summaryrefslogtreecommitdiff
path: root/arch/powerpc/mm/hugetlbpage.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/mm/hugetlbpage.c')
-rw-r--r--arch/powerpc/mm/hugetlbpage.c1048
1 files changed, 88 insertions, 960 deletions
diff --git a/arch/powerpc/mm/hugetlbpage.c b/arch/powerpc/mm/hugetlbpage.c
index 834ca8eb38f2..d3c1b749dcfc 100644
--- a/arch/powerpc/mm/hugetlbpage.c
+++ b/arch/powerpc/mm/hugetlbpage.c
@@ -15,393 +15,84 @@
#include <linux/export.h>
#include <linux/of_fdt.h>
#include <linux/memblock.h>
-#include <linux/bootmem.h>
#include <linux/moduleparam.h>
-#include <asm/pgtable.h>
+#include <linux/swap.h>
+#include <linux/swapops.h>
+#include <linux/kmemleak.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/setup.h>
#include <asm/hugetlb.h>
+#include <asm/pte-walk.h>
+#include <asm/firmware.h>
-#ifdef CONFIG_HUGETLB_PAGE
+bool hugetlb_disabled = false;
-#define PAGE_SHIFT_64K 16
-#define PAGE_SHIFT_16M 24
-#define PAGE_SHIFT_16G 34
+#define PTE_T_ORDER (__builtin_ffs(sizeof(pte_basic_t)) - \
+ __builtin_ffs(sizeof(void *)))
-unsigned int HPAGE_SHIFT;
-
-/*
- * Tracks gpages after the device tree is scanned and before the
- * huge_boot_pages list is ready. On non-Freescale implementations, this is
- * just used to track 16G pages and so is a single array. FSL-based
- * implementations may have more than one gpage size, so we need multiple
- * arrays
- */
-#ifdef CONFIG_PPC_FSL_BOOK3E
-#define MAX_NUMBER_GPAGES 128
-struct psize_gpages {
- u64 gpage_list[MAX_NUMBER_GPAGES];
- unsigned int nr_gpages;
-};
-static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
-#else
-#define MAX_NUMBER_GPAGES 1024
-static u64 gpage_freearray[MAX_NUMBER_GPAGES];
-static unsigned nr_gpages;
-#endif
-
-#define hugepd_none(hpd) ((hpd).pd == 0)
-
-#ifdef CONFIG_PPC_BOOK3S_64
-/*
- * At this point we do the placement change only for BOOK3S 64. This would
- * possibly work on other subarchs.
- */
-
-/*
- * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
- * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
- */
-int pmd_huge(pmd_t pmd)
-{
- /*
- * leaf pte for huge page, bottom two bits != 00
- */
- return ((pmd_val(pmd) & 0x3) != 0x0);
-}
-
-int pud_huge(pud_t pud)
-{
- /*
- * leaf pte for huge page, bottom two bits != 00
- */
- return ((pud_val(pud) & 0x3) != 0x0);
-}
-
-int pgd_huge(pgd_t pgd)
+pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
{
/*
- * leaf pte for huge page, bottom two bits != 00
+ * Only called for hugetlbfs pages, hence can ignore THP and the
+ * irq disabled walk.
*/
- return ((pgd_val(pgd) & 0x3) != 0x0);
-}
-#else
-int pmd_huge(pmd_t pmd)
-{
- return 0;
+ return __find_linux_pte(mm->pgd, addr, NULL, NULL);
}
-int pud_huge(pud_t pud)
+pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long addr, unsigned long sz)
{
- return 0;
-}
-
-int pgd_huge(pgd_t pgd)
-{
- return 0;
-}
-#endif
-
-pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
-{
- /* Only called for hugetlbfs pages, hence can ignore THP */
- return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
-}
-
-static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
- unsigned long address, unsigned pdshift, unsigned pshift)
-{
- struct kmem_cache *cachep;
- pte_t *new;
-
-#ifdef CONFIG_PPC_FSL_BOOK3E
- int i;
- int num_hugepd = 1 << (pshift - pdshift);
- cachep = hugepte_cache;
-#else
- cachep = PGT_CACHE(pdshift - pshift);
-#endif
-
- new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
- BUG_ON(pshift > HUGEPD_SHIFT_MASK);
- BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
+ addr &= ~(sz - 1);
- if (! new)
- return -ENOMEM;
+ p4d = p4d_offset(pgd_offset(mm, addr), addr);
+ if (!mm_pud_folded(mm) && sz >= P4D_SIZE)
+ return (pte_t *)p4d;
- spin_lock(&mm->page_table_lock);
-#ifdef CONFIG_PPC_FSL_BOOK3E
- /*
- * We have multiple higher-level entries that point to the same
- * actual pte location. Fill in each as we go and backtrack on error.
