summaryrefslogtreecommitdiff
path: root/arch/arm64/mm/fault.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm64/mm/fault.c')
-rw-r--r--arch/arm64/mm/fault.c496
1 files changed, 270 insertions, 226 deletions
diff --git a/arch/arm64/mm/fault.c b/arch/arm64/mm/fault.c
index 349c488765ca..be9dab2c7d6a 100644
--- a/arch/arm64/mm/fault.c
+++ b/arch/arm64/mm/fault.c
@@ -23,6 +23,7 @@
#include <linux/sched/debug.h>
#include <linux/highmem.h>
#include <linux/perf_event.h>
+#include <linux/pkeys.h>
#include <linux/preempt.h>
#include <linux/hugetlb.h>
@@ -30,6 +31,7 @@
#include <asm/bug.h>
#include <asm/cmpxchg.h>
#include <asm/cpufeature.h>
+#include <asm/efi.h>
#include <asm/exception.h>
#include <asm/daifflags.h>
#include <asm/debug-monitors.h>
@@ -43,7 +45,7 @@
#include <asm/traps.h>
struct fault_info {
- int (*fn)(unsigned long far, unsigned int esr,
+ int (*fn)(unsigned long far, unsigned long esr,
struct pt_regs *regs);
int sig;
int code;
@@ -51,20 +53,16 @@ struct fault_info {
};
static const struct fault_info fault_info[];
-static struct fault_info debug_fault_info[];
-static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
+static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
{
return fault_info + (esr & ESR_ELx_FSC);
}
-static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
+static void data_abort_decode(unsigned long esr)
{
- return debug_fault_info + DBG_ESR_EVT(esr);
-}
+ unsigned long iss2 = ESR_ELx_ISS2(esr);
-static void data_abort_decode(unsigned int esr)
-{
pr_alert("Data abort info:\n");
if (esr & ESR_ELx_ISV) {
@@ -77,19 +75,28 @@ static void data_abort_decode(unsigned int esr)
(esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
(esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
} else {
- pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
+ pr_alert(" ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n",
+ esr & ESR_ELx_ISS_MASK, iss2);
}
- pr_alert(" CM = %lu, WnR = %lu\n",
+ pr_alert(" CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n",
(esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
- (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
+ (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT,
+ (iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT,
+ (iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT);
+
+ pr_alert(" GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n",
+ (iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT,
+ (iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT,
+ (iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT,
+ (iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT);
}
-static void mem_abort_decode(unsigned int esr)
+static void mem_abort_decode(unsigned long esr)
{
pr_alert("Mem abort info:\n");
- pr_alert(" ESR = 0x%08x\n", esr);
+ pr_alert(" ESR = 0x%016lx\n", esr);
pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
ESR_ELx_EC(esr), esr_get_class_string(esr),
(esr & ESR_ELx_IL) ? 32 : 16);
@@ -99,7 +106,7 @@ static void mem_abort_decode(unsigned int esr)
pr_alert(" EA = %lu, S1PTW = %lu\n",
(esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
(esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
- pr_alert(" FSC = 0x%02x: %s\n", (esr & ESR_ELx_FSC),
+ pr_alert(" FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
esr_to_fault_info(esr)->name);
if (esr_is_data_abort(esr))
@@ -176,7 +183,10 @@ static void show_pte(unsigned long addr)
break;
ptep = pte_offset_map(pmdp, addr);
- pte = READ_ONCE(*ptep);
+ if (!ptep)
+ break;
+
+ pte = __ptep_get(ptep);
pr_cont(", pte=%016llx", pte_val(pte));
pte_unmap(ptep);
} while(0);
@@ -190,16 +200,16 @@ static void show_pte(unsigned long addr)
*
* It needs to cope with hardware update of the accessed/dirty state by other
* agents in the system and can safely skip the __sync_icache_dcache() call as,
- * like set_pte_at(), the PTE is never changed from no-exec to exec here.
+ * like __set_ptes(), the PTE is never changed from no-exec to exec here.
*
* Returns whether or not the PTE actually changed.
