summaryrefslogtreecommitdiff
path: root/arch/powerpc/kernel/watchdog.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/kernel/watchdog.c')
-rw-r--r--arch/powerpc/kernel/watchdog.c518
1 files changed, 361 insertions, 157 deletions
diff --git a/arch/powerpc/kernel/watchdog.c b/arch/powerpc/kernel/watchdog.c
index b67f8b03a32d..2429cb1c7baa 100644
--- a/arch/powerpc/kernel/watchdog.c
+++ b/arch/powerpc/kernel/watchdog.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0
/*
* Watchdog support on powerpc systems.
*
@@ -5,6 +6,9 @@
*
* This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
*/
+
+#define pr_fmt(fmt) "watchdog: " fmt
+
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/init.h>
@@ -20,20 +24,53 @@
#include <linux/kdebug.h>
#include <linux/sched/debug.h>
#include <linux/delay.h>
+#include <linux/processor.h>
#include <linux/smp.h>
+#include <asm/interrupt.h>
#include <asm/paca.h>
+#include <asm/nmi.h>
/*
- * The watchdog has a simple timer that runs on each CPU, once per timer
- * period. This is the heartbeat.
+ * The powerpc watchdog ensures that each CPU is able to service timers.
+ * The watchdog sets up a simple timer on each CPU to run once per timer
+ * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
+ * the heartbeat.
+ *
+ * Then there are two systems to check that the heartbeat is still running.
+ * The local soft-NMI, and the SMP checker.
+ *
+ * The soft-NMI checker can detect lockups on the local CPU. When interrupts
+ * are disabled with local_irq_disable(), platforms that use soft-masking
+ * can leave hardware interrupts enabled and handle them with a masked
+ * interrupt handler. The masked handler can send the timer interrupt to the
+ * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
+ * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
+ *
+ * The soft-NMI checker will compare the heartbeat timestamp for this CPU
+ * with the current time, and take action if the difference exceeds the
+ * watchdog threshold.
*
- * Then there are checks to see if the heartbeat has not triggered on a CPU
- * for the panic timeout period. Currently the watchdog only supports an
- * SMP check, so the heartbeat only turns on when we have 2 or more CPUs.
+ * The limitation of the soft-NMI watchdog is that it does not work when
+ * interrupts are hard disabled or otherwise not being serviced. This is
+ * solved by also having a SMP watchdog where all CPUs check all other
+ * CPUs heartbeat.
*
- * This is not an NMI watchdog, but Linux uses that name for a generic
- * watchdog in some cases, so NMI gets used in some places.
+ * The SMP checker can detect lockups on other CPUs. A global "pending"
+ * cpumask is kept, containing all CPUs which enable the watchdog. Each
+ * CPU clears their pending bit in their heartbeat timer. When the bitmask
+ * becomes empty, the last CPU to clear its pending bit updates a global
+ * timestamp and refills the pending bitmask.
+ *
+ * In the heartbeat timer, if any CPU notices that the global timestamp has
+ * not been updated for a period exceeding the watchdog threshold, then it
+ * means the CPU(s) with their bit still set in the pending mask have had
+ * their heartbeat stop, and action is taken.
+ *
+ * Some platforms implement true NMI IPIs, which can be used by the SMP
+ * watchdog to detect an unresponsive CPU and pull it out of its stuck
+ * state with the NMI IPI, to get crash/debug data from it. This way the
+ * SMP watchdog can detect hardware interrupts off lockups.
*/
static cpumask_t wd_cpus_enabled __read_mostly;
@@ -43,27 +80,46 @@ static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
static u64 wd_timer_period_ms __read_mostly; /* interval between heartbeat */
-static DEFINE_PER_CPU(struct timer_list, wd_timer);
+static DEFINE_PER_CPU(struct hrtimer, wd_hrtimer);
static DEFINE_PER_CPU(u64, wd_timer_tb);
-/*
- * These are for the SMP checker. CPUs clear their pending bit in their
- * heartbeat. If the bitmask becomes empty, the time is noted and the
- * bitmask is refilled.
- *
- * All CPUs clear their bit in the pending mask every timer period.
