summaryrefslogtreecommitdiff
path: root/arch/parisc/kernel/time.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/parisc/kernel/time.c')
-rw-r--r--arch/parisc/kernel/time.c339
1 files changed, 142 insertions, 197 deletions
diff --git a/arch/parisc/kernel/time.c b/arch/parisc/kernel/time.c
index 70e105d62423..c17e2249115f 100644
--- a/arch/parisc/kernel/time.c
+++ b/arch/parisc/kernel/time.c
@@ -1,176 +1,105 @@
+// SPDX-License-Identifier: GPL-2.0
/*
- * linux/arch/parisc/kernel/time.c
+ * Common time service routines for parisc machines.
+ * based on arch/loongarch/kernel/time.c
*
- * Copyright (C) 1991, 1992, 1995 Linus Torvalds
- * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
- * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
- *
- * 1994-07-02 Alan Modra
- * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
- * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
- * "A Kernel Model for Precision Timekeeping" by Dave Mills
+ * Copyright (C) 2024 Helge Deller <deller@gmx.de>
*/
-#include <linux/errno.h>
-#include <linux/module.h>
-#include <linux/sched.h>
-#include <linux/kernel.h>
-#include <linux/param.h>
-#include <linux/string.h>
-#include <linux/mm.h>
-#include <linux/interrupt.h>
-#include <linux/time.h>
+#include <linux/clockchips.h>
+#include <linux/delay.h>
+#include <linux/export.h>
#include <linux/init.h>
-#include <linux/smp.h>
-#include <linux/profile.h>
-#include <linux/clocksource.h>
+#include <linux/interrupt.h>
+#include <linux/kernel.h>
+#include <linux/sched_clock.h>
+#include <linux/spinlock.h>
+#include <linux/rtc.h>
#include <linux/platform_device.h>
-#include <linux/ftrace.h>
+#include <asm/processor.h>
-#include <asm/uaccess.h>
-#include <asm/io.h>
-#include <asm/irq.h>
-#include <asm/page.h>
-#include <asm/param.h>
-#include <asm/pdc.h>
-#include <asm/led.h>
+static u64 cr16_clock_freq;
+static unsigned long clocktick;
-#include <linux/timex.h>
+int time_keeper_id; /* CPU used for timekeeping */
-static unsigned long clocktick __read_mostly; /* timer cycles per tick */
+static DEFINE_PER_CPU(struct clock_event_device, parisc_clockevent_device);
-/*
- * We keep time on PA-RISC Linux by using the Interval Timer which is
- * a pair of registers; one is read-only and one is write-only; both
- * accessed through CR16. The read-only register is 32 or 64 bits wide,
- * and increments by 1 every CPU clock tick. The architecture only
- * guarantees us a rate between 0.5 and 2, but all implementations use a
- * rate of 1. The write-only register is 32-bits wide. When the lowest
- * 32 bits of the read-only register compare equal to the write-only
- * register, it raises a maskable external interrupt. Each processor has
- * an Interval Timer of its own and they are not synchronised.
- *
- * We want to generate an interrupt every 1/HZ seconds. So we program
- * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
- * is programmed with the intended time of the next tick. We can be
- * held off for an arbitrarily long period of time by interrupts being
- * disabled, so we may miss one or more ticks.
- */
-irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
+static void parisc_event_handler(struct clock_event_device *dev)
{
- unsigned long now, now2;
- unsigned long next_tick;
- unsigned long cycles_elapsed, ticks_elapsed = 1;
- unsigned long cycles_remainder;
- unsigned int cpu = smp_processor_id();
- struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
+}
- /* gcc can optimize for "read-only" case with a local clocktick */
- unsigned long cpt = clocktick;
+static int parisc_timer_next_event(unsigned long delta, struct clock_event_device *evt)
+{
+ unsigned long new_cr16;
- profile_tick(CPU_PROFILING);
+ new_cr16 = mfctl(16) + delta;
+ mtctl(new_cr16, 16);
- /* Initialize next_tick to the expected tick time. */
- next_tick = cpuinfo->it_value;
+ return 0;
+}
- /* Get current cycle counter (Control Register 16). */
- now = mfctl(16);
+irqreturn_t timer_interrupt(int irq, void *data)
+{
+ struct clock_event_device *cd;
+ int cpu = smp_processor_id();
- cycles_elapsed = now - next_tick;
+ cd = &per_cpu(parisc_clockevent_device, cpu);
- if ((cycles_elapsed >> 6) < cpt) {
- /* use "cheap" math (add/subtract) instead
- * of the more expensive div/mul method
- */
- cycles_remainder = cycles_elapsed;
- while (cycles_remainder > cpt) {
- cycles_remainder -= cpt;
- ticks_elapsed++;
- }
- } else {
- /* TODO: Reduce this to one fdiv op */
- cycles_remainder = cycles_elapsed % cpt;
- ticks_elapsed += cycles_elapsed / cpt;
- }
+ if (clockevent_state_periodic(cd))
+ parisc_timer_next_event(clocktick, cd);
- /* convert from "division remainder" to "remainder of clock tick" */
- cycles_remainder = cpt - cycles_remainder;
-
- /* Determine when (in CR16 cycles) next IT interrupt will fire.