*/
-int ptep_set_access_flags(struct vm_area_struct *vma,
- unsigned long address, pte_t *ptep,
- pte_t entry, int dirty)
+int __ptep_set_access_flags(struct vm_area_struct *vma,
+ unsigned long address, pte_t *ptep,
+ pte_t entry, int dirty)
{
pteval_t old_pteval, pteval;
- pte_t pte = READ_ONCE(*ptep);
+ pte_t pte = __ptep_get(ptep);
if (pte_same(pte, entry))
return 0;
@@ -223,49 +233,50 @@ int ptep_set_access_flags(struct vm_area_struct *vma,
pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
} while (pteval != old_pteval);
- /* Invalidate a stale read-only entry */
+ /*
+ * Invalidate the local stale read-only entry. Remote stale entries
+ * may still cause page faults and be invalidated via
+ * flush_tlb_fix_spurious_fault().
+ */
if (dirty)
- flush_tlb_page(vma, address);
+ local_flush_tlb_page(vma, address);
return 1;
}
-static bool is_el1_instruction_abort(unsigned int esr)
+static bool is_el1_instruction_abort(unsigned long esr)
{
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
}
-static bool is_el1_data_abort(unsigned int esr)
+static bool is_el1_data_abort(unsigned long esr)
{
return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
}
-static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
+static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
struct pt_regs *regs)
{
- unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
-
if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
return false;
- if (fsc_type == ESR_ELx_FSC_PERM)
+ if (esr_fsc_is_permission_fault(esr))
return true;
if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
- return fsc_type == ESR_ELx_FSC_FAULT &&
+ return esr_fsc_is_translation_fault(esr) &&
(regs->pstate & PSR_PAN_BIT);
return false;
}
static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
- unsigned int esr,
+ unsigned long esr,
struct pt_regs *regs)
{
unsigned long flags;
u64 par, dfsc;
- if (!is_el1_data_abort(esr) ||
- (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
+ if (!is_el1_data_abort(esr) || !esr_fsc_is_translation_fault(esr))
return false;
local_irq_save(flags);
@@ -286,56 +297,45 @@ static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
* treat the translation fault as spurious.
*/
dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
- return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
+ return !esr_fsc_is_translation_fault(dfsc);
}
static void die_kernel_fault(const char *msg, unsigned long addr,
- unsigned int esr, struct pt_regs *regs)
+ unsigned long esr, struct pt_regs *regs)
{
bust_spinlocks(1);
pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
addr);
+ kasan_non_canonical_hook(addr);
+
mem_abort_decode(esr);
show_pte(addr);
die("Oops", regs, esr);
bust_spinlocks(0);
- do_exit(SIGKILL);
+ make_task_dead(SIGKILL);
}
#ifdef CONFIG_KASAN_HW_TAGS
-static void report_tag_fault(unsigned long addr, unsigned int esr,
+static void report_tag_fault(unsigned long addr, unsigned long esr,
struct pt_regs *regs)
{
- static bool reported;
- bool is_write;
-
- if (READ_ONCE(reported))
- return;
-
- /*
- * This is used for KASAN tests and assumes that no MTE faults
- * happened before running the tests.
- */
- if (mte_report_once())
- WRITE_ONCE(reported, true);
-
/*
* SAS bits aren't set for all faults reported in EL1, so we can't
* find out access size.
*/
- is_write = !!(esr & ESR_ELx_WNR);
- kasan_report(addr, 0, is_write, regs->pc);
+ bool is_write = !!(esr & ESR_ELx_WNR);
+ kasan_report((void *)addr, 0, is_write, regs->pc);
}
#else
/* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
-static inline void report_tag_fault(unsigned long addr, unsigned int esr,
+static inline void report_tag_fault(unsigned long addr, unsigned long esr,
struct pt_regs *regs) { }
#endif
-static void do_tag_recovery(unsigned long addr, unsigned int esr,
+static void do_tag_recovery(unsigned long addr, unsigned long esr,
struct pt_regs *regs)
{
@@ -346,13 +346,14 @@ static void do_tag_recovery(unsigned long addr, unsigned int esr,
* It will be done lazily on the other CPUs when they will hit a
* tag fault.
