diff options
Diffstat (limited to 'arch/powerpc/kernel/watchdog.c')
| -rw-r--r-- | arch/powerpc/kernel/watchdog.c | 518 |
1 files changed, 361 insertions, 157 deletions
diff --git a/arch/powerpc/kernel/watchdog.c b/arch/powerpc/kernel/watchdog.c index b67f8b03a32d..2429cb1c7baa 100644 --- a/arch/powerpc/kernel/watchdog.c +++ b/arch/powerpc/kernel/watchdog.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0 /* * Watchdog support on powerpc systems. * @@ -5,6 +6,9 @@ * * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c */ + +#define pr_fmt(fmt) "watchdog: " fmt + #include <linux/kernel.h> #include <linux/param.h> #include <linux/init.h> @@ -20,20 +24,53 @@ #include <linux/kdebug.h> #include <linux/sched/debug.h> #include <linux/delay.h> +#include <linux/processor.h> #include <linux/smp.h> +#include <asm/interrupt.h> #include <asm/paca.h> +#include <asm/nmi.h> /* - * The watchdog has a simple timer that runs on each CPU, once per timer - * period. This is the heartbeat. + * The powerpc watchdog ensures that each CPU is able to service timers. + * The watchdog sets up a simple timer on each CPU to run once per timer + * period, and updates a per-cpu timestamp and a "pending" cpumask. This is + * the heartbeat. + * + * Then there are two systems to check that the heartbeat is still running. + * The local soft-NMI, and the SMP checker. + * + * The soft-NMI checker can detect lockups on the local CPU. When interrupts + * are disabled with local_irq_disable(), platforms that use soft-masking + * can leave hardware interrupts enabled and handle them with a masked + * interrupt handler. The masked handler can send the timer interrupt to the + * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI + * interrupt, and can be used to detect CPUs stuck with IRQs disabled. + * + * The soft-NMI checker will compare the heartbeat timestamp for this CPU + * with the current time, and take action if the difference exceeds the + * watchdog threshold. * - * Then there are checks to see if the heartbeat has not triggered on a CPU - * for the panic timeout period. Currently the watchdog only supports an - * SMP check, so the heartbeat only turns on when we have 2 or more CPUs. + * The limitation of the soft-NMI watchdog is that it does not work when + * interrupts are hard disabled or otherwise not being serviced. This is + * solved by also having a SMP watchdog where all CPUs check all other + * CPUs heartbeat. * - * This is not an NMI watchdog, but Linux uses that name for a generic - * watchdog in some cases, so NMI gets used in some places. + * The SMP checker can detect lockups on other CPUs. A global "pending" + * cpumask is kept, containing all CPUs which enable the watchdog. Each + * CPU clears their pending bit in their heartbeat timer. When the bitmask + * becomes empty, the last CPU to clear its pending bit updates a global + * timestamp and refills the pending bitmask. + * + * In the heartbeat timer, if any CPU notices that the global timestamp has + * not been updated for a period exceeding the watchdog threshold, then it + * means the CPU(s) with their bit still set in the pending mask have had + * their heartbeat stop, and action is taken. + * + * Some platforms implement true NMI IPIs, which can be used by the SMP + * watchdog to detect an unresponsive CPU and pull it out of its stuck + * state with the NMI IPI, to get crash/debug data from it. This way the + * SMP watchdog can detect hardware interrupts off lockups. */ static cpumask_t wd_cpus_enabled __read_mostly; @@ -43,27 +80,46 @@ static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */ static u64 wd_timer_period_ms __read_mostly; /* interval between heartbeat */ -static DEFINE_PER_CPU(struct timer_list, wd_timer); +static DEFINE_PER_CPU(struct hrtimer, wd_hrtimer); static DEFINE_PER_CPU(u64, wd_timer_tb); -/* - * These are for the SMP checker. CPUs clear their pending bit in their - * heartbeat. If the bitmask becomes empty, the time is noted and the - * bitmask is refilled. - * - * All CPUs clear their bit in the pending mask every timer period. - * Once all have cleared, the time is noted and the bits are reset. - * If the time since all clear was greater than the panic timeout, - * we can panic with the list of stuck CPUs. - * - * This will work best with NMI IPIs for crash code so the stuck CPUs - * can be pulled out to get their backtraces. - */ +/* SMP checker bits */ static unsigned long __wd_smp_lock; +static unsigned long __wd_reporting; +static unsigned long __wd_nmi_output; static cpumask_t wd_smp_cpus_pending; static cpumask_t wd_smp_cpus_stuck; static u64 wd_smp_last_reset_tb; +#ifdef CONFIG_PPC_PSERIES +static u64 wd_timeout_pct; +#endif + +/* + * Try to take the exclusive watchdog action / NMI IPI / printing lock. + * wd_smp_lock must be held. If this fails, we should return and wait + * for the watchdog to kick in again (or another CPU to trigger it). + * + * Importantly, if hardlockup_panic is set, wd_try_report failure should + * not delay the panic, because whichever other CPU is reporting will + * call panic. + */ +static bool wd_try_report(void) +{ + if (__wd_reporting) + return false; + __wd_reporting = 1; + return true; +} + +/* End printing after successful wd_try_report. wd_smp_lock not required. */ +static void wd_end_reporting(void) +{ + smp_mb(); /* End printing "critical section" */ + WARN_ON_ONCE(__wd_reporting == 0); + WRITE_ONCE(__wd_reporting, 0); +} + static inline void wd_smp_lock(unsigned long *flags) { /* @@ -71,20 +127,31 @@ static inline void wd_smp_lock(unsigned long *flags) * This may be called from low level interrupt handlers at some * point in future. */ - local_irq_save(*flags); - while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) - cpu_relax(); + raw_local_irq_save(*flags); + hard_irq_disable(); /* Make it soft-NMI safe */ + while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) { + raw_local_irq_restore(*flags); + spin_until_cond(!test_bit(0, &__wd_smp_lock)); + raw_local_irq_save(*flags); + hard_irq_disable(); + } } static inline void wd_smp_unlock(unsigned long *flags) { clear_bit_unlock(0, &__wd_smp_lock); - local_irq_restore(*flags); + raw_local_irq_restore(*flags); } static void wd_lockup_ipi(struct pt_regs *regs) { - pr_emerg("Watchdog CPU:%d Hard LOCKUP\n", raw_smp_processor_id()); + int cpu = raw_smp_processor_id(); + u64 tb = get_tb(); + + pr_emerg("CPU %d Hard LOCKUP\n", cpu); + pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n", + cpu, tb, per_cpu(wd_timer_tb, cpu), + tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000); print_modules(); print_irqtrace_events(current); if (regs) @@ -92,88 +159,182 @@ static void wd_lockup_ipi(struct pt_regs *regs) else dump_stack(); - if (hardlockup_panic) - nmi_panic(regs, "Hard LOCKUP"); + /* + * __wd_nmi_output must be set after we printk from NMI context. + * + * printk from NMI context defers printing to the console to irq_work. + * If that NMI was taken in some code that is hard-locked, then irqs + * are disabled so irq_work will never fire. That can result in the + * hard lockup messages being delayed (indefinitely, until something + * else kicks the console drivers). + * + * Setting __wd_nmi_output will cause