summaryrefslogtreecommitdiff
path: root/arch/powerpc/mm/book3s64/radix_pgtable.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/mm/book3s64/radix_pgtable.c')
-rw-r--r--arch/powerpc/mm/book3s64/radix_pgtable.c1077
1 files changed, 786 insertions, 291 deletions
diff --git a/arch/powerpc/mm/book3s64/radix_pgtable.c b/arch/powerpc/mm/book3s64/radix_pgtable.c
index bb00e0cba119..73977dbabcf2 100644
--- a/arch/powerpc/mm/book3s64/radix_pgtable.c
+++ b/arch/powerpc/mm/book3s64/radix_pgtable.c
@@ -11,11 +11,13 @@
#include <linux/kernel.h>
#include <linux/sched/mm.h>
#include <linux/memblock.h>
+#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/string_helpers.h>
-#include <linux/stop_machine.h>
+#include <linux/memory.h>
+#include <linux/kfence.h>
#include <asm/pgalloc.h>
#include <asm/mmu_context.h>
@@ -29,10 +31,13 @@
#include <asm/trace.h>
#include <asm/uaccess.h>
#include <asm/ultravisor.h>
+#include <asm/set_memory.h>
+#include <asm/kfence.h>
#include <trace/events/thp.h>
-unsigned int mmu_pid_bits;
+#include <mm/mmu_decl.h>
+
unsigned int mmu_base_pid;
static __ref void *early_alloc_pgtable(unsigned long size, int nid,
@@ -56,6 +61,13 @@ static __ref void *early_alloc_pgtable(unsigned long size, int nid,
return ptr;
}
+/*
+ * When allocating pud or pmd pointers, we allocate a complete page
+ * of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This
+ * is to ensure that the page obtained from the memblock allocator
+ * can be completely used as page table page and can be freed
+ * correctly when the page table entries are removed.
+ */
static int early_map_kernel_page(unsigned long ea, unsigned long pa,
pgprot_t flags,
unsigned int map_page_size,
@@ -72,8 +84,8 @@ static int early_map_kernel_page(unsigned long ea, unsigned long pa,
pgdp = pgd_offset_k(ea);
p4dp = p4d_offset(pgdp, ea);
if (p4d_none(*p4dp)) {
- pudp = early_alloc_pgtable(PUD_TABLE_SIZE, nid,
- region_start, region_end);
+ pudp = early_alloc_pgtable(PAGE_SIZE, nid,
+ region_start, region_end);
p4d_populate(&init_mm, p4dp, pudp);
}
pudp = pud_offset(p4dp, ea);
@@ -82,8 +94,8 @@ static int early_map_kernel_page(unsigned long ea, unsigned long pa,
goto set_the_pte;
}
if (pud_none(*pudp)) {
- pmdp = early_alloc_pgtable(PMD_TABLE_SIZE, nid,
- region_start, region_end);
+ pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start,
+ region_end);
pud_populate(&init_mm, pudp, pmdp);
}
pmdp = pmd_offset(pudp, ea);
@@ -100,7 +112,7 @@ static int early_map_kernel_page(unsigned long ea, unsigned long pa,
set_the_pte:
set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
- smp_wmb();
+ asm volatile("ptesync": : :"memory");
return 0;
}
@@ -160,7 +172,7 @@ static int __map_kernel_page(unsigned long ea, unsigned long pa,
set_the_pte:
set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
- smp_wmb();
+ asm volatile("ptesync": : :"memory");
return 0;
}
@@ -172,8 +184,8 @@ int radix__map_kernel_page(unsigned long ea, unsigned long pa,
}
#ifdef CONFIG_STRICT_KERNEL_RWX
-void radix__change_memory_range(unsigned long start, unsigned long end,
- unsigned long clear)
+static void radix__change_memory_range(unsigned long start, unsigned long end,
+ unsigned long clear)
{
unsigned long idx;
pgd_t *pgdp;
@@ -194,14 +206,14 @@ void radix__change_memory_range(unsigned long start, unsigned long end,
pudp = pud_alloc(&init_mm, p4dp, idx);
if (!pudp)
continue;
- if (pud_is_leaf(*pudp)) {
+ if (pud_leaf(*pudp)) {
ptep = (pte_t *)pudp;
goto update_the_pte;
}
pmdp = pmd_alloc(&init_mm, pudp, idx);
if (!pmdp)
continue;
- if (pmd_is_leaf(*pmdp)) {
+ if (pmd_leaf(*pmdp)) {
ptep = pmdp_ptep(pmdp);
goto update_the_pte;
}
@@ -220,9 +232,17 @@ void radix__mark_rodata_ro(void)
unsigned long start, end;
start = (unsigned long)_stext;
- end = (unsigned long)__init_begin;
+ end = (unsigned long)__end_rodata;
radix__change_memory_range(start, end, _PAGE_WRITE);
+
+ for (start = PAGE_OFFSET; start < (unsigned long)_stext; start += PAGE_SIZE) {
+ end = start + PAGE_SIZE;
+ if (overlaps_interrupt_vector_text(start, end))
+ radix__change_memory_range(start, end, _PAGE_WRITE);
+ else
+ break;
+ }
}
void radix__mark_initmem_nx(void)
@@ -251,27 +271,54 @@ print_mapping(unsigned long start, unsigned long end, unsigned long size, bool e
static unsigned long next_boundary(unsigned long addr, unsigned long end)
{
#ifdef CONFIG_STRICT_KERNEL_RWX
- if (addr < __pa_symbol(__init_begin))
- return __pa_symbol(__init_begin);
+ unsigned long stext_phys;
+
+ stext_phys = __pa_symbol(_stext);
+
+ // Relocatable kernel running at non-zero real address
+ if (stext_phys != 0) {
+ // The end of interrupts code at zero is a rodata boundary
+ unsigned long end_intr = __pa_symbol(__end_interrupts) - stext_phys;
+ if (addr < end_intr)
+ return end_intr;
+
+ // Start of relocated kernel text is a rodata boundary
+ if (addr < stext_phys)
+ return stext_phys;
+ }
+
+ if (addr < __pa_symbol(__srwx_boundary))
+ return __pa_symbol(__srwx_boundary);
#endif
return end;
}
static int __meminit create_physical_mapping(unsigned long start,
unsigned long end,
- int nid, pgprot_t _prot)
+ int nid, pgprot_t _prot,
+ unsigned long mapping_sz_limit)
{
unsigned long vaddr, addr, mapping_size = 0;
bool prev_exec, exec = false;
pgprot_t prot;
int psize;
+ unsigned long max_mapping_size = memory_block_size;
+
+ if (mapping_sz_limit < max_mapping_size)
+ max_mapping_size = mapping_sz_limit;
+
+ if (debug_pagealloc_enabled())
+ max_mapping_size = PAGE_SIZE;
start = ALIGN(start, PAGE_SIZE);
+ end = ALIGN_DOWN(end, PAGE_SIZE);
for (addr = start; addr < end; addr += mapping_size) {
unsigned long gap, previous_size;
int rc;
gap = next_boundary(addr, end) - addr;
+ if (gap > max_mapping_size)
+ gap = max_mapping_size;
previous_size = mapping_size;
prev_exec = exec;
@@ -315,58 +362,101 @@ static int __meminit create_physical_mapping(unsigned long start,
return 0;
}
+#ifdef CONFIG_KFENCE
+static __init phys_addr_t alloc_kfence_pool(void)
+{
+ phys_addr_t kfence_pool;
+
+ /*
+ * TODO: Support to enable KFENCE after bootup depends on the ability to
+ * split page table mappings. As such support is not currently
+ * implemented for radix pagetables, support enabling KFENCE
+ * only at system startup for now.