- * Once all have cleared, the time is noted and the bits are reset.
- * If the time since all clear was greater than the panic timeout,
- * we can panic with the list of stuck CPUs.
- *
- * This will work best with NMI IPIs for crash code so the stuck CPUs
- * can be pulled out to get their backtraces.
- */
+/* SMP checker bits */
static unsigned long __wd_smp_lock;
+static unsigned long __wd_reporting;
+static unsigned long __wd_nmi_output;
static cpumask_t wd_smp_cpus_pending;
static cpumask_t wd_smp_cpus_stuck;
static u64 wd_smp_last_reset_tb;
+#ifdef CONFIG_PPC_PSERIES
+static u64 wd_timeout_pct;
+#endif
+
+/*
+ * Try to take the exclusive watchdog action / NMI IPI / printing lock.
+ * wd_smp_lock must be held. If this fails, we should return and wait
+ * for the watchdog to kick in again (or another CPU to trigger it).
+ *
+ * Importantly, if hardlockup_panic is set, wd_try_report failure should
+ * not delay the panic, because whichever other CPU is reporting will
+ * call panic.
+ */
+static bool wd_try_report(void)
+{
+ if (__wd_reporting)
+ return false;
+ __wd_reporting = 1;
+ return true;
+}
+
+/* End printing after successful wd_try_report. wd_smp_lock not required. */
+static void wd_end_reporting(void)
+{
+ smp_mb(); /* End printing "critical section" */
+ WARN_ON_ONCE(__wd_reporting == 0);
+ WRITE_ONCE(__wd_reporting, 0);
+}
+
static inline void wd_smp_lock(unsigned long *flags)
{
/*
@@ -71,20 +127,31 @@ static inline void wd_smp_lock(unsigned long *flags)
* This may be called from low level interrupt handlers at some
* point in future.
*/
- local_irq_save(*flags);
- while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock)))
- cpu_relax();
+ raw_local_irq_save(*flags);
+ hard_irq_disable(); /* Make it soft-NMI safe */
+ while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
+ raw_local_irq_restore(*flags);
+ spin_until_cond(!test_bit(0, &__wd_smp_lock));
+ raw_local_irq_save(*flags);
+ hard_irq_disable();
+ }
}
static inline void wd_smp_unlock(unsigned long *flags)
{
clear_bit_unlock(0, &__wd_smp_lock);
- local_irq_restore(*flags);
+ raw_local_irq_restore(*flags);
}
static void wd_lockup_ipi(struct pt_regs *regs)
{
- pr_emerg("Watchdog CPU:%d Hard LOCKUP\n", raw_smp_processor_id());
+ int cpu = raw_smp_processor_id();
+ u64 tb = get_tb();
+
+ pr_emerg("CPU %d Hard LOCKUP\n", cpu);
+ pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
+ cpu, tb, per_cpu(wd_timer_tb, cpu),
+ tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
print_modules();
print_irqtrace_events(current);
if (regs)
@@ -92,88 +159,182 @@ static void wd_lockup_ipi(struct pt_regs *regs)
else
dump_stack();
- if (hardlockup_panic)
- nmi_panic(regs, "Hard LOCKUP");
+ /*
+ * __wd_nmi_output must be set after we printk from NMI context.
+ *
+ * printk from NMI context defers printing to the console to irq_work.
+ * If that NMI was taken in some code that is hard-locked, then irqs
+ * are disabled so irq_work will never fire. That can result in the
+ * hard lockup messages being delayed (indefinitely, until something
+ * else kicks the console drivers).
+ *
+ * Setting __wd_nmi_output will cause another CPU to notice and kick
+ * the console drivers for us.
+ *
+ * xchg is not needed here (it could be a smp_mb and store), but xchg
+ * gives the memory ordering and atomicity required.