another CPU to notice and kick + * the console drivers for us. + * + * xchg is not needed here (it could be a smp_mb and store), but xchg + * gives the memory ordering and atomicity required. + */ + xchg(&__wd_nmi_output, 1); + + /* Do not panic from here because that can recurse into NMI IPI layer */ } -static void set_cpu_stuck(int cpu, u64 tb) +static bool set_cpu_stuck(int cpu) { cpumask_set_cpu(cpu, &wd_smp_cpus_stuck); cpumask_clear_cpu(cpu, &wd_smp_cpus_pending); + /* + * See wd_smp_clear_cpu_pending() + */ + smp_mb(); if (cpumask_empty(&wd_smp_cpus_pending)) { - wd_smp_last_reset_tb = tb; + wd_smp_last_reset_tb = get_tb(); cpumask_andnot(&wd_smp_cpus_pending, &wd_cpus_enabled, &wd_smp_cpus_stuck); + return true; } + return false; } -static void watchdog_smp_panic(int cpu, u64 tb) +static void watchdog_smp_panic(int cpu) { + static cpumask_t wd_smp_cpus_ipi; // protected by reporting unsigned long flags; + u64 tb, last_reset; int c; wd_smp_lock(&flags); /* Double check some things under lock */ - if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb) + tb = get_tb(); + last_reset = wd_smp_last_reset_tb; + if ((s64)(tb - last_reset) < (s64)wd_smp_panic_timeout_tb) goto out; if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) goto out; - if (cpumask_weight(&wd_smp_cpus_pending) == 0) + if (!wd_try_report()) goto out; - - pr_emerg("Watchdog CPU:%d detected Hard LOCKUP other CPUS:%*pbl\n", - cpu, cpumask_pr_args(&wd_smp_cpus_pending)); - - /* - * Try to trigger the stuck CPUs. - */ - for_each_cpu(c, &wd_smp_cpus_pending) { - if (c == cpu) + for_each_online_cpu(c) { + if (!cpumask_test_cpu(c, &wd_smp_cpus_pending)) continue; - smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000); - } - smp_flush_nmi_ipi(1000000); - - /* Take the stuck CPU out of the watch group */ - for_each_cpu(c, &wd_smp_cpus_pending) - set_cpu_stuck(c, tb); + if (c == cpu) + continue; // should not happen -out: + __cpumask_set_cpu(c, &wd_smp_cpus_ipi); + if (set_cpu_stuck(c)) + break; + } + if (cpumask_empty(&wd_smp_cpus_ipi)) { + wd_end_reporting(); + goto out; + } wd_smp_unlock(&flags); - printk_safe_flush(); - /* - * printk_safe_flush() seems to require another print - * before anything actually goes out to console. - */ - if (sysctl_hardlockup_all_cpu_backtrace) - trigger_allbutself_cpu_backtrace(); + pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n", + cpu, cpumask_pr_args(&wd_smp_cpus_ipi)); + pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n", + cpu, tb, last_reset, tb_to_ns(tb - last_reset) / 1000000); + + if (!sysctl_hardlockup_all_cpu_backtrace) { + /* + * Try to trigger the stuck CPUs, unless we are going to + * get a backtrace on all of them anyway. + */ + for_each_cpu(c, &wd_smp_cpus_ipi) { + smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000); + __cpumask_clear_cpu(c, &wd_smp_cpus_ipi); + } + } else { + trigger_allbutcpu_cpu_backtrace(cpu); + cpumask_clear(&wd_smp_cpus_ipi); + } if (hardlockup_panic) nmi_panic(NULL, "Hard LOCKUP"); + + wd_end_reporting(); + + return; + +out: + wd_smp_unlock(&flags); } -static void wd_smp_clear_cpu_pending(int cpu, u64 tb) +static void wd_smp_clear_cpu_pending(int cpu) { if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) { if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) { + struct pt_regs *regs = get_irq_regs(); unsigned long flags; - pr_emerg("Watchdog CPU:%d became unstuck\n", cpu); + pr_emerg("CPU %d became unstuck TB:%lld\n", + cpu, get_tb()); + print_irqtrace_events(current); + if (regs) + show_regs(regs); + else + dump_stack(); + wd_smp_lock(&flags); cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck); wd_smp_unlock(&flags); + } else { + /* + * The last CPU to clear pending should have reset the + * watchdog so we generally should not find it empty + * here if our CPU was clear. However it could happen + * due to a rare race with another CPU taking the + * last CPU out of the mask concurrently. + * + * We can't add a warning for it. But just in case + * there is a problem with the watchdog that is causing + * the mask to not be reset, try to kick it along here. + */ + if (unlikely(cpumask_empty(&wd_smp_cpus_pending))) + goto none_pending; } return; } + + /* + * All other updates to wd_smp_cpus_pending are performed under + * wd_smp_lock. All of them are atomic except the case where the + * mask becomes empty and is reset. This will not happen here because + * cpu was tested to be in the bitmap (above), and a CPU only clears + * its own bit. _Except_ in the case where another CPU has detected a + * hard lockup on our CPU and takes us out of the pending mask. So in + * normal operation there will be no race here, no problem. + * + * In the lockup case, this atomic clear-bit vs a store that refills + * other bits in the accessed word wll not be a problem. The bit clear + * is atomic so it will not cause the store to get lost, and the store + * will never set this bit so it will not overwrite the bit clear. The + * only way for a stuck CPU to return to the pending bitmap is to + * become unstuck itself. + */ cpumask_clear_cpu(cpu, &wd_smp_cpus_pending); + + /* + * Order the store to clear pending with the load(s) to check all + * words in the pending mask to check they are all empty. This orders + * with the same barrier on another CPU. This prevents two CPUs + * clearing the last 2 pending bits, but neither seeing the other's + * store when checking if the mask is empty, and missing an empty + * mask, which ends with a false positive. + */ + smp_mb(); if (cpumask_empty(&wd_smp_cpus_pending)) { unsigned long flags; +none_pending: + /* + * Double check under lock because more than one CPU could see + * a clear mask with the lockless check after clearing their + * pending bits. + */ wd_smp_lock(&flags); if (cpumask_empty(&wd_smp_cpus_pending)) { - wd_smp_last_reset_tb = tb; + wd_smp_last_reset_tb = get_tb(); cpumask_andnot(&wd_smp_cpus_pending, &wd_cpus_enabled, &wd_smp_cpus_stuck); @@ -188,142 +349,194 @@ static void watchdog_timer_interrupt(int cpu) per_cpu(wd_timer_tb, cpu) = tb; - wd_smp_clear_cpu_pending(cpu, tb); + wd_smp_clear_cpu_pending(cpu); if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb) - watchdog_smp_panic(cpu, tb); + watchdog_smp_panic(cpu); + + if (__wd_nmi_output && xchg(&__wd_nmi_output, 0)) { + /* + * Something has called printk from NMI context. It might be + * stuck, so this triggers a flush that will get that + * printk output to the console. + * + * See wd_lockup_ipi. + */ + printk_trigger_flush(); + } } -void soft_nmi_interrupt(struct pt_regs *regs) +DEFINE_INTERRUPT_HANDLER_NMI(soft_nmi_interrupt) { unsigned long flags; int cpu = raw_smp_processor_id(); u64 tb; + /* should only arrive from kernel, with irqs disabled */ + WARN_ON_ONCE(!arch_irq_disabled_regs(regs)); + if (!cpumask_test_cpu(cpu, &wd_cpus_enabled)) - return; + return 0; + + __this_cpu_inc(irq_stat.soft_nmi_irqs); - nmi_enter(); tb = get_tb(); if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) { - per_cpu(wd_timer_tb, cpu) = tb; - + /* + * Taking wd_smp_lock here means it is a soft-NMI lock, which + * means we can't take any regular or irqsafe spin locks while + * holding this lock. This is why timers can't printk while + * holding the lock. + */ wd_smp_lock(&flags); if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) { wd_smp_unlock(&flags); - goto out; + return 0; } - set_cpu_stuck(cpu, tb); + if (!wd_try_report()) { + wd_smp_unlock(&flags); + /* Couldn't report, try again in 100ms */ + mtspr(SPRN_DEC, 100 * tb_ticks_per_usec * 1000); + return 0; + } + + set_cpu_stuck(cpu); - pr_emerg("Watchdog CPU:%d Hard LOCKUP\n", cpu); + wd_smp_unlock(&flags); + + pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n", + cpu, (void *)regs->nip); + pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n", + cpu, tb, per_cpu(wd_timer_tb, cpu), + tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000); print_modules(); print_irqtrace_events(current); - if (regs) - show_regs(regs); - else - dump_stack(); + show_regs(regs); - wd_smp_unlock(&flags); + xchg(&__wd_nmi_output, 1); // see wd_lockup_ipi if (sysctl_hardlockup_all_cpu_backtrace) - trigger_allbutself_cpu_backtrace(); + trigger_allbutcpu_cpu_backtrace(cpu); if (hardlockup_panic) nmi_panic(regs, "Hard LOCKUP"); + + wd_end_reporting(); } + /* + * We are okay to change DEC in soft_nmi_interrupt because the masked + * handler has marked a DEC as pending, so the timer interrupt will be + * replayed as soon as local irqs are enabled again. + */ if (wd_panic_timeout_tb < 0x7fffffff) mtspr(SPRN_DEC, wd_panic_timeout_tb); -out: - nmi_exit(); -} - -static void wd_timer_reset(unsigned int cpu, struct timer_list *t) -{ - t->expires = jiffies + msecs_to_jiffies(wd_timer_period_ms); - if (wd_timer_period_ms > 1000) - t->expires = __round_jiffies_up(t->expires, cpu); - add_timer_on(t, cpu); + return 0; } -static void wd_timer_fn(unsigned long data) +static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer) { - struct timer_list *t = this_cpu_ptr(&wd_timer); int cpu = smp_processor_id(); + if (!(watchdog_enabled & WATCHDOG_HARDLOCKUP_ENABLED)) + return HRTIMER_NORESTART; + + if (!cpumask_test_cpu(cpu, &watchdog_cpumask)) + return HRTIMER_NORESTART; + watchdog_timer_interrupt(cpu); - wd_timer_reset(cpu, t); + hrtimer_forward_now(hrtimer, ms_to_ktime(wd_timer_period_ms)); + + return HRTIMER_RESTART; } void arch_touch_nmi_watchdog(void) { + unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000; int cpu = smp_processor_id(); + u64 tb; - watchdog_timer_interrupt(cpu); -} -EXPORT_SYMBOL(arch_touch_nmi_watchdog); - -static void start_watchdog_timer_on(unsigned int cpu) -{ - struct timer_list *t = per_cpu_ptr(&wd_timer, cpu); - - per_cpu(wd_timer_tb, cpu) = get_tb(); + if (!cpumask_test_cpu(cpu, &watchdog_cpumask)) + return; - setup_pinned_timer(t, wd_timer_fn, 0); - wd_timer_reset(cpu, t); + tb = get_tb(); + if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) { + per_cpu(wd_timer_tb, cpu) = tb; + wd_smp_clear_cpu_pending(cpu); + } } +EXPORT_SYMBOL(arch_touch_nmi_watchdog); -static void stop_watchdog_timer_on(unsigned int cpu) +static void start_watchdog(void *arg) { - struct timer_list *t = per_cpu_ptr(&wd_timer, cpu); - - del_timer_sync(t); -} + struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer); + int cpu = smp_processor_id(); + unsigned long flags; -static int start_wd_on_cpu(unsigned int cpu) -{ if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) { WARN_ON(1); - return 0; + return; } - if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED)) - return 0; - - if (watchdog_suspended) - return 0; + if (!