+ *
+ * After support for splitting mappings is available on radix,
+ * alloc_kfence_pool() & map_kfence_pool() can be dropped and
+ * mapping for __kfence_pool memory can be
+ * split during arch_kfence_init_pool().
+ */
+ if (!kfence_early_init)
+ goto no_kfence;
+
+ kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
+ if (!kfence_pool)
+ goto no_kfence;
+
+ memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
+ return kfence_pool;
+
+no_kfence:
+ disable_kfence();
+ return 0;
+}
+
+static __init void map_kfence_pool(phys_addr_t kfence_pool)
+{
+ if (!kfence_pool)
+ return;
+
+ if (create_physical_mapping(kfence_pool, kfence_pool + KFENCE_POOL_SIZE,
+ -1, PAGE_KERNEL, PAGE_SIZE))
+ goto err;
+
+ memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
+ __kfence_pool = __va(kfence_pool);
+ return;
+
+err:
+ memblock_phys_free(kfence_pool, KFENCE_POOL_SIZE);
+ disable_kfence();
+}
+#else
+static inline phys_addr_t alloc_kfence_pool(void) { return 0; }
+static inline void map_kfence_pool(phys_addr_t kfence_pool) { }
+#endif
+
static void __init radix_init_pgtable(void)
{
+ phys_addr_t kfence_pool;
unsigned long rts_field;
- struct memblock_region *reg;
+ phys_addr_t start, end;
+ u64 i;
/* We don't support slb for radix */
- mmu_slb_size = 0;
+ slb_set_size(0);
+
+ kfence_pool = alloc_kfence_pool();
+
/*
- * Create the linear mapping, using standard page size for now
+ * Create the linear mapping
*/
- for_each_memblock(memory, reg) {
+ for_each_mem_range(i, &start, &end) {
/*
* The memblock allocator is up at this point, so the
* page tables will be allocated within the range. No
* need or a node (which we don't have yet).
*/
- if ((reg->base + reg->size) >= RADIX_VMALLOC_START) {
+ if (end >= RADIX_VMALLOC_START) {
pr_warn("Outside the supported range\n");
continue;
}
- WARN_ON(create_physical_mapping(reg->base,
- reg->base + reg->size,
- -1, PAGE_KERNEL));
+ WARN_ON(create_physical_mapping(start, end,
+ -1, PAGE_KERNEL, ~0UL));
}
- /* Find out how many PID bits are supported */
- if (!cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
- if (!mmu_pid_bits)
- mmu_pid_bits = 20;
- mmu_base_pid = 1;
- } else if (cpu_has_feature(CPU_FTR_HVMODE)) {
- if (!mmu_pid_bits)
- mmu_pid_bits = 20;
-#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+ map_kfence_pool(kfence_pool);
+
+ if (!cpu_has_feature(CPU_FTR_HVMODE) &&
+ cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
/*
- * When KVM is possible, we only use the top half of the
- * PID space to avoid collisions between host and guest PIDs
- * which can cause problems due to prefetch when exiting the
- * guest with AIL=3
+ * Older versions of KVM on these machines prefer if the
+ * guest only uses the low 19 PID bits.
*/
- mmu_base_pid = 1 << (mmu_pid_bits - 1);
-#else
- mmu_base_pid = 1;
-#endif
- } else {
- /* The guest uses the bottom half of the PID space */
- if (!mmu_pid_bits)
- mmu_pid_bits = 19;
- mmu_base_pid = 1;
+ mmu_pid_bits = 19;
}
+ mmu_base_pid = 1;
/*
* Allocate Partition table and process table for the
@@ -445,11 +535,6 @@ static int __init radix_dt_scan_page_sizes(unsigned long node,
if (type == NULL || strcmp(type, "cpu") != 0)
return 0;
- /* Find MMU PID size */
- prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
- if (prop && size == 4)
- mmu_pid_bits = be32_to_cpup(prop);
-
/* Grab page size encodings */
prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
if (!prop)
@@ -472,6 +557,7 @@ static int __init radix_dt_scan_page_sizes(unsigned long node,
def = &mmu_psize_defs[idx];
def->shift = shift;
def->ap = ap;
+ def->h_rpt_pgsize = psize_to_rpti_pgsize(idx);
}
/* needed ? */
@@ -487,88 +573,35 @@ void __init radix__early_init_devtree(void)
* Try to find the available page sizes in the device-tree
*/
rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
- if (rc != 0) /* Found */
- goto found;
- /*
- * let's assume we have page 4k and 64k support
- */
- mmu_psize_defs[MMU_PAGE_4K].shift = 12;
- mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
-
- mmu_psize_defs[MMU_PAGE_64K].shift = 16;
- mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
-found:
- return;
-}
-
-static void radix_init_amor(void)
-{
- /*
- * In HV mode, we init AMOR (Authority Mask Override Register) so that
- * the hypervisor and guest can setup IAMR (Instruction Authority Mask
- * Register), enable key 0 and set it to 1.
