vgic_populate_lr(vcpu, irq, count++); + } + } + + if (count == kvm_vgic_global_state.nr_lr) + break; + } + + /* Nuke remaining LRs */ + for (int i = count ; i < kvm_vgic_global_state.nr_lr; i++) + vgic_clear_lr(vcpu, i); + + if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { + vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count; + vgic_v2_configure_hcr(vcpu, &als); + } else { + vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count; + vgic_v3_configure_hcr(vcpu, &als); + } +} + +static inline bool can_access_vgic_from_kernel(void) +{ + /* + * GICv2 can always be accessed from the kernel because it is + * memory-mapped, and VHE systems can access GICv3 EL2 system + * registers. + */ + return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe(); +} + +static inline void vgic_save_state(struct kvm_vcpu *vcpu) +{ + if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) + vgic_v2_save_state(vcpu); + else + __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3); +} + +/* Sync back the hardware VGIC state into our emulation after a guest's run. */ +void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) +{ + /* If nesting, emulate the HW effect from L0 to L1 */ + if (vgic_state_is_nested(vcpu)) { + vgic_v3_sync_nested(vcpu); + return; + } + + if (vcpu_has_nv(vcpu)) + vgic_v3_nested_update_mi(vcpu); + + if (can_access_vgic_from_kernel()) + vgic_save_state(vcpu); + + vgic_fold_lr_state(vcpu); + vgic_prune_ap_list(vcpu); +} + +/* Sync interrupts that were deactivated through a DIR trap */ +void kvm_vgic_process_async_update(struct kvm_vcpu *vcpu) +{ + unsigned long flags; + + /* Make sure we're in the same context as LR handling */ + local_irq_save(flags); + vgic_prune_ap_list(vcpu); + local_irq_restore(flags); +} + +static inline void vgic_restore_state(struct kvm_vcpu *vcpu) +{ + if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) + vgic_v2_restore_state(vcpu); + else + __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3); +} + +/* Flush our emulation state into the GIC hardware before entering the guest. */ +void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) +{ + /* + * If in a nested state, we must return early. Two possibilities: + * + * - If we have any pending IRQ for the guest and the guest + * expects IRQs to be handled in its virtual EL2 mode (the + * virtual IMO bit is set) and it is not already running in + * virtual EL2 mode, then we have to emulate an IRQ + * exception to virtual EL2. + * + * We do that by placing a request to ourselves which will + * abort the entry procedure and inject the exception at the + * beginning of the run loop. + * + * - Otherwise, do exactly *NOTHING* apart from enabling the virtual + * CPU interface. The guest state is already loaded, and we can + * carry on with running it. + * + * If we have NV, but are not in a nested state, compute the + * maintenance interrupt state, as it may fire. + */ + if (vgic_state_is_nested(vcpu)) { + if (kvm_vgic_vcpu_pending_irq(vcpu)) + kvm_make_request(KVM_REQ_GUEST_HYP_IRQ_PENDING, vcpu); + + vgic_v3_flush_nested(vcpu); + return; + } + + if (vcpu_has_nv(vcpu)) + vgic_v3_nested_update_mi(vcpu); + + DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); + + scoped_guard(raw_spinlock, &vcpu->arch.vgic_cpu.ap_list_lock) + vgic_flush_lr_state(vcpu); + + if (can_access_vgic_from_kernel()) + vgic_restore_state(vcpu); + + if (vgic_supports_direct_irqs(vcpu->kvm)) + vgic_v4_commit(vcpu); +} + +void kvm_vgic_load(struct kvm_vcpu *vcpu) +{ + if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) { + if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) + __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3); + return; + } + + if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) + vgic_v2_load(vcpu); + else + vgic_v3_load(vcpu); +} + +void kvm_vgic_put(struct kvm_vcpu *vcpu) +{ + if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) { + if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) + __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3); + return; + } + + if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) + vgic_v2_put(vcpu); + else + vgic_v3_put(vcpu); +} + +int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu) +{ + struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; + struct vgic_irq *irq; + bool pending = false; + unsigned long flags; + struct vgic_vmcr vmcr; + + if (!vcpu->kvm->arch.vgic.enabled) + return false; + + if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last) + return true; + + vgic_get_vmcr(vcpu, &vmcr); + + raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags); + + list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { + raw_spin_lock(&irq->irq_lock); + pending = irq_is_pending(irq) && irq->enabled && + !irq->active && + irq->priority < vmcr.pmr; + raw_spin_unlock(&irq->irq_lock); + + if (pending) + break; + } + + raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags); + + return pending; +} + +void vgic_kick_vcpus(struct kvm *kvm) +{ + struct kvm_vcpu *vcpu; + unsigned long c; + + /* + * We've injected an interrupt, time to find out who deserves + * a good kick... + */ + kvm_for_each_vcpu(c, vcpu, kvm) { + if (kvm_vgic_vcpu_pending_irq(vcpu)) { + kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); + kvm_vcpu_kick(vcpu); + } + } +} + +bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid) +{ + struct vgic_irq *irq; + bool map_is_active; + unsigned long flags; + + if (!vgic_initialized(vcpu->kvm)) + return false; + + irq = vgic_get_vcpu_irq(vcpu, vintid); + raw_spin_lock_irqsave(&irq->irq_lock, flags); + map_is_active = irq->hw && irq->active; + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_put_irq(vcpu->kvm, irq); + + return map_is_active; +} + +/* + * Level-triggered mapped IRQs are special because we only observe rising + * edges as input to the VGIC. + * + * If the guest never acked the interrupt we have to sample the physical + * line and set the line level, because the device state could have changed + * or we simply need to process the still pending interrupt later. + * + * We could also have entered the guest with the interrupt active+pending. + * On the next exit, we need to re-evaluate the pending state, as it could + * otherwise result in a spurious interrupt by injecting a now potentially + * stale pending state. + * + * If this causes us to lower the level, we have to also clear the physical + * active state, since we will otherwise never be told when the interrupt + * becomes asserted again. + * + * Another case is when the interrupt requires a helping hand on + * deactivation (no HW deactivation, for example). + */ +void vgic_irq_handle_resampling(struct vgic_irq *irq, + bool lr_deactivated, bool lr_pending) +{ + if (vgic_irq_is_mapped_level(irq)) { + bool resample = false; + + if (unlikely(vgic_irq_needs_resampling(irq))) { + resample = !(irq->active || irq->pending_latch); + } else if (lr_pending || (lr_deactivated && irq->line_level)) { + irq->line_level = vgic_get_phys_line_level(irq); + resample = !irq->line_level; + } + + if (resample) + vgic_irq_set_phys_active(irq, false); + } +} |