- * We need all of these so the DTLB pgtable walk code can find the
- * right higher-level entry without knowing if it's a hugepage or not.
- */
- for (i = 0; i < num_hugepd; i++, hpdp++) {
- if (unlikely(!hugepd_none(*hpdp)))
- break;
- else
- /* We use the old format for PPC_FSL_BOOK3E */
- hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
- }
- /* If we bailed from the for loop early, an error occurred, clean up */
- if (i < num_hugepd) {
- for (i = i - 1 ; i >= 0; i--, hpdp--)
- hpdp->pd = 0;
- kmem_cache_free(cachep, new);
- }
-#else
- if (!hugepd_none(*hpdp))
- kmem_cache_free(cachep, new);
- else {
-#ifdef CONFIG_PPC_BOOK3S_64
- hpdp->pd = (unsigned long)new |
- (shift_to_mmu_psize(pshift) << 2);
-#else
- hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
-#endif
- }
-#endif
- spin_unlock(&mm->page_table_lock);
- return 0;
-}
-
-/*
- * These macros define how to determine which level of the page table holds
- * the hpdp.
- */
-#ifdef CONFIG_PPC_FSL_BOOK3E
-#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
-#define HUGEPD_PUD_SHIFT PUD_SHIFT
-#else
-#define HUGEPD_PGD_SHIFT PUD_SHIFT
-#define HUGEPD_PUD_SHIFT PMD_SHIFT
-#endif
-
-#ifdef CONFIG_PPC_BOOK3S_64
-/*
- * At this point we do the placement change only for BOOK3S 64. This would
- * possibly work on other subarchs.
- */
-pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
-{
- pgd_t *pg;
- pud_t *pu;
- pmd_t *pm;
- hugepd_t *hpdp = NULL;
- unsigned pshift = __ffs(sz);
- unsigned pdshift = PGDIR_SHIFT;
-
- addr &= ~(sz-1);
- pg = pgd_offset(mm, addr);
-
- if (pshift == PGDIR_SHIFT)
- /* 16GB huge page */
- return (pte_t *) pg;
- else if (pshift > PUD_SHIFT)
- /*
- * We need to use hugepd table
- */
- hpdp = (hugepd_t *)pg;
- else {
- pdshift = PUD_SHIFT;
- pu = pud_alloc(mm, pg, addr);
- if (pshift == PUD_SHIFT)
- return (pte_t *)pu;
- else if (pshift > PMD_SHIFT)
- hpdp = (hugepd_t *)pu;
- else {
- pdshift = PMD_SHIFT;
- pm = pmd_alloc(mm, pu, addr);
- if (pshift == PMD_SHIFT)
- /* 16MB hugepage */
- return (pte_t *)pm;
- else
- hpdp = (hugepd_t *)pm;
- }
- }
- if (!hpdp)
+ pud = pud_alloc(mm, p4d, addr);
+ if (!pud)
return NULL;
+ if (!mm_pmd_folded(mm) && sz >= PUD_SIZE)
+ return (pte_t *)pud;
- BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
-
- if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
+ pmd = pmd_alloc(mm, pud, addr);
+ if (!pmd)
return NULL;
- return hugepte_offset(hpdp, addr, pdshift);
-}
-
-#else
-
-pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
-{
- pgd_t *pg;
- pud_t *pu;
- pmd_t *pm;
- hugepd_t *hpdp = NULL;
- unsigned pshift = __ffs(sz);
- unsigned pdshift = PGDIR_SHIFT;
-
- addr &= ~(sz-1);
-
- pg = pgd_offset(mm, addr);
+ if (sz >= PMD_SIZE) {
+ /* On 8xx, all hugepages are handled as contiguous PTEs */
+ if (IS_ENABLED(CONFIG_PPC_8xx)) {
+ int i;
- if (pshift >= HUGEPD_PGD_SHIFT) {
- hpdp = (hugepd_t *)pg;
- } else {
- pdshift = PUD_SHIFT;
- pu = pud_alloc(mm, pg, addr);
- if (pshift >= HUGEPD_PUD_SHIFT) {
- hpdp = (hugepd_t *)pu;
- } else {
- pdshift = PMD_SHIFT;
- pm = pmd_alloc(mm, pu, addr);
- hpdp = (hugepd_t *)pm;
+ for (i = 0; i < sz / PMD_SIZE; i++) {
+ if (!pte_alloc_huge(mm, pmd + i, addr))
+ return NULL;
+ }
}
+ return (pte_t *)pmd;
}
- if (!hpdp)
- return NULL;
-
- BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
-
- if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
- return NULL;
-
- return hugepte_offset(hpdp, addr, pdshift);
-}
-#endif
-
-#ifdef CONFIG_PPC_FSL_BOOK3E
-/* Build list of addresses of gigantic pages. This function is used in early
- * boot before the buddy or bootmem allocator is setup.