- *
- * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
- */
- mtspr(SPRN_AMOR, (3ul << 62));
-}
-
-#ifdef CONFIG_PPC_KUEP
-void setup_kuep(bool disabled)
-{
- if (disabled || !early_radix_enabled())
- return;
-
- if (smp_processor_id() == boot_cpuid)
- pr_info("Activating Kernel Userspace Execution Prevention\n");
-
- /*
- * Radix always uses key0 of the IAMR to determine if an access is
- * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
- * fetch.
- */
- mtspr(SPRN_IAMR, (1ul << 62));
-}
-#endif
-
-#ifdef CONFIG_PPC_KUAP
-void setup_kuap(bool disabled)
-{
- if (disabled || !early_radix_enabled())
- return;
-
- if (smp_processor_id() == boot_cpuid) {
- pr_info("Activating Kernel Userspace Access Prevention\n");
- cur_cpu_spec->mmu_features |= MMU_FTR_RADIX_KUAP;
+ if (!rc) {
+ /*
+ * No page size details found in device tree.
+ * Let's assume we have page 4k and 64k support
+ */
+ mmu_psize_defs[MMU_PAGE_4K].shift = 12;
+ mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
+ mmu_psize_defs[MMU_PAGE_4K].h_rpt_pgsize =
+ psize_to_rpti_pgsize(MMU_PAGE_4K);
+
+ mmu_psize_defs[MMU_PAGE_64K].shift = 16;
+ mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
+ mmu_psize_defs[MMU_PAGE_64K].h_rpt_pgsize =
+ psize_to_rpti_pgsize(MMU_PAGE_64K);
}
-
- /* Make sure userspace can't change the AMR */
- mtspr(SPRN_UAMOR, 0);
- mtspr(SPRN_AMR, AMR_KUAP_BLOCKED);
- isync();
+ return;
}
-#endif
void __init radix__early_init_mmu(void)
{
unsigned long lpcr;
+#ifdef CONFIG_PPC_64S_HASH_MMU
#ifdef CONFIG_PPC_64K_PAGES
/* PAGE_SIZE mappings */
mmu_virtual_psize = MMU_PAGE_64K;
#else
mmu_virtual_psize = MMU_PAGE_4K;
#endif
-
-#ifdef CONFIG_SPARSEMEM_VMEMMAP
- /* vmemmap mapping */
- if (mmu_psize_defs[MMU_PAGE_2M].shift) {
- /*
- * map vmemmap using 2M if available
- */
- mmu_vmemmap_psize = MMU_PAGE_2M;
- } else
- mmu_vmemmap_psize = mmu_virtual_psize;
#endif
/*
* initialize page table size
@@ -609,7 +642,6 @@ void __init radix__early_init_mmu(void)
lpcr = mfspr(SPRN_LPCR);
mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
radix_init_partition_table();
- radix_init_amor();
} else {
radix_init_pseries();
}
@@ -633,15 +665,17 @@ void radix__early_init_mmu_secondary(void)
set_ptcr_when_no_uv(__pa(partition_tb) |
(PATB_SIZE_SHIFT - 12));
-
- radix_init_amor();
}
radix__switch_mmu_context(NULL, &init_mm);
tlbiel_all();
+
+ /* Make sure userspace can't change the AMR */
+ mtspr(SPRN_UAMOR, 0);
}
-void radix__mmu_cleanup_all(void)
+/* Called during kexec sequence with MMU off */
+notrace void radix__mmu_cleanup_all(void)
{
unsigned long lpcr;
@@ -654,21 +688,6 @@ void radix__mmu_cleanup_all(void)
}
}
-void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
- phys_addr_t first_memblock_size)
-{
- /*
- * We don't currently support the first MEMBLOCK not mapping 0
- * physical on those processors
- */
- BUG_ON(first_memblock_base != 0);
-
- /*
- * Radix mode is not limited by RMA / VRMA addressing.
- */
- ppc64_rma_size = ULONG_MAX;
-}
-
#ifdef CONFIG_MEMORY_HOTPLUG
static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
{
@@ -700,110 +719,108 @@ static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
pud_clear(pud);
}
-struct change_mapping_params {
- pte_t *pte;
- unsigned long start;
- unsigned long end;
- unsigned long aligned_start;
- unsigned long aligned_end;
-};
-
-static int __meminit stop_machine_change_mapping(void *data)
+static void free_pud_table(pud_t *pud_start, p4d_t *p4d)
{
- struct change_mapping_params *params =
- (struct change_mapping_params *)data;
+ pud_t *pud;
+ int i;
- if (!data)
- return -1;
+ for (i = 0; i < PTRS_PER_PUD; i++) {
+ pud = pud_start + i;
+ if (!pud_none(*pud))
+ return;
+ }
- spin_unlock(&init_mm.page_table_lock);
- pte_clear(&init_mm, params->aligned_start, params->pte);
- create_physical_mapping(__pa(params->aligned_start),
- __pa(params->start), -1, PAGE_KERNEL);
- create_physical_mapping(__pa(params->end), __pa(params->aligned_end),
- -1, PAGE_KERNEL);
- spin_lock(&init_mm.page_table_lock);
- return 0;
+ pud_free(&init_mm, pud_start);
+ p4d_clear(p4d);
}
-static void remove_pte_table(pte_t *pte_start, unsigned long addr,
- unsigned long end)
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
{
- unsigned long next;
- pte_t *pte;
+ unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
- pte = pte_start + pte_index(addr);
- for (; addr < end; addr = next, pte++) {
- next = (addr + PAGE_SIZE) & PAGE_MASK;
- if (next > end)
- next = end;
+ return !vmemmap_populated(start, PMD_SIZE);
+}
- if (!pte_present(*pte))
- continue;
+static bool __meminit vmemmap_page_is_unused(unsigned long addr, unsigned long end)
+{
+ unsigned long start = ALIGN_DOWN(addr, PAGE_SIZE);
- if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
- /*
- * The vmemmap_free() and remove_section_mapping()
- * codepaths call us with aligned addresses.