*/
- sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, SCTLR_ELx_TCF_NONE);
+ sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
+ SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE));
isb();
}
-static bool is_el1_mte_sync_tag_check_fault(unsigned int esr)
+static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
{
- unsigned int fsc = esr & ESR_ELx_FSC;
+ unsigned long fsc = esr & ESR_ELx_FSC;
if (!is_el1_data_abort(esr))
return false;
@@ -363,7 +364,7 @@ static bool is_el1_mte_sync_tag_check_fault(unsigned int esr)
return false;
}
-static void __do_kernel_fault(unsigned long addr, unsigned int esr,
+static void __do_kernel_fault(unsigned long addr, unsigned long esr,
struct pt_regs *regs)
{
const char *msg;
@@ -372,7 +373,7 @@ static void __do_kernel_fault(unsigned long addr, unsigned int esr,
* Are we prepared to handle this kernel fault?
* We are almost certainly not prepared to handle instruction faults.
*/
- if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
+ if (!is_el1_instruction_abort(esr) && fixup_exception(regs, esr))
return;
if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
@@ -395,16 +396,20 @@ static void __do_kernel_fault(unsigned long addr, unsigned int esr,
} else if (addr < PAGE_SIZE) {
msg = "NULL pointer dereference";
} else {
- if (kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
+ if (esr_fsc_is_translation_fault(esr) &&
+ kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
return;
msg = "paging request";
}
+ if (efi_runtime_fixup_exception(regs, msg))
+ return;
+
die_kernel_fault(msg, addr, esr, regs);
}
-static void set_thread_esr(unsigned long address, unsigned int esr)
+static void set_thread_esr(unsigned long address, unsigned long esr)
{
current->thread.fault_address = address;
@@ -452,7 +457,7 @@ static void set_thread_esr(unsigned long address, unsigned int esr)
* exception level). Fail safe by not providing an ESR
* context record at all.
*/
- WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
+ WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
esr = 0;
break;
}
@@ -461,7 +466,7 @@ static void set_thread_esr(unsigned long address, unsigned int esr)
current->thread.fault_code = esr;
}
-static void do_bad_area(unsigned long far, unsigned int esr,
+static void do_bad_area(unsigned long far, unsigned long esr,
struct pt_regs *regs)
{
unsigned long addr = untagged_addr(far);
@@ -480,39 +485,44 @@ static void do_bad_area(unsigned long far, unsigned int esr,
}
}
-#define VM_FAULT_BADMAP 0x010000
-#define VM_FAULT_BADACCESS 0x020000
-
-static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
- unsigned int mm_flags, unsigned long vm_flags,
- struct pt_regs *regs)
+static bool fault_from_pkey(struct vm_area_struct *vma, unsigned int mm_flags)
{
- struct vm_area_struct *vma = find_vma(mm, addr);
-
- if (unlikely(!vma))
- return VM_FAULT_BADMAP;
+ if (!system_supports_poe())
+ return false;
/*
- * Ok, we have a good vm_area for this memory access, so we can handle
- * it.
+ * We do not check whether an Overlay fault has occurred because we
+ * cannot make a decision based solely on its value:
+ *
+ * - If Overlay is set, a fault did occur due to POE, but it may be
+ * spurious in those cases where we update POR_EL0 without ISB (e.g.
+ * on context-switch). We would then need to manually check POR_EL0
+ * against vma_pkey(vma), which is exactly what
+ * arch_vma_access_permitted() does.
+ *
+ * - If Overlay is not set, we may still need to report a pkey fault.
+ * This is the case if an access was made within a mapping but with no
+ * page mapped, and POR_EL0 forbids the access (according to
+ * vma_pkey()). Such access will result in a SIGSEGV regardless
+ * because core code checks arch_vma_access_permitted(), but in order
+ * to report the correct error code - SEGV_PKUERR - we must handle
+ * that case here.