- */
-void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
-{
- unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
- int i;
-
- if (addr == 0)
- return;
-
- gpage_freearray[idx].nr_gpages = number_of_pages;
-
- for (i = 0; i < number_of_pages; i++) {
- gpage_freearray[idx].gpage_list[i] = addr;
- addr += page_size;
- }
+ return pte_alloc_huge(mm, pmd, addr);
}
+#ifdef CONFIG_PPC_BOOK3S_64
/*
- * Moves the gigantic page addresses from the temporary list to the
- * huge_boot_pages list.
- */
-int alloc_bootmem_huge_page(struct hstate *hstate)
-{
- struct huge_bootmem_page *m;
- int idx = shift_to_mmu_psize(huge_page_shift(hstate));
- int nr_gpages = gpage_freearray[idx].nr_gpages;
-
- if (nr_gpages == 0)
- return 0;
-
-#ifdef CONFIG_HIGHMEM
- /*
- * If gpages can be in highmem we can't use the trick of storing the
- * data structure in the page; allocate space for this
- */
- m = alloc_bootmem(sizeof(struct huge_bootmem_page));
- m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
-#else
- m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
-#endif
-
- list_add(&m->list, &huge_boot_pages);
- gpage_freearray[idx].nr_gpages = nr_gpages;
- gpage_freearray[idx].gpage_list[nr_gpages] = 0;
- m->hstate = hstate;
-
- return 1;
-}
-/*
- * Scan the command line hugepagesz= options for gigantic pages; store those in
- * a list that we use to allocate the memory once all options are parsed.
+ * Tracks gpages after the device tree is scanned and before the
+ * huge_boot_pages list is ready on pseries.
*/
-
-unsigned long gpage_npages[MMU_PAGE_COUNT];
-
-static int __init do_gpage_early_setup(char *param, char *val,
- const char *unused)
-{
- static phys_addr_t size;
- unsigned long npages;
-
- /*
- * The hugepagesz and hugepages cmdline options are interleaved. We
- * use the size variable to keep track of whether or not this was done
- * properly and skip over instances where it is incorrect. Other
- * command-line parsing code will issue warnings, so we don't need to.
- *
- */
- if ((strcmp(param, "default_hugepagesz") == 0) ||
- (strcmp(param, "hugepagesz") == 0)) {
- size = memparse(val, NULL);
- } else if (strcmp(param, "hugepages") == 0) {
- if (size != 0) {
- if (sscanf(val, "%lu", &npages) <= 0)
- npages = 0;
- gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
- size = 0;
- }
- }
- return 0;
-}
-
+#define MAX_NUMBER_GPAGES 1024
+__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
+__initdata static unsigned nr_gpages;
/*
- * This function allocates physical space for pages that are larger than the
- * buddy allocator can handle. We want to allocate these in highmem because
- * the amount of lowmem is limited. This means that this function MUST be
- * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
- * allocate to grab highmem.
+ * Build list of addresses of gigantic pages. This function is used in early
+ * boot before the buddy allocator is setup.