- */
- WARN_ONCE(1, "%s: unaligned range\n", __func__);
- continue;
- }
+ return !vmemmap_populated(start, PAGE_SIZE);
- pte_clear(&init_mm, addr, pte);
- }
}
+#endif
-/*
- * clear the pte and potentially split the mapping helper
- */
-static void __meminit split_kernel_mapping(unsigned long addr, unsigned long end,
- unsigned long size, pte_t *pte)
+static void __meminit free_vmemmap_pages(struct page *page,
+ struct vmem_altmap *altmap,
+ int order)
{
- unsigned long mask = ~(size - 1);
- unsigned long aligned_start = addr & mask;
- unsigned long aligned_end = addr + size;
- struct change_mapping_params params;
- bool split_region = false;
+ unsigned int nr_pages = 1 << order;
+
+ if (altmap) {
+ unsigned long alt_start, alt_end;
+ unsigned long base_pfn = page_to_pfn(page);
- if ((end - addr) < size) {
/*
- * We're going to clear the PTE, but not flushed
- * the mapping, time to remap and flush. The
- * effects if visible outside the processor or
- * if we are running in code close to the
- * mapping we cleared, we are in trouble.
+ * with 2M vmemmap mmaping we can have things setup
+ * such that even though atlmap is specified we never
+ * used altmap.
*/
- if (overlaps_kernel_text(aligned_start, addr) ||
- overlaps_kernel_text(end, aligned_end)) {
- /*
- * Hack, just return, don't pte_clear
- */
- WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel "
- "text, not splitting\n", addr, end);
+ alt_start = altmap->base_pfn;
+ alt_end = altmap->base_pfn + altmap->reserve + altmap->free;
+
+ if (base_pfn >= alt_start && base_pfn < alt_end) {
+ vmem_altmap_free(altmap, nr_pages);
return;
}
- split_region = true;
}
- if (split_region) {
- params.pte = pte;
- params.start = addr;
- params.end = end;
- params.aligned_start = addr & ~(size - 1);
- params.aligned_end = min_t(unsigned long, aligned_end,
- (unsigned long)__va(memblock_end_of_DRAM()));
- stop_machine(stop_machine_change_mapping, &params, NULL);
- return;
- }
+ if (PageReserved(page)) {
+ /* allocated from memblock */
+ while (nr_pages--)
+ free_reserved_page(page++);
+ } else
+ __free_pages(page, order);
+}
+
+static void __meminit remove_pte_table(pte_t *pte_start, unsigned long addr,
+ unsigned long end, bool direct,
+ struct vmem_altmap *altmap)
+{
+ unsigned long next, pages = 0;
+ pte_t *pte;
- pte_clear(&init_mm, addr, pte);
+ pte = pte_start + pte_index(addr);
+ for (; addr < end; addr = next, pte++) {
+ next = (addr + PAGE_SIZE) & PAGE_MASK;
+ if (next > end)
+ next = end;
+
+ if (!pte_present(*pte))
+ continue;
+
+ if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
+ if (!direct)
+ free_vmemmap_pages(pte_page(*pte), altmap, 0);
+ pte_clear(&init_mm, addr, pte);
+ pages++;
+ }
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+ else if (!direct && vmemmap_page_is_unused(addr, next)) {
+ free_vmemmap_pages(pte_page(*pte), altmap, 0);
+ pte_clear(&init_mm, addr, pte);
+ }
+#endif
+ }
+ if (direct)
+ update_page_count(mmu_virtual_psize, -pages);
}
-static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
- unsigned long end)
+static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
+ unsigned long end, bool direct,
+ struct vmem_altmap *altmap)
{
- unsigned long next;
+ unsigned long next, pages = 0;
pte_t *pte_base;
pmd_t *pmd;
@@ -814,21 +831,36 @@ static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
if (!pmd_present(*pmd))
continue;
- if (pmd_is_leaf(*pmd)) {
- split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd);
+ if (pmd_leaf(*pmd)) {
+ if (IS_ALIGNED(addr, PMD_SIZE) &&
+ IS_ALIGNED(next, PMD_SIZE)) {
+ if (!direct)
+ free_vmemmap_pages(pmd_page(*pmd), altmap, get_order(PMD_SIZE));
+ pte_clear(&init_mm, addr, (pte_t *)pmd);
+ pages++;
+ }
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+ else if (!direct && vmemmap_pmd_is_unused(addr, next)) {
+ free_vmemmap_pages(pmd_page(*pmd), altmap, get_order(PMD_SIZE));
+ pte_clear(&init_mm, addr, (pte_t *)pmd);
+ }
+#endif
continue;
}
pte_base = (pte_t *)pmd_page_vaddr(*pmd);
- remove_pte_table(pte_base, addr, next);
+ remove_pte_table(pte_base, addr, next, direct, altmap);
free_pte_table(pte_base, pmd);
}
+ if (direct)
+ update_page_count(MMU_PAGE_2M, -pages);
}
-static void remove_pud_table(pud_t *pud_start, unsigned long addr,
- unsigned long end)
+static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr,
+ unsigned long end, bool direct,
+ struct vmem_altmap *altmap)
{
- unsigned long next;