*/
- if (unlikely(vma->vm_start > addr)) {
- if (!(vma->vm_flags & VM_GROWSDOWN))
- return VM_FAULT_BADMAP;
- if (expand_stack(vma, addr))
- return VM_FAULT_BADMAP;
- }
+ return !arch_vma_access_permitted(vma,
+ mm_flags & FAULT_FLAG_WRITE,
+ mm_flags & FAULT_FLAG_INSTRUCTION,
+ false);
+}
- /*
- * Check that the permissions on the VMA allow for the fault which
- * occurred.
- */
- if (!(vma->vm_flags & vm_flags))
- return VM_FAULT_BADACCESS;
- return handle_mm_fault(vma, addr, mm_flags, regs);
+static bool is_gcs_fault(unsigned long esr)
+{
+ if (!esr_is_data_abort(esr))
+ return false;
+
+ return ESR_ELx_ISS2(esr) & ESR_ELx_GCS;
}
-static bool is_el0_instruction_abort(unsigned int esr)
+static bool is_el0_instruction_abort(unsigned long esr)
{
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
}
@@ -521,20 +531,40 @@ static bool is_el0_instruction_abort(unsigned int esr)
* Note: not valid for EL1 DC IVAC, but we never use that such that it
* should fault. EL0 cannot issue DC IVAC (undef).
*/
-static bool is_write_abort(unsigned int esr)
+static bool is_write_abort(unsigned long esr)
{
return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
}
-static int __kprobes do_page_fault(unsigned long far, unsigned int esr,
+static bool is_invalid_gcs_access(struct vm_area_struct *vma, u64 esr)
+{
+ if (!system_supports_gcs())
+ return false;
+
+ if (unlikely(is_gcs_fault(esr))) {
+ /* GCS accesses must be performed on a GCS page */
+ if (!(vma->vm_flags & VM_SHADOW_STACK))
+ return true;
+ } else if (unlikely(vma->vm_flags & VM_SHADOW_STACK)) {
+ /* Only GCS operations can write to a GCS page */
+ return esr_is_data_abort(esr) && is_write_abort(esr);
+ }
+
+ return false;
+}
+
+static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
struct pt_regs *regs)
{
const struct fault_info *inf;
struct mm_struct *mm = current->mm;
vm_fault_t fault;
- unsigned long vm_flags;
+ vm_flags_t vm_flags;
unsigned int mm_flags = FAULT_FLAG_DEFAULT;
unsigned long addr = untagged_addr(far);
+ struct vm_area_struct *vma;
+ int si_code;
+ int pkey = -1;
if (kprobe_page_fault(regs, esr))
return 0;
@@ -559,6 +589,14 @@ static int __kprobes do_page_fault(unsigned long far, unsigned int esr,
/* It was exec fault */
vm_flags = VM_EXEC;
mm_flags |= FAULT_FLAG_INSTRUCTION;
+ } else if (is_gcs_fault(esr)) {
+ /*
+ * The GCS permission on a page implies both read and
+ * write so always handle any GCS fault as a write fault,
+ * we need to trigger CoW even for GCS reads.
+ */
+ vm_flags = VM_WRITE;
+ mm_flags |= FAULT_FLAG_WRITE;
} else if (is_write_abort(esr)) {
/* It was write fault */
vm_flags = VM_WRITE;
@@ -569,7 +607,7 @@ static int __kprobes do_page_fault(unsigned long far, unsigned int esr,
/* Write implies read */
vm_flags |= VM_WRITE;
/* If EPAN is absent then exec implies read */
- if (!cpus_have_const_cap(ARM64_HAS_EPAN))
+ if (!alternative_has_cap_unlikely(ARM64_HAS_EPAN))
vm_flags |= VM_EXEC;
}
@@ -578,38 +616,88 @@ static int __kprobes do_page_fault(unsigned long far, unsigned int esr,
die_kernel_fault("execution of user memory",
addr, esr, regs);
- if (!search_exception_tables(regs->pc))
+ if (!insn_may_access_user(regs->pc, esr))
die_kernel_fault("access to user memory outside uaccess routines",
addr, esr, regs);
}
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
- /*
- * As per x86, we may deadlock here. However, since the kernel only
- * validly references user space from well defined areas of the code,
- * we can bug out early if this is from code which shouldn't.