*/
-void __init reserve_hugetlb_gpages(void)
-{
- static __initdata char cmdline[COMMAND_LINE_SIZE];
- phys_addr_t size, base;
- int i;
-
- strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
- parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
- &do_gpage_early_setup);
-
- /*
- * Walk gpage list in reverse, allocating larger page sizes first.
- * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
- * When we reach the point in the list where pages are no longer
- * considered gpages, we're done.
- */
- for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
- if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
- continue;
- else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
- break;
-
- size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
- base = memblock_alloc_base(size * gpage_npages[i], size,
- MEMBLOCK_ALLOC_ANYWHERE);
- add_gpage(base, size, gpage_npages[i]);
- }
-}
-
-#else /* !PPC_FSL_BOOK3E */
-
-/* Build list of addresses of gigantic pages. This function is used in early
- * boot before the buddy or bootmem allocator is setup.
- */
-void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
+void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
{
if (!addr)
return;
@@ -413,458 +104,82 @@ void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
}
}
-/* Moves the gigantic page addresses from the temporary list to the
- * huge_boot_pages list.
- */
-int alloc_bootmem_huge_page(struct hstate *hstate)
+static int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
{
struct huge_bootmem_page *m;
if (nr_gpages == 0)
return 0;
m = phys_to_virt(gpage_freearray[--nr_gpages]);
gpage_freearray[nr_gpages] = 0;
- list_add(&m->list, &huge_boot_pages);
+ list_add(&m->list, &huge_boot_pages[0]);
m->hstate = hstate;
+ m->flags = 0;
return 1;
}
-#endif
-
-int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
-{
- return 0;
-}
-
-#ifdef CONFIG_PPC_FSL_BOOK3E
-#define HUGEPD_FREELIST_SIZE \
- ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
-
-struct hugepd_freelist {
- struct rcu_head rcu;
- unsigned int index;
- void *ptes[0];
-};
-
-static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
-
-static void hugepd_free_rcu_callback(struct rcu_head *head)
-{
- struct hugepd_freelist *batch =
- container_of(head, struct hugepd_freelist, rcu);
- unsigned int i;
-
- for (i = 0; i < batch->index; i++)
- kmem_cache_free(hugepte_cache, batch->ptes[i]);
-
- free_page((unsigned long)batch);
-}
-
-static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
-{
- struct hugepd_freelist **batchp;
-
- batchp = &__get_cpu_var(hugepd_freelist_cur);
-
- if (atomic_read(&tlb->mm->mm_users) < 2 ||
- cpumask_equal(mm_cpumask(tlb->mm),
- cpumask_of(smp_processor_id()))) {
- kmem_cache_free(hugepte_cache, hugepte);
- return;
- }
-
- if (*batchp == NULL) {
- *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
- (*batchp)->index = 0;
- }
-
- (*batchp)->ptes[(*batchp)->index++] = hugepte;
- if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
- call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
- *batchp = NULL;
- }
-}
-#endif
-
-static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
- unsigned long start, unsigned long end,
- unsigned long floor, unsigned long ceiling)
-{
- pte_t *hugepte = hugepd_page(*hpdp);
- int i;
-
- unsigned long pdmask = ~((1UL << pdshift) - 1);
- unsigned int num_hugepd = 1;
-
-#ifdef CONFIG_PPC_FSL_BOOK3E
- /* Note: On fsl the hpdp may be the first of several */
- num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
-#else
- unsigned int shift = hugepd_shift(*hpdp);
-#endif
-
- start &= pdmask;
- if (start < floor)
- return;
- if (ceiling) {
- ceiling &= pdmask;
- if (! ceiling)
- return;
- }
- if (end - 1 > ceiling - 1)
- return;
-
- for (i = 0; i < num_hugepd; i++, hpdp++)
- hpdp->pd = 0;
-
- tlb->need_flush = 1;
-
-#ifdef CONFIG_PPC_FSL_BOOK3E
- hugepd_free(tlb, hugepte);
-#else
- pgtable_free_tlb(tlb, hugepte, pdshift - shift);
-#endif
-}
-static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
- unsigned long addr, unsigned long end,
- unsigned long floor, unsigned long ceiling)
+bool __init hugetlb_node_alloc_supported(void)
{
- pmd_t *pmd;
- unsigned long next;
- unsigned long start;
-
- start = addr;
- do {
- pmd = pmd_offset(pud, addr);
- next = pmd_addr_end(addr, end);
- if (!is_hugepd(pmd)) {
- /*
- * if it is not hugepd pointer, we should already find
- * it cleared.