+ unsigned long next, pages = 0;
pmd_t *pmd_base;
pud_t *pud;
@@ -839,18 +871,28 @@ static void remove_pud_table(pud_t *pud_start, unsigned long addr,
if (!pud_present(*pud))
continue;
- if (pud_is_leaf(*pud)) {
- split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud);
+ if (pud_leaf(*pud)) {
+ if (!IS_ALIGNED(addr, PUD_SIZE) ||
+ !IS_ALIGNED(next, PUD_SIZE)) {
+ WARN_ONCE(1, "%s: unaligned range\n", __func__);
+ continue;
+ }
+ pte_clear(&init_mm, addr, (pte_t *)pud);
+ pages++;
continue;
}
- pmd_base = (pmd_t *)pud_page_vaddr(*pud);
- remove_pmd_table(pmd_base, addr, next);
+ pmd_base = pud_pgtable(*pud);
+ remove_pmd_table(pmd_base, addr, next, direct, altmap);
free_pmd_table(pmd_base, pud);
}
+ if (direct)
+ update_page_count(MMU_PAGE_1G, -pages);
}
-static void __meminit remove_pagetable(unsigned long start, unsigned long end)
+static void __meminit
+remove_pagetable(unsigned long start, unsigned long end, bool direct,
+ struct vmem_altmap *altmap)
{
unsigned long addr, next;
pud_t *pud_base;
@@ -867,13 +909,20 @@ static void __meminit remove_pagetable(unsigned long start, unsigned long end)
if (!p4d_present(*p4d))
continue;
- if (p4d_is_leaf(*p4d)) {
- split_kernel_mapping(addr, end, P4D_SIZE, (pte_t *)p4d);
+ if (p4d_leaf(*p4d)) {
+ if (!IS_ALIGNED(addr, P4D_SIZE) ||
+ !IS_ALIGNED(next, P4D_SIZE)) {
+ WARN_ONCE(1, "%s: unaligned range\n", __func__);
+ continue;
+ }
+
+ pte_clear(&init_mm, addr, (pte_t *)pgd);
continue;
}
- pud_base = (pud_t *)p4d_page_vaddr(*p4d);
- remove_pud_table(pud_base, addr, next);
+ pud_base = p4d_pgtable(*p4d);
+ remove_pud_table(pud_base, addr, next, direct, altmap);
+ free_pud_table(pud_base, p4d);
}
spin_unlock(&init_mm.page_table_lock);
@@ -889,12 +938,13 @@ int __meminit radix__create_section_mapping(unsigned long start,
return -1;
}
- return create_physical_mapping(__pa(start), __pa(end), nid, prot);
+ return create_physical_mapping(__pa(start), __pa(end),
+ nid, prot, ~0UL);
}
int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
{
- remove_pagetable(start, end);
+ remove_pagetable(start, end, true, NULL);
return 0;
}
#endif /* CONFIG_MEMORY_HOTPLUG */
@@ -912,7 +962,6 @@ int __meminit radix__vmemmap_create_mapping(unsigned long start,
unsigned long phys)
{
/* Create a PTE encoding */
- unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
int ret;
@@ -921,16 +970,456 @@ int __meminit radix__vmemmap_create_mapping(unsigned long start,
return -1;
}
- ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
+ ret = __map_kernel_page_nid(start, phys, PAGE_KERNEL, page_size, nid);
BUG_ON(ret);
return 0;
}
+#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
+bool vmemmap_can_optimize(struct vmem_altmap *altmap, struct dev_pagemap *pgmap)
+{
+ if (radix_enabled())
+ return __vmemmap_can_optimize(altmap, pgmap);
+
+ return false;
+}
+#endif
+
+int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
+ unsigned long addr, unsigned long next)
+{
+ int large = pmd_leaf(*pmdp);
+
+ if (large)
+ vmemmap_verify(pmdp_ptep(pmdp), node, addr, next);
+
+ return large;
+}
+
+void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node,
+ unsigned long addr, unsigned long next)
+{
+ pte_t entry;
+ pte_t *ptep = pmdp_ptep(pmdp);
+
+ VM_BUG_ON(!IS_ALIGNED(addr, PMD_SIZE));
+ entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
+ set_pte_at(&init_mm, addr, ptep, entry);
+ asm volatile("ptesync": : :"memory");
+
+ vmemmap_verify(ptep, node, addr, next);
+}
+
+static pte_t * __meminit radix__vmemmap_pte_populate(pmd_t *pmdp, unsigned long addr,
+ int node,
+ struct vmem_altmap *altmap,
+ struct page *reuse)
+{
+ pte_t *pte = pte_offset_kernel(pmdp, addr);
+
+ if (pte_none(*pte)) {
+ pte_t entry;
+ void *p;
+
+ if (!reuse) {
+ /*
+ * make sure we don't create altmap mappings
+ * covering things outside the device.
+ */
+ if (altmap && altmap_cross_boundary(altmap, addr, PAGE_SIZE))
+ altmap = NULL;
+
+ p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
+ if (!p && altmap)
+ p = vmemmap_alloc_block_buf(PAGE_SIZE, node, NULL);
+ if (!p)
+ return NULL;
+ pr_debug("PAGE_SIZE vmemmap mapping\n");
+ } else {
+ /*
+ * When a PTE/PMD entry is freed from the init_mm
+ * there's a free_pages() call to this page allocated
+ * above. Thus this get_page() is paired with the
+ * put_page_testzero() on the freeing path.
+ * This can only called by certain ZONE_DEVICE path,
+ * and through vmemmap_populate_compound_pages() when
+ * slab is available.