- * We want IT to fire modulo clocktick even if we miss/skip some.
- * But those interrupts don't in fact get delivered that regularly.
- */
- next_tick = now + cycles_remainder;
-
- cpuinfo->it_value = next_tick;
-
- /* Program the IT when to deliver the next interrupt.
- * Only bottom 32-bits of next_tick are writable in CR16!
- */
- mtctl(next_tick, 16);
-
- /* Skip one clocktick on purpose if we missed next_tick.
- * The new CR16 must be "later" than current CR16 otherwise
- * itimer would not fire until CR16 wrapped - e.g 4 seconds
- * later on a 1Ghz processor. We'll account for the missed
- * tick on the next timer interrupt.
- *
- * "next_tick - now" will always give the difference regardless
- * if one or the other wrapped. If "now" is "bigger" we'll end up
- * with a very large unsigned number.
- */
- now2 = mfctl(16);
- if (next_tick - now2 > cpt)
- mtctl(next_tick+cpt, 16);
-
-#if 1
-/*
- * GGG: DEBUG code for how many cycles programming CR16 used.
- */
- if (unlikely(now2 - now > 0x3000)) /* 12K cycles */
- printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
- " cyc %lX rem %lX "
- " next/now %lX/%lX\n",
- cpu, now2 - now, cycles_elapsed, cycles_remainder,
- next_tick, now );
-#endif
+ if (clockevent_state_periodic(cd) || clockevent_state_oneshot(cd))
+ cd->event_handler(cd);
- /* Can we differentiate between "early CR16" (aka Scenario 1) and
- * "long delay" (aka Scenario 3)? I don't think so.
- *
- * Timer_interrupt will be delivered at least a few hundred cycles
- * after the IT fires. But it's arbitrary how much time passes
- * before we call it "late". I've picked one second.
- *
- * It's important NO printk's are between reading CR16 and
- * setting up the next value. May introduce huge variance.
- */
- if (unlikely(ticks_elapsed > HZ)) {
- /* Scenario 3: very long delay? bad in any case */
- printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
- " cycles %lX rem %lX "
- " next/now %lX/%lX\n",
- cpu,
- cycles_elapsed, cycles_remainder,
- next_tick, now );
- }
+ return IRQ_HANDLED;
+}
- /* Done mucking with unreliable delivery of interrupts.
- * Go do system house keeping.
- */
+static int parisc_set_state_oneshot(struct clock_event_device *evt)
+{
+ parisc_timer_next_event(clocktick, evt);
- if (!--cpuinfo->prof_counter) {
- cpuinfo->prof_counter = cpuinfo->prof_multiplier;
- update_process_times(user_mode(get_irq_regs()));
- }
+ return 0;
+}
- if (cpu == 0)
- xtime_update(ticks_elapsed);
+static int parisc_set_state_periodic(struct clock_event_device *evt)
+{
+ parisc_timer_next_event(clocktick, evt);
- return IRQ_HANDLED;
+ return 0;
}
+static int parisc_set_state_shutdown(struct clock_event_device *evt)
+{
+ return 0;
+}
-unsigned long profile_pc(struct pt_regs *regs)
+void parisc_clockevent_init(void)
+{
+ unsigned int cpu = smp_processor_id();
+ unsigned long min_delta = 0x600; /* XXX */
+ unsigned long max_delta = (1UL << (BITS_PER_LONG - 1));
+ struct clock_event_device *cd;
+
+ cd = &per_cpu(parisc_clockevent_device, cpu);
+
+ cd->name = "cr16_clockevent";
+ cd->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC |
+ CLOCK_EVT_FEAT_PERCPU;
+
+ cd->irq = TIMER_IRQ;
+ cd->rating = 320;
+ cd->cpumask = cpumask_of(cpu);
+ cd->set_state_oneshot = parisc_set_state_oneshot;
+ cd->set_state_oneshot_stopped = parisc_set_state_shutdown;
+ cd->set_state_periodic = parisc_set_state_periodic;
+ cd->set_state_shutdown = parisc_set_state_shutdown;
+ cd->set_next_event = parisc_timer_next_event;
+ cd->event_handler = parisc_event_handler;
+
+ clockevents_config_and_register(cd, cr16_clock_freq, min_delta, max_delta);
+}
+
+unsigned long notrace profile_pc(struct pt_regs *regs)
{
unsigned long pc = instruction_pointer(regs);
@@ -186,67 +115,56 @@ unsigned long profile_pc(struct pt_regs *regs)