- */
- WARN_ON(!pmd_none_or_clear_bad(pmd));
- continue;
- }
-#ifdef CONFIG_PPC_FSL_BOOK3E
- /*
- * Increment next by the size of the huge mapping since
- * there may be more than one entry at this level for a
- * single hugepage, but all of them point to
- * the same kmem cache that holds the hugepte.
- */
- next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
-#endif
- free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
- addr, next, floor, ceiling);
- } while (addr = next, addr != end);
-
- start &= PUD_MASK;
- if (start < floor)
- return;
- if (ceiling) {
- ceiling &= PUD_MASK;
- if (!ceiling)
- return;
- }
- if (end - 1 > ceiling - 1)
- return;
-
- pmd = pmd_offset(pud, start);
- pud_clear(pud);
- pmd_free_tlb(tlb, pmd, start);
+ return false;
}
-
-static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
- unsigned long addr, unsigned long end,
- unsigned long floor, unsigned long ceiling)
-{
- pud_t *pud;
- unsigned long next;
- unsigned long start;
-
- start = addr;
- do {
- pud = pud_offset(pgd, addr);
- next = pud_addr_end(addr, end);
- if (!is_hugepd(pud)) {
- if (pud_none_or_clear_bad(pud))
- continue;
- hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
- ceiling);
- } else {
-#ifdef CONFIG_PPC_FSL_BOOK3E
- /*
- * Increment next by the size of the huge mapping since
- * there may be more than one entry at this level for a
- * single hugepage, but all of them point to
- * the same kmem cache that holds the hugepte.
- */
- next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
#endif
- free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
- addr, next, floor, ceiling);
- }
- } while (addr = next, addr != end);
- start &= PGDIR_MASK;
- if (start < floor)
- return;
- if (ceiling) {
- ceiling &= PGDIR_MASK;
- if (!ceiling)
- return;
- }
- if (end - 1 > ceiling - 1)
- return;
- pud = pud_offset(pgd, start);
- pgd_clear(pgd);
- pud_free_tlb(tlb, pud, start);
-}
-
-/*
- * This function frees user-level page tables of a process.
- *
- * Must be called with pagetable lock held.
- */
-void hugetlb_free_pgd_range(struct mmu_gather *tlb,
- unsigned long addr, unsigned long end,
- unsigned long floor, unsigned long ceiling)
+int __init alloc_bootmem_huge_page(struct hstate *h, int nid)
{
- pgd_t *pgd;
- unsigned long next;
-
- /*
- * Because there are a number of different possible pagetable
- * layouts for hugepage ranges, we limit knowledge of how
- * things should be laid out to the allocation path
- * (huge_pte_alloc(), above). Everything else works out the
- * structure as it goes from information in the hugepd
- * pointers. That means that we can't here use the
- * optimization used in the normal page free_pgd_range(), of
- * checking whether we're actually covering a large enough
- * range to have to do anything at the top level of the walk
- * instead of at the bottom.
- *
- * To make sense of this, you should probably go read the big
- * block comment at the top of the normal free_pgd_range(),
- * too.
- */
- do {
- next = pgd_addr_end(addr, end);
- pgd = pgd_offset(tlb->mm, addr);
- if (!is_hugepd(pgd)) {
- if (pgd_none_or_clear_bad(pgd))
- continue;
- hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
- } else {
-#ifdef CONFIG_PPC_FSL_BOOK3E
- /*
- * Increment next by the size of the huge mapping since
- * there may be more than one entry at the pgd level
- * for a single hugepage, but all of them point to the
- * same kmem cache that holds the hugepte.
- */
- next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
-#endif
- free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
- addr, next, floor, ceiling);
- }
- } while (addr = next, addr != end);
-}
-
-struct page *
-follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
-{
- pte_t *ptep;
- struct page *page;
- unsigned shift;
- unsigned long mask;
- /*
- * Transparent hugepages are handled by generic code. We can skip them
- * here.