+ */
+ get_page(reuse);
+ p = page_to_virt(reuse);
+ pr_debug("Tail page reuse vmemmap mapping\n");
+ }
+
+ VM_BUG_ON(!PAGE_ALIGNED(addr));
+ entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
+ set_pte_at(&init_mm, addr, pte, entry);
+ asm volatile("ptesync": : :"memory");
+ }
+ return pte;
+}
+
+static inline pud_t *vmemmap_pud_alloc(p4d_t *p4dp, int node,
+ unsigned long address)
+{
+ pud_t *pud;
+
+ /* All early vmemmap mapping to keep simple do it at PAGE_SIZE */
+ if (unlikely(p4d_none(*p4dp))) {
+ if (unlikely(!slab_is_available())) {
+ pud = early_alloc_pgtable(PAGE_SIZE, node, 0, 0);
+ p4d_populate(&init_mm, p4dp, pud);
+ /* go to the pud_offset */
+ } else
+ return pud_alloc(&init_mm, p4dp, address);
+ }
+ return pud_offset(p4dp, address);
+}
+
+static inline pmd_t *vmemmap_pmd_alloc(pud_t *pudp, int node,
+ unsigned long address)
+{
+ pmd_t *pmd;
+
+ /* All early vmemmap mapping to keep simple do it at PAGE_SIZE */
+ if (unlikely(pud_none(*pudp))) {
+ if (unlikely(!slab_is_available())) {
+ pmd = early_alloc_pgtable(PAGE_SIZE, node, 0, 0);
+ pud_populate(&init_mm, pudp, pmd);
+ } else
+ return pmd_alloc(&init_mm, pudp, address);
+ }
+ return pmd_offset(pudp, address);
+}
+
+static inline pte_t *vmemmap_pte_alloc(pmd_t *pmdp, int node,
+ unsigned long address)
+{
+ pte_t *pte;
+
+ /* All early vmemmap mapping to keep simple do it at PAGE_SIZE */
+ if (unlikely(pmd_none(*pmdp))) {
+ if (unlikely(!slab_is_available())) {
+ pte = early_alloc_pgtable(PAGE_SIZE, node, 0, 0);
+ pmd_populate(&init_mm, pmdp, pte);
+ } else
+ return pte_alloc_kernel(pmdp, address);
+ }
+ return pte_offset_kernel(pmdp, address);
+}
+
+
+
+int __meminit radix__vmemmap_populate(unsigned long start, unsigned long end, int node,
+ struct vmem_altmap *altmap)
+{
+ unsigned long addr;
+ unsigned long next;
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ /*
+ * If altmap is present, Make sure we align the start vmemmap addr
+ * to PAGE_SIZE so that we calculate the correct start_pfn in
+ * altmap boundary check to decide whether we should use altmap or
+ * RAM based backing memory allocation. Also the address need to be
+ * aligned for set_pte operation. If the start addr is already
+ * PMD_SIZE aligned and with in the altmap boundary then we will
+ * try to use a pmd size altmap mapping else we go for page size
+ * mapping.
+ *
+ * If altmap is not present, align the vmemmap addr to PMD_SIZE and
+ * always allocate a PMD size page for vmemmap backing.
+ *
+ */
+
+ if (altmap)
+ start = ALIGN_DOWN(start, PAGE_SIZE);
+ else
+ start = ALIGN_DOWN(start, PMD_SIZE);
+
+ for (addr = start; addr < end; addr = next) {
+ next = pmd_addr_end(addr, end);
+
+ pgd = pgd_offset_k(addr);
+ p4d = p4d_offset(pgd, addr);
+ pud = vmemmap_pud_alloc(p4d, node, addr);
+ if (!pud)
+ return -ENOMEM;
+ pmd = vmemmap_pmd_alloc(pud, node, addr);
+ if (!pmd)
+ return -ENOMEM;
+
+ if (pmd_none(READ_ONCE(*pmd))) {
+ void *p;
+
+ /*
+ * keep it simple by checking addr PMD_SIZE alignment
+ * and verifying the device boundary condition.
+ * For us to use a pmd mapping, both addr and pfn should
+ * be aligned. We skip if addr is not aligned and for
+ * pfn we hope we have extra area in the altmap that
+ * can help to find an aligned block. This can result
+ * in altmap block allocation failures, in which case
+ * we fallback to RAM for vmemmap allocation.
+ */
+ if (altmap && (!IS_ALIGNED(addr, PMD_SIZE) ||
+ altmap_cross_boundary(altmap, addr, PMD_SIZE))) {
+ /*
+ * make sure we don't create altmap mappings
+ * covering things outside the device.
+ */
+ goto base_mapping;
+ }
+
+ p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
+ if (p) {
+ vmemmap_set_pmd(pmd, p, node, addr, next);
+ pr_debug("PMD_SIZE vmemmap mapping\n");
+ continue;
+ } else {
+ /*
+ * A vmemmap block allocation can fail due to
+ * alignment requirements and we trying to align
+ * things aggressively there by running out of
+ * space. Try base mapping on failure.
+ */
+ goto base_mapping;
+ }
+ } else if (vmemmap_check_pmd(pmd, node, addr, next)) {
+ /*
+ * If a huge mapping exist due to early call to
+ * vmemmap_populate, let's try to use that.
+ */
+ continue;
+ }
+base_mapping:
+ /*
+ * Not able allocate higher order memory to back memmap
+ * or we found a pointer to pte page. Allocate base page
+ * size vmemmap
+ */
+ pte = vmemmap_pte_alloc(pmd, node, addr);
+ if (!pte)
+ return -ENOMEM;
+
+ pte = radix__vmemmap_pte_populate(pmd, addr, node, altmap, NULL);
+ if (!pte)
+ return -ENOMEM;
+
+ vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
+ next = addr + PAGE_SIZE;
+ }
+ return 0;
+}
+
+static pte_t * __meminit radix__vmemmap_populate_address(unsigned long addr, int node,
+ struct vmem_altmap *altmap,
+ struct page *reuse)
+{
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ pgd = pgd_offset_k(addr);
+ p4d = p4d_offset(pgd, addr);
+ pud = vmemmap_pud_alloc(p4d, node, addr);
+ if (!pud)
+ return NULL;
+ pmd = vmemmap_pmd_alloc(pud, node, addr);
+ if (!pmd)
+ return NULL;
+ if (pmd_leaf(*pmd))
+ /*
+ * The second page is mapped as a hugepage due to a nearby request.