+ */
+ xchg(&__wd_nmi_output, 1);
+
+ /* Do not panic from here because that can recurse into NMI IPI layer */
}
-static void set_cpu_stuck(int cpu, u64 tb)
+static bool set_cpu_stuck(int cpu)
{
cpumask_set_cpu(cpu, &wd_smp_cpus_stuck);
cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
+ /*
+ * See wd_smp_clear_cpu_pending()
+ */
+ smp_mb();
if (cpumask_empty(&wd_smp_cpus_pending)) {
- wd_smp_last_reset_tb = tb;
+ wd_smp_last_reset_tb = get_tb();
cpumask_andnot(&wd_smp_cpus_pending,
&wd_cpus_enabled,
&wd_smp_cpus_stuck);
+ return true;
}
+ return false;
}
-static void watchdog_smp_panic(int cpu, u64 tb)
+static void watchdog_smp_panic(int cpu)
{
+ static cpumask_t wd_smp_cpus_ipi; // protected by reporting
unsigned long flags;
+ u64 tb, last_reset;
int c;
wd_smp_lock(&flags);
/* Double check some things under lock */
- if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
+ tb = get_tb();
+ last_reset = wd_smp_last_reset_tb;
+ if ((s64)(tb - last_reset) < (s64)wd_smp_panic_timeout_tb)
goto out;
if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
goto out;
- if (cpumask_weight(&wd_smp_cpus_pending) == 0)
+ if (!wd_try_report())
goto out;
-
- pr_emerg("Watchdog CPU:%d detected Hard LOCKUP other CPUS:%*pbl\n",
- cpu, cpumask_pr_args(&wd_smp_cpus_pending));
-
- /*
- * Try to trigger the stuck CPUs.
- */
- for_each_cpu(c, &wd_smp_cpus_pending) {
- if (c == cpu)
+ for_each_online_cpu(c) {
+ if (!cpumask_test_cpu(c, &wd_smp_cpus_pending))
continue;
- smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
- }
- smp_flush_nmi_ipi(1000000);
-
- /* Take the stuck CPU out of the watch group */
- for_each_cpu(c, &wd_smp_cpus_pending)
- set_cpu_stuck(c, tb);
+ if (c == cpu)
+ continue; // should not happen
-out:
+ __cpumask_set_cpu(c, &wd_smp_cpus_ipi);
+ if (set_cpu_stuck(c))
+ break;
+ }
+ if (cpumask_empty(&wd_smp_cpus_ipi)) {
+ wd_end_reporting();
+ goto out;
+ }
wd_smp_unlock(&flags);
- printk_safe_flush();
- /*
- * printk_safe_flush() seems to require another print
- * before anything actually goes out to console.
- */
- if (sysctl_hardlockup_all_cpu_backtrace)
- trigger_allbutself_cpu_backtrace();
+ pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
+ cpu, cpumask_pr_args(&wd_smp_cpus_ipi));
+ pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
+ cpu, tb, last_reset, tb_to_ns(tb - last_reset) / 1000000);
+
+ if (!sysctl_hardlockup_all_cpu_backtrace) {
+ /*
+ * Try to trigger the stuck CPUs, unless we are going to
+ * get a backtrace on all of them anyway.
+ */
+ for_each_cpu(c, &wd_smp_cpus_ipi) {
+ smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
+ __cpumask_clear_cpu(c, &wd_smp_cpus_ipi);
+ }
+ } else {
+ trigger_allbutcpu_cpu_backtrace(cpu);
+ cpumask_clear(&wd_smp_cpus_ipi);
+ }
if (hardlockup_panic)
nmi_panic(NULL, "Hard LOCKUP");
+
+ wd_end_reporting();
+
+ return;
+
+out:
+ wd_smp_unlock(&flags);
}
-static void wd_smp_clear_cpu_pending(int cpu, u64 tb)
+static void wd_smp_clear_cpu_pending(int cpu)
{
if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
+ struct pt_regs *regs = get_irq_regs();
unsigned long flags;
- pr_emerg("Watchdog CPU:%d became unstuck\n", cpu);
+ pr_emerg("CPU %d became unstuck TB:%lld\n",
+ cpu, get_tb());
+ print_irqtrace_events(current);
+ if (regs)
+ show_regs(regs);
+ else
+ dump_stack();
+
wd_smp_lock(&flags);
cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
wd_smp_unlock(&flags);
+ } else {
+ /*
+ * The last CPU to clear pending should have reset the
+ * watchdog so we generally should not find it empty
+ * here if our CPU was clear. However it could happen
+ * due to a rare race with another CPU taking the
+ * last CPU out of the mask concurrently.