- */
- if (!mmap_read_trylock(mm)) {
- if (!user_mode(regs) && !search_exception_tables(regs->pc))
+ if (!(mm_flags & FAULT_FLAG_USER))
+ goto lock_mmap;
+
+ vma = lock_vma_under_rcu(mm, addr);
+ if (!vma)
+ goto lock_mmap;
+
+ if (is_invalid_gcs_access(vma, esr)) {
+ vma_end_read(vma);
+ fault = 0;
+ si_code = SEGV_ACCERR;
+ goto bad_area;
+ }
+
+ if (!(vma->vm_flags & vm_flags)) {
+ vma_end_read(vma);
+ fault = 0;
+ si_code = SEGV_ACCERR;
+ count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
+ goto bad_area;
+ }
+
+ if (fault_from_pkey(vma, mm_flags)) {
+ pkey = vma_pkey(vma);
+ vma_end_read(vma);
+ fault = 0;
+ si_code = SEGV_PKUERR;
+ count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
+ goto bad_area;
+ }
+
+ fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs);
+ if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
+ vma_end_read(vma);
+
+ if (!(fault & VM_FAULT_RETRY)) {
+ count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
+ goto done;
+ }
+ count_vm_vma_lock_event(VMA_LOCK_RETRY);
+ if (fault & VM_FAULT_MAJOR)
+ mm_flags |= FAULT_FLAG_TRIED;
+
+ /* Quick path to respond to signals */
+ if (fault_signal_pending(fault, regs)) {
+ if (!user_mode(regs))
goto no_context;
+ return 0;
+ }
+lock_mmap:
+
retry:
- mmap_read_lock(mm);
- } else {
- /*
- * The above mmap_read_trylock() might have succeeded in which
- * case, we'll have missed the might_sleep() from down_read().
- */
- might_sleep();
-#ifdef CONFIG_DEBUG_VM
- if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
- mmap_read_unlock(mm);
- goto no_context;
- }
-#endif
+ vma = lock_mm_and_find_vma(mm, addr, regs);
+ if (unlikely(!vma)) {
+ fault = 0;
+ si_code = SEGV_MAPERR;
+ goto bad_area;
}
- fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs);
+ if (!(vma->vm_flags & vm_flags)) {
+ mmap_read_unlock(mm);
+ fault = 0;
+ si_code = SEGV_ACCERR;
+ goto bad_area;
+ }
+
+ if (fault_from_pkey(vma, mm_flags)) {
+ pkey = vma_pkey(vma);
+ mmap_read_unlock(mm);
+ fault = 0;
+ si_code = SEGV_PKUERR;
+ goto bad_area;
+ }
+
+ fault = handle_mm_fault(vma, addr, mm_flags, regs);
/* Quick path to respond to signals */
if (fault_signal_pending(fault, regs)) {
@@ -618,21 +706,23 @@ retry:
return 0;
}
+ /* The fault is fully completed (including releasing mmap lock) */
+ if (fault & VM_FAULT_COMPLETED)
+ return 0;
+
if (fault & VM_FAULT_RETRY) {
- if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
- mm_flags |= FAULT_FLAG_TRIED;
- goto retry;
- }
+ mm_flags |= FAULT_FLAG_TRIED;
+ goto retry;
}
mmap_read_unlock(mm);
- /*
- * Handle the "normal" (no error) case first.
- */
- if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
- VM_FAULT_BADACCESS))))
+done:
+ /* Handle the "normal" (no error) case first. */
+ if (likely(!(fault & VM_FAULT_ERROR)))
return 0;
+ si_code = SEGV_MAPERR;
+bad_area:
/*
* If we are in kernel mode at this point, we have no context to
* handle this fault with.
