diff options
Diffstat (limited to 'arch/parisc/kernel/time.c')
| -rw-r--r-- | arch/parisc/kernel/time.c | 339 |
1 files changed, 142 insertions, 197 deletions
diff --git a/arch/parisc/kernel/time.c b/arch/parisc/kernel/time.c index 70e105d62423..c17e2249115f 100644 --- a/arch/parisc/kernel/time.c +++ b/arch/parisc/kernel/time.c @@ -1,176 +1,105 @@ +// SPDX-License-Identifier: GPL-2.0 /* - * linux/arch/parisc/kernel/time.c + * Common time service routines for parisc machines. + * based on arch/loongarch/kernel/time.c * - * Copyright (C) 1991, 1992, 1995 Linus Torvalds - * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King - * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org) - * - * 1994-07-02 Alan Modra - * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime - * 1998-12-20 Updated NTP code according to technical memorandum Jan '96 - * "A Kernel Model for Precision Timekeeping" by Dave Mills + * Copyright (C) 2024 Helge Deller <deller@gmx.de> */ -#include <linux/errno.h> -#include <linux/module.h> -#include <linux/sched.h> -#include <linux/kernel.h> -#include <linux/param.h> -#include <linux/string.h> -#include <linux/mm.h> -#include <linux/interrupt.h> -#include <linux/time.h> +#include <linux/clockchips.h> +#include <linux/delay.h> +#include <linux/export.h> #include <linux/init.h> -#include <linux/smp.h> -#include <linux/profile.h> -#include <linux/clocksource.h> +#include <linux/interrupt.h> +#include <linux/kernel.h> +#include <linux/sched_clock.h> +#include <linux/spinlock.h> +#include <linux/rtc.h> #include <linux/platform_device.h> -#include <linux/ftrace.h> +#include <asm/processor.h> -#include <asm/uaccess.h> -#include <asm/io.h> -#include <asm/irq.h> -#include <asm/page.h> -#include <asm/param.h> -#include <asm/pdc.h> -#include <asm/led.h> +static u64 cr16_clock_freq; +static unsigned long clocktick; -#include <linux/timex.h> +int time_keeper_id; /* CPU used for timekeeping */ -static unsigned long clocktick __read_mostly; /* timer cycles per tick */ +static DEFINE_PER_CPU(struct clock_event_device, parisc_clockevent_device); -/* - * We keep time on PA-RISC Linux by using the Interval Timer which is - * a pair of registers; one is read-only and one is write-only; both - * accessed through CR16. The read-only register is 32 or 64 bits wide, - * and increments by 1 every CPU clock tick. The architecture only - * guarantees us a rate between 0.5 and 2, but all implementations use a - * rate of 1. The write-only register is 32-bits wide. When the lowest - * 32 bits of the read-only register compare equal to the write-only - * register, it raises a maskable external interrupt. Each processor has - * an Interval Timer of its own and they are not synchronised. - * - * We want to generate an interrupt every 1/HZ seconds. So we program - * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data - * is programmed with the intended time of the next tick. We can be - * held off for an arbitrarily long period of time by interrupts being - * disabled, so we may miss one or more ticks. - */ -irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id) +static void parisc_event_handler(struct clock_event_device *dev) { - unsigned long now, now2; - unsigned long next_tick; - unsigned long cycles_elapsed, ticks_elapsed = 1; - unsigned long cycles_remainder; - unsigned int cpu = smp_processor_id(); - struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu); +} - /* gcc can optimize for "read-only" case with a local clocktick */ - unsigned long cpt = clocktick; +static int parisc_timer_next_event(unsigned long delta, struct clock_event_device *evt) +{ + unsigned long new_cr16; - profile_tick(CPU_PROFILING); + new_cr16 = mfctl(16) + delta; + mtctl(new_cr16, 16); - /* Initialize next_tick to the expected tick time. */ - next_tick = cpuinfo->it_value; + return 0; +} - /* Get current cycle counter (Control Register 16). */ - now = mfctl(16); +irqreturn_t timer_interrupt(int irq, void *data) +{ + struct clock_event_device *cd; + int cpu = smp_processor_id(); - cycles_elapsed = now - next_tick; + cd = &per_cpu(parisc_clockevent_device, cpu); - if ((cycles_elapsed >> 6) < cpt) { - /* use "cheap" math (add/subtract) instead - * of the more expensive div/mul method - */ - cycles_remainder = cycles_elapsed; - while (cycles_remainder > cpt) { - cycles_remainder -= cpt; - ticks_elapsed++; - } - } else { - /* TODO: Reduce this to one fdiv op */ - cycles_remainder = cycles_elapsed % cpt; - ticks_elapsed += cycles_elapsed / cpt; - } + if (clockevent_state_periodic(cd)) + parisc_timer_next_event(clocktick, cd); - /* convert from "division remainder" to "remainder of clock tick" */ - cycles_remainder = cpt - cycles_remainder; - - /* Determine when (in CR16 cycles) next IT interrupt will fire. - * We want IT to fire modulo clocktick even if we miss/skip some. - * But those interrupts don't in fact get delivered that regularly. - */ - next_tick = now + cycles_remainder; - - cpuinfo->it_value = next_tick; - - /* Program the IT when to deliver the next interrupt. - * Only bottom 32-bits of next_tick are writable in CR16! - */ - mtctl(next_tick, 16); - - /* Skip one clocktick on purpose if we missed next_tick. - * The new CR16 must be "later" than current CR16 otherwise - * itimer would not fire until CR16 wrapped - e.g 4 seconds - * later on a 1Ghz processor. We'll account for the missed - * tick on the next timer interrupt. - * - * "next_tick - now" will always give the difference regardless - * if one or the other wrapped. If "now" is "bigger" we'll end up - * with a very large unsigned number. - */ - now2 = mfctl(16); - if (next_tick - now2 > cpt) - mtctl(next_tick+cpt, 16); - -#if 1 -/* - * GGG: DEBUG code for how many cycles programming CR16 used. - */ - if (unlikely(now2 - now > 0x3000)) /* 12K cycles */ - printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!" - " cyc %lX rem %lX " - " next/now %lX/%lX\n", - cpu, now2 - now, cycles_elapsed, cycles_remainder, - next_tick, now ); -#endif + if (clockevent_state_periodic(cd) || clockevent_state_oneshot(cd)) + cd->event_handler(cd); - /* Can we differentiate between "early CR16" (aka Scenario 1) and - * "long delay" (aka Scenario 3)? I don't think so. - * - * Timer_interrupt will be delivered at least a few hundred cycles - * after the IT fires. But it's arbitrary how much time passes - * before we call it "late". I've picked one second. - * - * It's important NO printk's are between reading CR16 and - * setting up the next value. May introduce huge variance. - */ - if (unlikely(ticks_elapsed > HZ)) { - /* Scenario 3: very long delay? bad in any case */ - printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!" - " cycles %lX rem %lX " - " next/now %lX/%lX\n", - cpu, - cycles_elapsed, cycles_remainder, - next_tick, now ); - } + return IRQ_HANDLED; +} - /* Done mucking with unreliable delivery of interrupts. - * Go do system house keeping. - */ +static int parisc_set_state_oneshot(struct clock_event_device *evt) +{ + parisc_timer_next_event(clocktick, evt); - if (!--cpuinfo->prof_counter) { - cpuinfo->prof_counter = cpuinfo->prof_multiplier; - update_process_times(user_mode(get_irq_regs())); - } + return 0; +} - if (cpu == 0) - xtime_update(ticks_elapsed); +static int parisc_set_state_periodic(struct clock_event_device *evt) +{ + parisc_timer_next_event(clocktick, evt); - return IRQ_HANDLED; + return 0; } +static int parisc_set_state_shutdown(struct clock_event_device *evt) +{ + return 0; +} -unsigned long profile_pc(struct pt_regs *regs) +void parisc_clockevent_init(void) +{ + unsigned int cpu = smp_processor_id(); + unsigned long min_delta = 0x600; /* XXX */ + unsigned long max_delta = (1UL << (BITS_PER_LONG - 1)); + struct clock_event_device *cd; + + cd = &per_cpu(parisc_clockevent_device, cpu); + + cd->name = "cr16_clockevent"; + cd->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC | + CLOCK_EVT_FEAT_PERCPU; + + cd->irq = TIMER_IRQ; + cd->rating = 320; + cd->cpumask = cpumask_of(cpu); + cd->set_state_oneshot = parisc_set_state_oneshot; + cd->set_state_oneshot_stopped = parisc_set_state_shutdown; + cd->set_state_periodic = parisc_set_state_periodic; + cd->set_state_shutdown = parisc_set_state_shutdown; + cd->set_next_event = parisc_timer_next_event; + cd->event_handler = parisc_event_handler; + + clockevents_config_and_register(cd, cr16_clock_freq, min_delta, max_delta); +} + +unsigned long notrace profile_pc(struct pt_regs *regs) { unsigned long pc = instruction_pointer(regs); @@ -186,67 +115,56 @@ unsigned long profile_pc(struct pt_regs *regs) } EXPORT_SYMBOL(profile_pc); - -/* clock source code */ - -static cycle_t read_cr16(struct clocksource *cs) +#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) +static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) { - return get_cycles(); -} - -static struct clocksource clocksource_cr16 = { - .name = "cr16", - .rating = 300, - .read = read_cr16, - .mask = CLOCKSOURCE_MASK(BITS_PER_LONG), - .flags = CLOCK_SOURCE_IS_CONTINUOUS, -}; + struct pdc_tod tod_data; -#ifdef CONFIG_SMP -int update_cr16_clocksource(void) -{ - /* since the cr16 cycle counters are not synchronized across CPUs, - we'll check if we should switch to a safe clocksource: */ - if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) { - clocksource_change_rating(&clocksource_cr16, 0); - return 1; - } + memset(tm, 0, sizeof(*tm)); + if (pdc_tod_read(&tod_data) < 0) + return -EOPNOTSUPP; + /* we treat tod_sec as unsigned, so this can work until year 2106 */ + rtc_time64_to_tm(tod_data.tod_sec, tm); return 0; } -#else -int update_cr16_clocksource(void) -{ - return 0; /* no change */ -} -#endif /*CONFIG_SMP*/ -void __init start_cpu_itimer(void) +static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) { - unsigned int cpu = smp_processor_id(); - unsigned long next_tick = mfctl(16) + clocktick; - - mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */ + time64_t secs = rtc_tm_to_time64(tm); + int ret; + + /* hppa has Y2K38 problem: pdc_tod_set() takes an u32 value! */ + ret = pdc_tod_set(secs, 0); + if (ret != 0) { + pr_warn("pdc_tod_set(%lld) returned error %d\n", secs, ret); + if (ret == PDC_INVALID_ARG) + return -EINVAL; + return -EOPNOTSUPP; + } - per_cpu(cpu_data, cpu).it_value = next_tick; + return 0; } -static struct platform_device rtc_generic_dev = { - .name = "rtc-generic", - .id = -1, +static const struct rtc_class_ops rtc_generic_ops = { + .read_time = rtc_generic_get_time, + .set_time = rtc_generic_set_time, }; static int __init rtc_init(void) { - if (platform_device_register(&rtc_generic_dev) < 0) - printk(KERN_ERR "unable to register rtc device...\n"); + struct platform_device *pdev; - /* not necessarily an error */ - return 0; + pdev = platform_device_register_data(NULL, "rtc-generic", -1, + &rtc_generic_ops, + sizeof(rtc_generic_ops)); + + return PTR_ERR_OR_ZERO(pdev); } -module_init(rtc_init); +device_initcall(rtc_init); +#endif -void read_persistent_clock(struct timespec *ts) +void read_persistent_clock64(struct timespec64 *ts) { static struct pdc_tod tod_data; if (pdc_tod_read(&tod_data) == 0) { @@ -259,15 +177,42 @@ void read_persistent_clock(struct timespec *ts) } } +static u64 notrace read_cr16_sched_clock(void) +{ + return get_cycles(); +} + +static u64 notrace read_cr16(struct clocksource *cs) +{ + return get_cycles(); +} + +static struct clocksource clocksource_cr16 = { + .name = "cr16", + .rating = 300, + .read = read_cr16, + .mask = CLOCKSOURCE_MASK(BITS_PER_LONG), + .flags = CLOCK_SOURCE_IS_CONTINUOUS | + CLOCK_SOURCE_VALID_FOR_HRES | + CLOCK_SOURCE_MUST_VERIFY | + CLOCK_SOURCE_VERIFY_PERCPU, +}; + + +/* + * timer interrupt and sched_clock() initialization + */ + void __init time_init(void) { - unsigned long current_cr16_khz; + cr16_clock_freq = 100 * PAGE0->mem_10msec; /* Hz */ + clocktick = cr16_clock_freq / HZ; - clocktick = (100 * PAGE0->mem_10msec) / HZ; + /* register as sched_clock source */ + sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_clock_freq); - start_cpu_itimer(); /* get CPU 0 started */ + parisc_clockevent_init(); /* register at clocksource framework */ - current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */ - clocksource_register_khz(&clocksource_cr16, current_cr16_khz); + clocksource_register_hz(&clocksource_cr16, cr16_clock_freq); } |