- */
- ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
-
- /* Verify it is a huge page else bail. */
- if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep))
- return ERR_PTR(-EINVAL);
-
- mask = (1UL << shift) - 1;
- page = pte_page(*ptep);
- if (page)
- page += (address & mask) / PAGE_SIZE;
-
- return page;
-}
-
-struct page *
-follow_huge_pmd(struct mm_struct *mm, unsigned long address,
- pmd_t *pmd, int write)
-{
- BUG();
- return NULL;
-}
-
-static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
- unsigned long sz)
-{
- unsigned long __boundary = (addr + sz) & ~(sz-1);
- return (__boundary - 1 < end - 1) ? __boundary : end;
-}
-
-int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
- unsigned long addr, unsigned long end,
- int write, struct page **pages, int *nr)
-{
- pte_t *ptep;
- unsigned long sz = 1UL << hugepd_shift(*hugepd);
- unsigned long next;
-
- ptep = hugepte_offset(hugepd, addr, pdshift);
- do {
- next = hugepte_addr_end(addr, end, sz);
- if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
- return 0;
- } while (ptep++, addr = next, addr != end);
-
- return 1;
-}
-
-#ifdef CONFIG_PPC_MM_SLICES
-unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
- unsigned long len, unsigned long pgoff,
- unsigned long flags)
-{
- struct hstate *hstate = hstate_file(file);
- int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
-
- return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
-}
-#endif
-
-unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
-{
-#ifdef CONFIG_PPC_MM_SLICES
- unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
-
- return 1UL << mmu_psize_to_shift(psize);
-#else
- if (!is_vm_hugetlb_page(vma))
- return PAGE_SIZE;
-
- return huge_page_size(hstate_vma(vma));
+#ifdef CONFIG_PPC_BOOK3S_64
+ if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
+ return pseries_alloc_bootmem_huge_page(h);
#endif
+ return __alloc_bootmem_huge_page(h, nid);
}
-static inline bool is_power_of_4(unsigned long x)
-{
- if (is_power_of_2(x))
- return (__ilog2(x) % 2) ? false : true;
- return false;
-}
-
-static int __init add_huge_page_size(unsigned long long size)
+bool __init arch_hugetlb_valid_size(unsigned long size)
{
int shift = __ffs(size);
int mmu_psize;
/* Check that it is a page size supported by the hardware and
* that it fits within pagetable and slice limits. */
-#ifdef CONFIG_PPC_FSL_BOOK3E
- if ((size < PAGE_SIZE) || !is_power_of_4(size))
- return -EINVAL;
-#else
- if (!is_power_of_2(size)
- || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
- return -EINVAL;
-#endif
+ if (size <= PAGE_SIZE || !is_power_of_2(size))
+ return false;
- if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
- return -EINVAL;
-
-#ifdef CONFIG_SPU_FS_64K_LS
- /* Disable support for 64K huge pages when 64K SPU local store
- * support is enabled as the current implementation conflicts.
- */
- if (shift == PAGE_SHIFT_64K)
- return -EINVAL;
-#endif /* CONFIG_SPU_FS_64K_LS */
+ mmu_psize = check_and_get_huge_psize(shift);
+ if (mmu_psize < 0)
+ return false;
BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
- /* Return if huge page size has already been setup */
- if (size_to_hstate(size))
- return 0;
-
- hugetlb_add_hstate(shift - PAGE_SHIFT);
-
- return 0;
+ return true;
}
-static int __init hugepage_setup_sz(char *str)
+static int __init add_huge_page_size(unsigned long long size)
{
- unsigned long long size;
-
- size = memparse(str, &str);
+ int shift = __ffs(size);
- if (add_huge_page_size(size) != 0)
- printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
+ if (!arch_hugetlb_valid_size((unsigned long)size))
+ return -EINVAL;
- return 1;
+ hugetlb_add_hstate(shift - PAGE_SHIFT);
+ return 0;
}
-__setup("hugepagesz=", hugepage_setup_sz);
-#ifdef CONFIG_PPC_FSL_BOOK3E
-struct kmem_cache *hugepte_cache;
static int __init hugetlbpage_init(void)