+ *
+ * We can't add a warning for it. But just in case
+ * there is a problem with the watchdog that is causing
+ * the mask to not be reset, try to kick it along here.
+ */
+ if (unlikely(cpumask_empty(&wd_smp_cpus_pending)))
+ goto none_pending;
}
return;
}
+
+ /*
+ * All other updates to wd_smp_cpus_pending are performed under
+ * wd_smp_lock. All of them are atomic except the case where the
+ * mask becomes empty and is reset. This will not happen here because
+ * cpu was tested to be in the bitmap (above), and a CPU only clears
+ * its own bit. _Except_ in the case where another CPU has detected a
+ * hard lockup on our CPU and takes us out of the pending mask. So in
+ * normal operation there will be no race here, no problem.
+ *
+ * In the lockup case, this atomic clear-bit vs a store that refills
+ * other bits in the accessed word wll not be a problem. The bit clear
+ * is atomic so it will not cause the store to get lost, and the store
+ * will never set this bit so it will not overwrite the bit clear. The
+ * only way for a stuck CPU to return to the pending bitmap is to
+ * become unstuck itself.
+ */
cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
+
+ /*
+ * Order the store to clear pending with the load(s) to check all
+ * words in the pending mask to check they are all empty. This orders
+ * with the same barrier on another CPU. This prevents two CPUs
+ * clearing the last 2 pending bits, but neither seeing the other's
+ * store when checking if the mask is empty, and missing an empty
+ * mask, which ends with a false positive.
+ */
+ smp_mb();
if (cpumask_empty(&wd_smp_cpus_pending)) {
unsigned long flags;
+none_pending:
+ /*
+ * Double check under lock because more than one CPU could see
+ * a clear mask with the lockless check after clearing their
+ * pending bits.
+ */
wd_smp_lock(&flags);
if (cpumask_empty(&wd_smp_cpus_pending)) {
- wd_smp_last_reset_tb = tb;
+ wd_smp_last_reset_tb = get_tb();
cpumask_andnot(&wd_smp_cpus_pending,
&wd_cpus_enabled,
&wd_smp_cpus_stuck);
@@ -188,142 +349,194 @@ static void watchdog_timer_interrupt(int cpu)
per_cpu(wd_timer_tb, cpu) = tb;
- wd_smp_clear_cpu_pending(cpu, tb);
+ wd_smp_clear_cpu_pending(cpu);
if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
- watchdog_smp_panic(cpu, tb);
+ watchdog_smp_panic(cpu);
+
+ if (__wd_nmi_output && xchg(&__wd_nmi_output, 0)) {
+ /*
+ * Something has called printk from NMI context. It might be
+ * stuck, so this triggers a flush that will get that
+ * printk output to the console.
+ *
+ * See wd_lockup_ipi.
+ */
+ printk_trigger_flush();
+ }
}
-void soft_nmi_interrupt(struct pt_regs *regs)
+DEFINE_INTERRUPT_HANDLER_NMI(soft_nmi_interrupt)
{
unsigned long flags;
int cpu = raw_smp_processor_id();
u64 tb;
+ /* should only arrive from kernel, with irqs disabled */
+ WARN_ON_ONCE(!arch_irq_disabled_regs(regs));
+
if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
- return;
+ return 0;
+
+ __this_cpu_inc(irq_stat.soft_nmi_irqs);
- nmi_enter();
tb = get_tb();
if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
- per_cpu(wd_timer_tb, cpu) = tb;
-
+ /*
+ * Taking wd_smp_lock here means it is a soft-NMI lock, which
+ * means we can't take any regular or irqsafe spin locks while
+ * holding this lock. This is why timers can't printk while
+ * holding the lock.