@@ -668,12 +758,22 @@ retry:
arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
} else {
/*
- * Something tried to access memory that isn't in our memory
- * map.
+ * The pkey value that we return to userspace can be different
+ * from the pkey that caused the fault.
+ *
+ * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
+ * 2. T1 : set POR_EL0 to deny access to pkey=4, touches, page
+ * 3. T1 : faults...
+ * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
+ * 5. T1 : enters fault handler, takes mmap_lock, etc...
+ * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
+ * faulted on a pte with its pkey=4.
*/
- arm64_force_sig_fault(SIGSEGV,
- fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
- far, inf->name);
+ /* Something tried to access memory that out of memory map */
+ if (si_code == SEGV_PKUERR)
+ arm64_force_sig_fault_pkey(far, inf->name, pkey);
+ else
+ arm64_force_sig_fault(SIGSEGV, si_code, far, inf->name);
}
return 0;
@@ -684,7 +784,7 @@ no_context:
}
static int __kprobes do_translation_fault(unsigned long far,
- unsigned int esr,
+ unsigned long esr,
struct pt_regs *regs)
{
unsigned long addr = untagged_addr(far);
@@ -696,19 +796,22 @@ static int __kprobes do_translation_fault(unsigned long far,
return 0;
}
-static int do_alignment_fault(unsigned long far, unsigned int esr,
+static int do_alignment_fault(unsigned long far, unsigned long esr,
struct pt_regs *regs)
{
+ if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) &&
+ compat_user_mode(regs))
+ return do_compat_alignment_fixup(far, regs);
do_bad_area(far, esr, regs);
return 0;
}
-static int do_bad(unsigned long far, unsigned int esr, struct pt_regs *regs)
+static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
{
return 1; /* "fault" */
}
-static int do_sea(unsigned long far, unsigned int esr, struct pt_regs *regs)
+static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
{
const struct fault_info *inf;
unsigned long siaddr;
@@ -733,20 +836,24 @@ static int do_sea(unsigned long far, unsigned int esr, struct pt_regs *regs)
*/
siaddr = untagged_addr(far);
}
+ add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
return 0;
}
-static int do_tag_check_fault(unsigned long far, unsigned int esr,
+static int do_tag_check_fault(unsigned long far, unsigned long esr,
struct pt_regs *regs)
{
/*
* The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
* for tag check faults. Set them to corresponding bits in the untagged
- * address.
+ * address if ARM64_MTE_FAR isn't supported.
+ * Otherwise, bits 63:60 of FAR_EL1 are not UNKNOWN.
*/
- far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
+ if (!cpus_have_cap(ARM64_MTE_FAR))
+ far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
+
do_bad_area(far, esr, regs);
return 0;
}
@@ -760,18 +867,18 @@ static const struct fault_info fault_info[] = {
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
- { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
+ { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 access flag fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
- { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
+ { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 permission fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
{ do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
{ do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
- { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
+ { do_sea, SIGKILL, SI_KERNEL, "level -1 (translation table walk)" },
{ do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
{ do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
{ do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
@@ -779,7 +886,7 @@ static const struct fault_info fault_info[] = {
{ do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
{ do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
- { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
+ { do_sea, SIGKILL, SI_KERNEL, "level -1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
{ do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
{ do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
{ do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
@@ -793,9 +900,9 @@ static const struct fault_info fault_info[] = {
{ do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
- { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
+ { do_bad, SIGKILL, SI_KERNEL, "level -1 address size fault" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
- { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
+ { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level -1 translation fault" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
@@ -818,7 +925,7 @@ static const struct fault_info fault_info[] = {
{ do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
};
-void do_mem_abort(unsigned long far, unsigned int esr, struct pt_regs *regs)
+void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
{
const struct fault_info *inf = esr_to_fault_info(esr);
unsigned long addr = untagged_addr(far);
@@ -826,11 +933,8 @@ void do_mem_abort(unsigned long far, unsigned int esr, struct pt_regs *regs)
if (!inf->fn(far, esr, regs))
return;
- if (!user_mode(regs)) {
- pr_alert("Unhandled fault at 0x%016lx\n", addr);
- mem_abort_decode(esr);
- show_pte(addr);
- }
+ if (!user_mode(regs))
+ die_kernel_fault(inf->name, addr, esr, regs);
/*
* At this point we have an unrecognized fault type whose tag bits may
@@ -841,89 +945,17 @@ void do_mem_abort(unsigned long far, unsigned int esr, struct pt_regs *regs)
}
NOKPROBE_SYMBOL(do_mem_abort);
-void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
+void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
{
arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
addr, esr);
}
NOKPROBE_SYMBOL(do_sp_pc_abort);
-int __init early_brk64(unsigned long addr, unsigned int esr,
- struct pt_regs *regs);
-
-/*
- * __refdata because early_brk64 is __init, but the reference to it is
- * clobbered at arch_initcall time.
