diff options
Diffstat (limited to 'arch/powerpc/include/asm/book3s/64/pgalloc.h')
| -rw-r--r-- | arch/powerpc/include/asm/book3s/64/pgalloc.h | 200 |
1 files changed, 80 insertions, 120 deletions
diff --git a/arch/powerpc/include/asm/book3s/64/pgalloc.h b/arch/powerpc/include/asm/book3s/64/pgalloc.h index e2329db9d6f4..dd2cff53a111 100644 --- a/arch/powerpc/include/asm/book3s/64/pgalloc.h +++ b/arch/powerpc/include/asm/book3s/64/pgalloc.h @@ -1,14 +1,12 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _ASM_POWERPC_BOOK3S_64_PGALLOC_H #define _ASM_POWERPC_BOOK3S_64_PGALLOC_H /* - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * as published by the Free Software Foundation; either version - * 2 of the License, or (at your option) any later version. */ #include <linux/slab.h> #include <linux/cpumask.h> +#include <linux/kmemleak.h> #include <linux/percpu.h> struct vmemmap_backing { @@ -18,37 +16,11 @@ struct vmemmap_backing { }; extern struct vmemmap_backing *vmemmap_list; -/* - * Functions that deal with pagetables that could be at any level of - * the table need to be passed an "index_size" so they know how to - * handle allocation. For PTE pages (which are linked to a struct - * page for now, and drawn from the main get_free_pages() pool), the - * allocation size will be (2^index_size * sizeof(pointer)) and - * allocations are drawn from the kmem_cache in PGT_CACHE(index_size). - * - * The maximum index size needs to be big enough to allow any - * pagetable sizes we need, but small enough to fit in the low bits of - * any page table pointer. In other words all pagetables, even tiny - * ones, must be aligned to allow at least enough low 0 bits to - * contain this value. This value is also used as a mask, so it must - * be one less than a power of two. - */ -#define MAX_PGTABLE_INDEX_SIZE 0xf - -extern struct kmem_cache *pgtable_cache[]; -#define PGT_CACHE(shift) ({ \ - BUG_ON(!(shift)); \ - pgtable_cache[(shift) - 1]; \ - }) - -#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO - -extern pte_t *pte_fragment_alloc(struct mm_struct *, unsigned long, int); -extern void pte_fragment_free(unsigned long *, int); +extern pmd_t *pmd_fragment_alloc(struct mm_struct *, unsigned long); +extern void pmd_fragment_free(unsigned long *); extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift); -#ifdef CONFIG_SMP extern void __tlb_remove_table(void *_table); -#endif +void pte_frag_destroy(void *pte_frag); static inline pgd_t *radix__pgd_alloc(struct mm_struct *mm) { @@ -75,10 +47,35 @@ static inline void radix__pgd_free(struct mm_struct *mm, pgd_t *pgd) static inline pgd_t *pgd_alloc(struct mm_struct *mm) { + pgd_t *pgd; + if (radix_enabled()) return radix__pgd_alloc(mm); - return kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), - pgtable_gfp_flags(mm, GFP_KERNEL)); + + pgd = kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), + pgtable_gfp_flags(mm, GFP_KERNEL)); + if (unlikely(!pgd)) + return pgd; + + /* + * Don't scan the PGD for pointers, it contains references to PUDs but + * those references are not full pointers and so can't be recognised by + * kmemleak. + */ + kmemleak_no_scan(pgd); + + /* + * With hugetlb, we don't clear the second half of the page table. + * If we share the same slab cache with the pmd or pud level table, + * we need to make sure we zero out the full table on alloc. + * With 4K we don't store slot in the second half. Hence we don't + * need to do this for 4k. + */ +#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_PPC_64K_PAGES) && \ + (H_PGD_INDEX_SIZE == H_PUD_CACHE_INDEX) + memset(pgd, 0, PGD_TABLE_SIZE); +#endif + return pgd; } static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) @@ -88,136 +85,99 @@ static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd); } -static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pud_t *pud) +static inline void p4d_populate(struct mm_struct *mm, p4d_t *pgd, pud_t *pud) { - pgd_set(pgd, __pgtable_ptr_val(pud) | PGD_VAL_BITS); + *pgd = __p4d(__pgtable_ptr_val(pud) | PGD_VAL_BITS); } static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) { - return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE), - pgtable_gfp_flags(mm, GFP_KERNEL)); -} + pud_t *pud; -static inline void pud_free(struct mm_struct *mm, pud_t *pud) -{ - kmem_cache_free(PGT_CACHE(PUD_INDEX_SIZE), pud); -} - -static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) -{ - pud_set(pud, __pgtable_ptr_val(pmd) | PUD_VAL_BITS); -} - -static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud, - unsigned long address) -{ + pud = kmem_cache_alloc(PGT_CACHE(PUD_CACHE_INDEX), + pgtable_gfp_flags(mm, GFP_KERNEL)); /* - * By now all the pud entries should be none entries. So go - * ahead and flush the page walk cache + * Tell kmemleak to ignore the PUD, that means don't scan it for + * pointers and don't consider it a leak. PUDs are typically only + * referred to by their PGD, but kmemleak is not able to recognise those + * as pointers, leading to false leak reports. */ - flush_tlb_pgtable(tlb, address); - pgtable_free_tlb(tlb, pud, PUD_INDEX_SIZE); -} + kmemleak_ignore(pud); -static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) -{ - return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX), - pgtable_gfp_flags(mm, GFP_KERNEL)); + return pud; } -static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) +static inline void __pud_free(pud_t *pud) { - kmem_cache_free(PGT_CACHE(PMD_CACHE_INDEX), pmd); -} + struct page *page = virt_to_page(pud); -static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd, - unsigned long address) -{ /* - * By now all the pud entries should be none entries. So go - * ahead and flush the page walk cache + * Early pud pages allocated via memblock allocator + * can't be directly freed to slab. KFENCE pages have + * both reserved and slab flags set so need to be freed + * kmem_cache_free. */ - flush_tlb_pgtable(tlb, address); - return pgtable_free_tlb(tlb, pmd, PMD_CACHE_INDEX); -} - -static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, - pte_t *pte) -{ - pmd_set(pmd, __pgtable_ptr_val(pte) | PMD_VAL_BITS); + if (PageReserved(page) && !PageSlab(page)) + free_reserved_page(page); + else + kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), pud); } -static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd, - pgtable_t pte_page) +static inline void pud_free(struct mm_struct *mm, pud_t *pud) { - pmd_set(pmd, __pgtable_ptr_val(pte_page) | PMD_VAL_BITS); + return __pud_free(pud); } -static inline pgtable_t pmd_pgtable(pmd_t pmd) +static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) { - return (pgtable_t)pmd_page_vaddr(pmd); + *pud = __pud(__pgtable_ptr_val(pmd) | PUD_VAL_BITS); } -#ifdef CONFIG_PPC_4K_PAGES -static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, - unsigned long address) +static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud, + unsigned long address) { - return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); + pgtable_free_tlb(tlb, pud, PUD_INDEX); } -static inline pgtable_t pte_alloc_one(struct mm_struct *mm, - unsigned long address) +static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) { - struct page *page; - pte_t *pte; - - pte = (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO | __GFP_ACCOUNT); - if (!pte) - return NULL; - page = virt_to_page(pte); - if (!pgtable_page_ctor(page)) { - __free_page(page); - return NULL; - } - return pte; + return pmd_fragment_alloc(mm, addr); } -#else /* if CONFIG_PPC_64K_PAGES */ -static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, - unsigned long address) +static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) { - return (pte_t *)pte_fragment_alloc(mm, address, 1); + pmd_fragment_free((unsigned long *)pmd); } -static inline pgtable_t pte_alloc_one(struct mm_struct *mm, - unsigned long address) +static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd, + unsigned long address) { - return (pgtable_t)pte_fragment_alloc(mm, address, 0); + return pgtable_free_tlb(tlb, pmd, PMD_INDEX); } -#endif -static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte) +static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, + pte_t *pte) { - pte_fragment_free((unsigned long *)pte, 1); + *pmd = __pmd(__pgtable_ptr_val(pte) | PMD_VAL_BITS); } -static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage) +static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd, + pgtable_t pte_page) { - pte_fragment_free((unsigned long *)ptepage, 0); + *pmd = __pmd(__pgtable_ptr_val(pte_page) | PMD_VAL_BITS); } static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table, unsigned long address) { - /* - * By now all the pud entries should be none entries. So go - * ahead and flush the page walk cache - */ - flush_tlb_pgtable(tlb, address); - pgtable_free_tlb(tlb, table, 0); + pgtable_free_tlb(tlb, table, PTE_INDEX); } -#define check_pgt_cache() do { } while (0) +extern atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; +static inline void update_page_count(int psize, long count) +{ + if (IS_ENABLED(CONFIG_PROC_FS)) + atomic_long_add(count, &direct_pages_count[psize]); +} #endif /* _ASM_POWERPC_BOOK3S_64_PGALLOC_H */ |