+ * Force our mapping to page size without deduplication
+ */
+ return NULL;
+ pte = vmemmap_pte_alloc(pmd, node, addr);
+ if (!pte)
+ return NULL;
+ radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL);
+ vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
+
+ return pte;
+}
+
+static pte_t * __meminit vmemmap_compound_tail_page(unsigned long addr,
+ unsigned long pfn_offset, int node)
+{
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+ unsigned long map_addr;
+
+ /* the second vmemmap page which we use for duplication */
+ map_addr = addr - pfn_offset * sizeof(struct page) + PAGE_SIZE;
+ pgd = pgd_offset_k(map_addr);
+ p4d = p4d_offset(pgd, map_addr);
+ pud = vmemmap_pud_alloc(p4d, node, map_addr);
+ if (!pud)
+ return NULL;
+ pmd = vmemmap_pmd_alloc(pud, node, map_addr);
+ if (!pmd)
+ return NULL;
+ if (pmd_leaf(*pmd))
+ /*
+ * The second page is mapped as a hugepage due to a nearby request.
+ * Force our mapping to page size without deduplication
+ */
+ return NULL;
+ pte = vmemmap_pte_alloc(pmd, node, map_addr);
+ if (!pte)
+ return NULL;
+ /*
+ * Check if there exist a mapping to the left
+ */
+ if (pte_none(*pte)) {
+ /*
+ * Populate the head page vmemmap page.
+ * It can fall in different pmd, hence
+ * vmemmap_populate_address()
+ */
+ pte = radix__vmemmap_populate_address(map_addr - PAGE_SIZE, node, NULL, NULL);
+ if (!pte)
+ return NULL;
+ /*
+ * Populate the tail pages vmemmap page
+ */
+ pte = radix__vmemmap_pte_populate(pmd, map_addr, node, NULL, NULL);
+ if (!pte)
+ return NULL;
+ vmemmap_verify(pte, node, map_addr, map_addr + PAGE_SIZE);
+ return pte;
+ }
+ return pte;
+}
+
+int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
+ unsigned long start,
+ unsigned long end, int node,
+ struct dev_pagemap *pgmap)
+{
+ /*
+ * we want to map things as base page size mapping so that
+ * we can save space in vmemmap. We could have huge mapping
+ * covering out both edges.
+ */
+ unsigned long addr;
+ unsigned long addr_pfn = start_pfn;
+ unsigned long next;
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ for (addr = start; addr < end; addr = next) {
+
+ pgd = pgd_offset_k(addr);
+ p4d = p4d_offset(pgd, addr);
+ pud = vmemmap_pud_alloc(p4d, node, addr);
+ if (!pud)
+ return -ENOMEM;
+ pmd = vmemmap_pmd_alloc(pud, node, addr);
+ if (!pmd)
+ return -ENOMEM;
+
+ if (pmd_leaf(READ_ONCE(*pmd))) {
+ /* existing huge mapping. Skip the range */
+ addr_pfn += (PMD_SIZE >> PAGE_SHIFT);
+ next = pmd_addr_end(addr, end);
+ continue;
+ }
+ pte = vmemmap_pte_alloc(pmd, node, addr);
+ if (!pte)
+ return -ENOMEM;
+ if (!pte_none(*pte)) {
+ /*
+ * This could be because we already have a compound
+ * page whose VMEMMAP_RESERVE_NR pages were mapped and
+ * this request fall in those pages.
+ */
+ addr_pfn += 1;
+ next = addr + PAGE_SIZE;
+ continue;
+ } else {
+ unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
+ unsigned long pfn_offset = addr_pfn - ALIGN_DOWN(addr_pfn, nr_pages);
+ pte_t *tail_page_pte;
+
+ /*
+ * if the address is aligned to huge page size it is the
+ * head mapping.
+ */
+ if (pfn_offset == 0) {
+ /* Populate the head page vmemmap page */
+ pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL);
+ if (!pte)
+ return -ENOMEM;
+ vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
+
+ /*
+ * Populate the tail pages vmemmap page
+ * It can fall in different pmd, hence
+ * vmemmap_populate_address()
+ */
+ pte = radix__vmemmap_populate_address(addr + PAGE_SIZE, node, NULL, NULL);
+ if (!pte)
+ return -ENOMEM;
+
+ addr_pfn += 2;
+ next = addr + 2 * PAGE_SIZE;
+ continue;
+ }
+ /*
+ * get the 2nd mapping details
+ * Also create it if that doesn't exist
+ */
+ tail_page_pte = vmemmap_compound_tail_page(addr, pfn_offset, node);
+ if (!tail_page_pte) {
+
+ pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL);
+ if (!pte)
+ return -ENOMEM;
+ vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
+
+ addr_pfn += 1;
+ next = addr + PAGE_SIZE;
+ continue;
+ }
+
+ pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, pte_page(*tail_page_pte));
+ if (!pte)
+ return -ENOMEM;
+ vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
+
+ addr_pfn += 1;
+ next = addr + PAGE_SIZE;
+ continue;
+ }
+ }
+ return 0;
+}
+
+
#ifdef CONFIG_MEMORY_HOTPLUG
void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
{
- remove_pagetable(start, start + page_size);
+ remove_pagetable(start, start + page_size, true, NULL);
+}
+
+void __ref radix__vmemmap_free(unsigned long start, unsigned long end,
+ struct vmem_altmap *altmap)
+{
+ remove_pagetable(start, end, false, altmap);
}
#endif
#endif
@@ -944,12 +1433,29 @@ unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long add
unsigned long old;
#ifdef CONFIG_DEBUG_VM
- WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
+ WARN_ON(!radix__pmd_trans_huge(*pmdp));
assert_spin_locked(pmd_lockptr(mm, pmdp));
#endif
- old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
- trace_hugepage_update(addr, old, clr, set);
+ old = radix__pte_update(mm, addr, pmdp_ptep(pmdp), clr, set, 1);
+ trace_hugepage_update_pmd(addr, old, clr, set);
+
+ return old;
+}
+
+unsigned long radix__pud_hugepage_update(struct mm_struct *mm, unsigned long addr,
+ pud_t *pudp, unsigned long clr,
+ unsigned long set)
+{
+ unsigned long old;
+
+#ifdef CONFIG_DEBUG_VM
+ WARN_ON(!pud_trans_huge(*pudp));
+ assert_spin_locked(pud_lockptr(mm, pudp));
+#endif
+
+ old = radix__pte_update(mm, addr, pudp_ptep(pudp), clr, set, 1);
+ trace_hugepage_update_pud(addr, old, clr, set);
return old;
}
@@ -962,22 +1468,12 @@ pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long addre
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
- VM_BUG_ON(pmd_devmap(*pmdp));
/*
* khugepaged calls this for normal pmd
*/
pmd = *pmdp;
pmd_clear(pmdp);
- /*
- * pmdp collapse_flush need to ensure that there are no parallel gup
- * walk after this call. This is needed so that we can have stable
- * page ref count when collapsing a page. We don't allow a collapse page
- * if we have gup taken on the page. We can ensure that by sending IPI
- * because gup walk happens with IRQ disabled.