}
EXPORT_SYMBOL(profile_pc);
-
-/* clock source code */
-
-static cycle_t read_cr16(struct clocksource *cs)
+#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
+static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
{
- return get_cycles();
-}
-
-static struct clocksource clocksource_cr16 = {
- .name = "cr16",
- .rating = 300,
- .read = read_cr16,
- .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
- .flags = CLOCK_SOURCE_IS_CONTINUOUS,
-};
+ struct pdc_tod tod_data;
-#ifdef CONFIG_SMP
-int update_cr16_clocksource(void)
-{
- /* since the cr16 cycle counters are not synchronized across CPUs,
- we'll check if we should switch to a safe clocksource: */
- if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
- clocksource_change_rating(&clocksource_cr16, 0);
- return 1;
- }
+ memset(tm, 0, sizeof(*tm));
+ if (pdc_tod_read(&tod_data) < 0)
+ return -EOPNOTSUPP;
+ /* we treat tod_sec as unsigned, so this can work until year 2106 */
+ rtc_time64_to_tm(tod_data.tod_sec, tm);
return 0;
}
-#else
-int update_cr16_clocksource(void)
-{
- return 0; /* no change */
-}
-#endif /*CONFIG_SMP*/
-void __init start_cpu_itimer(void)
+static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
{
- unsigned int cpu = smp_processor_id();
- unsigned long next_tick = mfctl(16) + clocktick;
-
- mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
+ time64_t secs = rtc_tm_to_time64(tm);
+ int ret;
+
+ /* hppa has Y2K38 problem: pdc_tod_set() takes an u32 value! */
+ ret = pdc_tod_set(secs, 0);
+ if (ret != 0) {
+ pr_warn("pdc_tod_set(%lld) returned error %d\n", secs, ret);
+ if (ret == PDC_INVALID_ARG)
+ return -EINVAL;
+ return -EOPNOTSUPP;
+ }
- per_cpu(cpu_data, cpu).it_value = next_tick;
+ return 0;
}
-static struct platform_device rtc_generic_dev = {
- .name = "rtc-generic",
- .id = -1,
+static const struct rtc_class_ops rtc_generic_ops = {
+ .read_time = rtc_generic_get_time,
+ .set_time = rtc_generic_set_time,
};
static int __init rtc_init(void)
{
- if (platform_device_register(&rtc_generic_dev) < 0)
- printk(KERN_ERR "unable to register rtc device...\n");
+ struct platform_device *pdev;
- /* not necessarily an error */
- return 0;
+ pdev = platform_device_register_data(NULL, "rtc-generic", -1,
+ &rtc_generic_ops,
+ sizeof(rtc_generic_ops));
+
+ return PTR_ERR_OR_ZERO(pdev);
}
-module_init(rtc_init);
+device_initcall(rtc_init);
+#endif
-void read_persistent_clock(struct timespec *ts)
+void read_persistent_clock64(struct timespec64 *ts)
{
static struct pdc_tod tod_data;
if (pdc_tod_read(&tod_data) == 0) {
@@ -259,15 +177,42 @@ void read_persistent_clock(struct timespec *ts)
}
}
+static u64 notrace read_cr16_sched_clock(void)
+{
+ return get_cycles();
+}
+
+static u64 notrace read_cr16(struct clocksource *cs)
+{
+ return get_cycles();
+}
+
+static struct clocksource clocksource_cr16 = {
+ .name = "cr16",
+ .rating = 300,
+ .read = read_cr16,
+ .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
+ .flags = CLOCK_SOURCE_IS_CONTINUOUS |
+ CLOCK_SOURCE_VALID_FOR_HRES |
+ CLOCK_SOURCE_MUST_VERIFY |
+ CLOCK_SOURCE_VERIFY_PERCPU,
+};
+
+
+/*
+ * timer interrupt and sched_clock() initialization
+ */
+
void __init time_init(void)
{
- unsigned long current_cr16_khz;
+ cr16_clock_freq = 100 * PAGE0->mem_10msec; /* Hz */
+ clocktick = cr16_clock_freq / HZ;
- clocktick = (100 * PAGE0->mem_10msec) / HZ;
+ /* register as sched_clock source */
+ sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_clock_freq);
- start_cpu_itimer(); /* get CPU 0 started */
+ parisc_clockevent_init();
/* register at clocksource framework */
- current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */
- clocksource_register_khz(&clocksource_cr16, current_cr16_khz);
+ clocksource_register_hz(&clocksource_cr16, cr16_clock_freq);
}