+ */
wd_smp_lock(&flags);
if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
wd_smp_unlock(&flags);
- goto out;
+ return 0;
}
- set_cpu_stuck(cpu, tb);
+ if (!wd_try_report()) {
+ wd_smp_unlock(&flags);
+ /* Couldn't report, try again in 100ms */
+ mtspr(SPRN_DEC, 100 * tb_ticks_per_usec * 1000);
+ return 0;
+ }
+
+ set_cpu_stuck(cpu);
- pr_emerg("Watchdog CPU:%d Hard LOCKUP\n", cpu);
+ wd_smp_unlock(&flags);
+
+ pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
+ cpu, (void *)regs->nip);
+ pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
+ cpu, tb, per_cpu(wd_timer_tb, cpu),
+ tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
print_modules();
print_irqtrace_events(current);
- if (regs)
- show_regs(regs);
- else
- dump_stack();
+ show_regs(regs);
- wd_smp_unlock(&flags);
+ xchg(&__wd_nmi_output, 1); // see wd_lockup_ipi
if (sysctl_hardlockup_all_cpu_backtrace)
- trigger_allbutself_cpu_backtrace();
+ trigger_allbutcpu_cpu_backtrace(cpu);
if (hardlockup_panic)
nmi_panic(regs, "Hard LOCKUP");
+
+ wd_end_reporting();
}
+ /*
+ * We are okay to change DEC in soft_nmi_interrupt because the masked
+ * handler has marked a DEC as pending, so the timer interrupt will be
+ * replayed as soon as local irqs are enabled again.
+ */
if (wd_panic_timeout_tb < 0x7fffffff)
mtspr(SPRN_DEC, wd_panic_timeout_tb);
-out:
- nmi_exit();
-}
-
-static void wd_timer_reset(unsigned int cpu, struct timer_list *t)
-{
- t->expires = jiffies + msecs_to_jiffies(wd_timer_period_ms);
- if (wd_timer_period_ms > 1000)
- t->expires = __round_jiffies_up(t->expires, cpu);
- add_timer_on(t, cpu);
+ return 0;
}
-static void wd_timer_fn(unsigned long data)
+static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
{
- struct timer_list *t = this_cpu_ptr(&wd_timer);
int cpu = smp_processor_id();
+ if (!(watchdog_enabled & WATCHDOG_HARDLOCKUP_ENABLED))
+ return HRTIMER_NORESTART;
+
+ if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
+ return HRTIMER_NORESTART;
+
watchdog_timer_interrupt(cpu);
- wd_timer_reset(cpu, t);
+ hrtimer_forward_now(hrtimer, ms_to_ktime(wd_timer_period_ms));
+
+ return HRTIMER_RESTART;
}
void arch_touch_nmi_watchdog(void)
{
+ unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
int cpu = smp_processor_id();
+ u64 tb;
- watchdog_timer_interrupt(cpu);
-}
-EXPORT_SYMBOL(arch_touch_nmi_watchdog);
-
-static void start_watchdog_timer_on(unsigned int cpu)
-{
- struct timer_list *t = per_cpu_ptr(&wd_timer, cpu);
-
- per_cpu(wd_timer_tb, cpu) = get_tb();
+ if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
+ return;
- setup_pinned_timer(t, wd_timer_fn, 0);
- wd_timer_reset(cpu, t);
+ tb = get_tb();
+ if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
+ per_cpu(wd_timer_tb, cpu) = tb;
+ wd_smp_clear_cpu_pending(cpu);
+ }
}
+EXPORT_SYMBOL(arch_touch_nmi_watchdog);
-static void stop_watchdog_timer_on(unsigned int cpu)
+static void start_watchdog(void *arg)
{
- struct timer_list *t = per_cpu_ptr(&wd_timer, cpu);
-
- del_timer_sync(t);
-}
+ struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
+ int cpu = smp_processor_id();
+ unsigned long flags;
-static int start_wd_on_cpu(unsigned int cpu)
-{
if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
WARN_ON(1);
- return 0;
+ return;
}
- if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
- return 0;
-
- if (watchdog_suspended)
- return 0;
+ if (!(watchdog_enabled & WATCHDOG_HARDLOCKUP_ENABLED))
+ return;
if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
- return 0;
+ return;
+ wd_smp_lock(&flags);
cpumask_set_cpu(cpu, &wd_cpus_enabled);