- * See traps.c and debug-monitors.c:debug_traps_init().
- */
-static struct fault_info __refdata debug_fault_info[] = {
- { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
- { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
- { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
- { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
- { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
- { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
- { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
- { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
-};
-
-void __init hook_debug_fault_code(int nr,
- int (*fn)(unsigned long, unsigned int, struct pt_regs *),
- int sig, int code, const char *name)
-{
- BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
-
- debug_fault_info[nr].fn = fn;
- debug_fault_info[nr].sig = sig;
- debug_fault_info[nr].code = code;
- debug_fault_info[nr].name = name;
-}
-
-/*
- * In debug exception context, we explicitly disable preemption despite
- * having interrupts disabled.
- * This serves two purposes: it makes it much less likely that we would
- * accidentally schedule in exception context and it will force a warning
- * if we somehow manage to schedule by accident.
- */
-static void debug_exception_enter(struct pt_regs *regs)
-{
- preempt_disable();
-
- /* This code is a bit fragile. Test it. */
- RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
-}
-NOKPROBE_SYMBOL(debug_exception_enter);
-
-static void debug_exception_exit(struct pt_regs *regs)
-{
- preempt_enable_no_resched();
-}
-NOKPROBE_SYMBOL(debug_exception_exit);
-
-void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
- struct pt_regs *regs)
-{
- const struct fault_info *inf = esr_to_debug_fault_info(esr);
- unsigned long pc = instruction_pointer(regs);
-
- debug_exception_enter(regs);
-
- if (user_mode(regs) && !is_ttbr0_addr(pc))
- arm64_apply_bp_hardening();
-
- if (inf->fn(addr_if_watchpoint, esr, regs)) {
- arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
- }
-
- debug_exception_exit(regs);
-}
-NOKPROBE_SYMBOL(do_debug_exception);
-
/*
* Used during anonymous page fault handling.
*/
-struct page *alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma,
+struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
unsigned long vaddr)
{
gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO;
@@ -936,12 +968,24 @@ struct page *alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma,
if (vma->vm_flags & VM_MTE)
flags |= __GFP_ZEROTAGS;
- return alloc_page_vma(flags, vma, vaddr);
+ return vma_alloc_folio(flags, 0, vma, vaddr);
}
-void tag_clear_highpage(struct page *page)
+bool tag_clear_highpages(struct page *page, int numpages)
{
- mte_zero_clear_page_tags(page_address(page));
- page_kasan_tag_reset(page);
- set_bit(PG_mte_tagged, &page->flags);
+ /*
+ * Check if MTE is supported and fall back to clear_highpage().
+ * get_huge_zero_folio() unconditionally passes __GFP_ZEROTAGS and
+ * post_alloc_hook() will invoke tag_clear_highpages().
+ */
+ if (!system_supports_mte())
+ return false;
+
+ /* Newly allocated pages, shouldn't have been tagged yet */
+ for (int i = 0; i < numpages; i++, page++) {
+ WARN_ON_ONCE(!try_page_mte_tagging(page));
+ mte_zero_clear_page_tags(page_address(page));
+ set_page_mte_tagged(page);
+ }
+ return true;
}