(watchdog_enabled & WATCHDOG_HARDLOCKUP_ENABLED)) + return; if (!cpumask_test_cpu(cpu, &watchdog_cpumask)) - return 0; + return; + wd_smp_lock(&flags); cpumask_set_cpu(cpu, &wd_cpus_enabled); if (cpumask_weight(&wd_cpus_enabled) == 1) { cpumask_set_cpu(cpu, &wd_smp_cpus_pending); wd_smp_last_reset_tb = get_tb(); } - smp_wmb(); - start_watchdog_timer_on(cpu); + wd_smp_unlock(&flags); - return 0; + *this_cpu_ptr(&wd_timer_tb) = get_tb(); + + hrtimer_setup(hrtimer, watchdog_timer_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL); + hrtimer_start(hrtimer, ms_to_ktime(wd_timer_period_ms), + HRTIMER_MODE_REL_PINNED); +} + +static int start_watchdog_on_cpu(unsigned int cpu) +{ + return smp_call_function_single(cpu, start_watchdog, NULL, true); } -static int stop_wd_on_cpu(unsigned int cpu) +static void stop_watchdog(void *arg) { + struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer); + int cpu = smp_processor_id(); + unsigned long flags; + if (!cpumask_test_cpu(cpu, &wd_cpus_enabled)) - return 0; /* Can happen in CPU unplug case */ + return; /* Can happen in CPU unplug case */ - stop_watchdog_timer_on(cpu); + hrtimer_cancel(hrtimer); + wd_smp_lock(&flags); cpumask_clear_cpu(cpu, &wd_cpus_enabled); - wd_smp_clear_cpu_pending(cpu, get_tb()); + wd_smp_unlock(&flags); - return 0; + wd_smp_clear_cpu_pending(cpu); +} + +static int stop_watchdog_on_cpu(unsigned int cpu) +{ + return smp_call_function_single(cpu, stop_watchdog, NULL, true); } static void watchdog_calc_timeouts(void) { - wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq; + u64 threshold = watchdog_thresh; + +#ifdef CONFIG_PPC_PSERIES + threshold += (READ_ONCE(wd_timeout_pct) * threshold) / 100; +#endif + + wd_panic_timeout_tb = threshold * ppc_tb_freq; /* Have the SMP detector trigger a bit later */ wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2; @@ -332,55 +545,46 @@ static void watchdog_calc_timeouts(void) wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5; } -void watchdog_nmi_reconfigure(void) +void watchdog_hardlockup_stop(void) { int cpu; - watchdog_calc_timeouts(); - for_each_cpu(cpu, &wd_cpus_enabled) - stop_wd_on_cpu(cpu); - - for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask) - start_wd_on_cpu(cpu); + stop_watchdog_on_cpu(cpu); } -/* - * This runs after lockup_detector_init() which sets up watchdog_cpumask. - */ -static int __init powerpc_watchdog_init(void) +void watchdog_hardlockup_start(void) { - int err; + int cpu; watchdog_calc_timeouts(); - - err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/watchdog:online", - start_wd_on_cpu, stop_wd_on_cpu); - if (err < 0) - pr_warn("Watchdog could not be initialized"); - - return 0; -} -arch_initcall(powerpc_watchdog_init); - -static void handle_backtrace_ipi(struct pt_regs *regs) -{ - nmi_cpu_backtrace(regs); + for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask) + start_watchdog_on_cpu(cpu); } -static void raise_backtrace_ipi(cpumask_t *mask) +/* + * Invoked from core watchdog init. + */ +int __init watchdog_hardlockup_probe(void) { - unsigned int cpu; + int err; - for_each_cpu(cpu, mask) { - if (cpu == smp_processor_id()) - handle_backtrace_ipi(NULL); - else - smp_send_nmi_ipi(cpu, handle_backtrace_ipi, 1000000); + err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, + "powerpc/watchdog:online", + start_watchdog_on_cpu, + stop_watchdog_on_cpu); + if (err < 0) { + pr_warn("could not be initialized"); + return err; } + return 0; } -void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self) +#ifdef CONFIG_PPC_PSERIES +void watchdog_hardlockup_set_timeout_pct(u64 pct) { - nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace_ipi); + pr_info("Set the NMI watchdog timeout factor to %llu%%\n", pct); + WRITE_ONCE(wd_timeout_pct, pct); + lockup_detector_reconfigure(); } +#endif |