if (cpumask_weight(&wd_cpus_enabled) == 1) {
cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
wd_smp_last_reset_tb = get_tb();
}
- smp_wmb();
- start_watchdog_timer_on(cpu);
+ wd_smp_unlock(&flags);
- return 0;
+ *this_cpu_ptr(&wd_timer_tb) = get_tb();
+
+ hrtimer_setup(hrtimer, watchdog_timer_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+ hrtimer_start(hrtimer, ms_to_ktime(wd_timer_period_ms),
+ HRTIMER_MODE_REL_PINNED);
+}
+
+static int start_watchdog_on_cpu(unsigned int cpu)
+{
+ return smp_call_function_single(cpu, start_watchdog, NULL, true);
}
-static int stop_wd_on_cpu(unsigned int cpu)
+static void stop_watchdog(void *arg)
{
+ struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
+ int cpu = smp_processor_id();
+ unsigned long flags;
+
if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
- return 0; /* Can happen in CPU unplug case */
+ return; /* Can happen in CPU unplug case */
- stop_watchdog_timer_on(cpu);
+ hrtimer_cancel(hrtimer);
+ wd_smp_lock(&flags);
cpumask_clear_cpu(cpu, &wd_cpus_enabled);
- wd_smp_clear_cpu_pending(cpu, get_tb());
+ wd_smp_unlock(&flags);
- return 0;
+ wd_smp_clear_cpu_pending(cpu);
+}
+
+static int stop_watchdog_on_cpu(unsigned int cpu)
+{
+ return smp_call_function_single(cpu, stop_watchdog, NULL, true);
}
static void watchdog_calc_timeouts(void)
{
- wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
+ u64 threshold = watchdog_thresh;
+
+#ifdef CONFIG_PPC_PSERIES
+ threshold += (READ_ONCE(wd_timeout_pct) * threshold) / 100;
+#endif
+
+ wd_panic_timeout_tb = threshold * ppc_tb_freq;
/* Have the SMP detector trigger a bit later */
wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
@@ -332,55 +545,46 @@ static void watchdog_calc_timeouts(void)
wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
}
-void watchdog_nmi_reconfigure(void)
+void watchdog_hardlockup_stop(void)
{
int cpu;
- watchdog_calc_timeouts();
-
for_each_cpu(cpu, &wd_cpus_enabled)
- stop_wd_on_cpu(cpu);
-
- for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
- start_wd_on_cpu(cpu);
+ stop_watchdog_on_cpu(cpu);
}
-/*
- * This runs after lockup_detector_init() which sets up watchdog_cpumask.
- */
-static int __init powerpc_watchdog_init(void)
+void watchdog_hardlockup_start(void)
{
- int err;
+ int cpu;
watchdog_calc_timeouts();
-
- err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/watchdog:online",
- start_wd_on_cpu, stop_wd_on_cpu);
- if (err < 0)
- pr_warn("Watchdog could not be initialized");
-
- return 0;
-}
-arch_initcall(powerpc_watchdog_init);
-
-static void handle_backtrace_ipi(struct pt_regs *regs)
-{
- nmi_cpu_backtrace(regs);
+ for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
+ start_watchdog_on_cpu(cpu);
}
-static void raise_backtrace_ipi(cpumask_t *mask)
+/*
+ * Invoked from core watchdog init.
+ */
+int __init watchdog_hardlockup_probe(void)
{
- unsigned int cpu;
+ int err;
- for_each_cpu(cpu, mask) {
- if (cpu == smp_processor_id())
- handle_backtrace_ipi(NULL);
- else
- smp_send_nmi_ipi(cpu, handle_backtrace_ipi, 1000000);
+ err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
+ "powerpc/watchdog:online",
+ start_watchdog_on_cpu,
+ stop_watchdog_on_cpu);
+ if (err < 0) {
+ pr_warn("could not be initialized");
+ return err;
}
+ return 0;
}
-void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
+#ifdef CONFIG_PPC_PSERIES
+void watchdog_hardlockup_set_timeout_pct(u64 pct)
{
- nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace_ipi);
+ pr_info("Set the NMI watchdog timeout factor to %llu%%\n", pct);
+ WRITE_ONCE(wd_timeout_pct, pct);
+ lockup_detector_reconfigure();
}
+#endif