- */
- serialize_against_pte_lookup(vma->vm_mm);
-
radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
return pmd;
@@ -1039,27 +1535,43 @@ pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
return old_pmd;
}
+pud_t radix__pudp_huge_get_and_clear(struct mm_struct *mm,
+ unsigned long addr, pud_t *pudp)
+{
+ pud_t old_pud;
+ unsigned long old;
+
+ old = radix__pud_hugepage_update(mm, addr, pudp, ~0UL, 0);
+ old_pud = __pud(old);
+ return old_pud;
+}
+
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
pte_t entry, unsigned long address, int psize)
{
struct mm_struct *mm = vma->vm_mm;
- unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
- _PAGE_RW | _PAGE_EXEC);
+ unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_SOFT_DIRTY |
+ _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
unsigned long change = pte_val(entry) ^ pte_val(*ptep);
/*
- * To avoid NMMU hang while relaxing access, we need mark
- * the pte invalid in between.
+ * On POWER9, the NMMU is not able to relax PTE access permissions
+ * for a translation with a TLB. The PTE must be invalidated, TLB
+ * flushed before the new PTE is installed.
+ *
+ * This only needs to be done for radix, because hash translation does
+ * flush when updating the linux pte (and we don't support NMMU
+ * accelerators on HPT on POWER9 anyway XXX: do we?).
+ *
+ * POWER10 (and P9P) NMMU does behave as per ISA.
*/
- if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) {
+ if (!cpu_has_feature(CPU_FTR_ARCH_31) && (change & _PAGE_RW) &&
+ atomic_read(&mm->context.copros) > 0) {
unsigned long old_pte, new_pte;
old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
- /*
- * new value of pte
- */
new_pte = old_pte | set;
radix__flush_tlb_page_psize(mm, address, psize);
__radix_pte_update(ptep, _PAGE_INVALID, new_pte);
@@ -1067,9 +1579,12 @@ void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
__radix_pte_update(ptep, 0, set);
/*
* Book3S does not require a TLB flush when relaxing access
- * restrictions when the address space is not attached to a
- * NMMU, because the core MMU will reload the pte after taking
- * an access fault, which is defined by the architectue.
+ * restrictions when the address space (modulo the POWER9 nest
+ * MMU issue above) because the MMU will reload the PTE after
+ * taking an access fault, as defined by the architecture. See
+ * "Setting a Reference or Change Bit or Upgrading Access
+ * Authority (PTE Subject to Atomic Hardware Updates)" in
+ * Power ISA Version 3.1B.
*/
}
/* See ptesync comment in radix__set_pte_at */
@@ -1082,33 +1597,18 @@ void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
struct mm_struct *mm = vma->vm_mm;
/*
- * To avoid NMMU hang while relaxing access we need to flush the tlb before
- * we set the new value. We need to do this only for radix, because hash
- * translation does flush when updating the linux pte.
+ * POWER9 NMMU must flush the TLB after clearing the PTE before
+ * installing a PTE with more relaxed access permissions, see
+ * radix__ptep_set_access_flags.
*/
- if (is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
+ if (!cpu_has_feature(CPU_FTR_ARCH_31) &&
+ is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
(atomic_read(&mm->context.copros) > 0))
radix__flush_tlb_page(vma, addr);
set_pte_at(mm, addr, ptep, pte);
}
-int __init arch_ioremap_pud_supported(void)
-{
- /* HPT does not cope with large pages in the vmalloc area */
- return radix_enabled();
-}
-
-int __init arch_ioremap_pmd_supported(void)
-{
- return radix_enabled();
-}
-
-int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
-{
- return 0;
-}
-
int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
{
pte_t *ptep = (pte_t *)pud;
@@ -1124,7 +1624,7 @@ int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
int pud_clear_huge(pud_t *pud)
{
- if (pud_huge(*pud)) {
+ if (pud_leaf(*pud)) {
pud_clear(pud);
return 1;
}
@@ -1137,7 +1637,7 @@ int pud_free_pmd_page(pud_t *pud, unsigned long addr)
pmd_t *pmd;
int i;
- pmd = (pmd_t *)pud_page_vaddr(*pud);
+ pmd = pud_pgtable(*pud);
pud_clear(pud);
flush_tlb_kernel_range(addr, addr + PUD_SIZE);
@@ -1171,7 +1671,7 @@ int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
int pmd_clear_huge(pmd_t *pmd)
{
- if (pmd_huge(*pmd)) {
+ if (pmd_leaf(*pmd)) {
pmd_clear(pmd);
return 1;
}
@@ -1192,8 +1692,3 @@ int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
return 1;
}
-
-int __init arch_ioremap_p4d_supported(void)
-{
- return 0;
-}