{
+ bool configured = false;
int psize;
- for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
- unsigned shift;
-
- if (!mmu_psize_defs[psize].shift)
- continue;
-
- shift = mmu_psize_to_shift(psize);
-
- /* Don't treat normal page sizes as huge... */
- if (shift != PAGE_SHIFT)
- if (add_huge_page_size(1ULL << shift) < 0)
- continue;
+ if (hugetlb_disabled) {
+ pr_info("HugeTLB support is disabled!\n");
+ return 0;
}
- /*
- * Create a kmem cache for hugeptes. The bottom bits in the pte have
- * size information encoded in them, so align them to allow this
- */
- hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
- HUGEPD_SHIFT_MASK + 1, 0, NULL);
- if (hugepte_cache == NULL)
- panic("%s: Unable to create kmem cache for hugeptes\n",
- __func__);
-
- /* Default hpage size = 4M */
- if (mmu_psize_defs[MMU_PAGE_4M].shift)
- HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
- else
- panic("%s: Unable to set default huge page size\n", __func__);
-
-
- return 0;
-}
-#else
-static int __init hugetlbpage_init(void)
-{
- int psize;
-
- if (!mmu_has_feature(MMU_FTR_16M_PAGE))
+ if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
+ !mmu_has_feature(MMU_FTR_16M_PAGE))
return -ENODEV;
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
unsigned shift;
- unsigned pdshift;
if (!mmu_psize_defs[psize].shift)
continue;
@@ -874,216 +189,29 @@ static int __init hugetlbpage_init(void)
if (add_huge_page_size(1ULL << shift) < 0)
continue;
- if (shift < PMD_SHIFT)
- pdshift = PMD_SHIFT;
- else if (shift < PUD_SHIFT)
- pdshift = PUD_SHIFT;
- else
- pdshift = PGDIR_SHIFT;
- /*
- * if we have pdshift and shift value same, we don't
- * use pgt cache for hugepd.
- */
- if (pdshift != shift) {
- pgtable_cache_add(pdshift - shift, NULL);
- if (!PGT_CACHE(pdshift - shift))
- panic("hugetlbpage_init(): could not create "
- "pgtable cache for %d bit pagesize\n", shift);
- }
+ configured = true;
}
- /* Set default large page size. Currently, we pick 16M or 1M
- * depending on what is available
- */
- if (mmu_psize_defs[MMU_PAGE_16M].shift)
- HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
- else if (mmu_psize_defs[MMU_PAGE_1M].shift)
- HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
+ if (!configured)
+ pr_info("Failed to initialize. Disabling HugeTLB");
return 0;
}
-#endif
-module_init(hugetlbpage_init);
-
-void flush_dcache_icache_hugepage(struct page *page)
-{
- int i;
- void *start;
-
- BUG_ON(!PageCompound(page));
- for (i = 0; i < (1UL << compound_order(page)); i++) {
- if (!PageHighMem(page)) {
- __flush_dcache_icache(page_address(page+i));
- } else {
- start = kmap_atomic(page+i);
- __flush_dcache_icache(start);
- kunmap_atomic(start);
- }
- }
-}
+arch_initcall(hugetlbpage_init);
-#endif /* CONFIG_HUGETLB_PAGE */
-
-/*
- * We have 4 cases for pgds and pmds:
- * (1) invalid (all zeroes)
- * (2) pointer to next table, as normal; bottom 6 bits == 0
- * (3) leaf pte for huge page, bottom two bits != 00
- * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
- *
- * So long as we atomically load page table pointers we are safe against teardown,
- * we can follow the address down to the the page and take a ref on it.
- */
-
-pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
+void __init gigantic_hugetlb_cma_reserve(void)
{
- pgd_t pgd, *pgdp;
- pud_t pud, *pudp;
- pmd_t pmd, *pmdp;
- pte_t *ret_pte;
- hugepd_t *hpdp = NULL;
- unsigned pdshift = PGDIR_SHIFT;
-
- if (shift)
- *shift = 0;
+ unsigned long order = 0;
- pgdp = pgdir + pgd_index(ea);
- pgd = ACCESS_ONCE(*pgdp);
- /*
- * Always operate on the local stack value. This make sure the
- * value don't get updated by a parallel THP split/collapse,
- * page fault or a page unmap. The return pte_t * is still not
- * stable. So should be checked there for above conditions.
- */
- if (pgd_none(pgd))
- return NULL;
- else if (pgd_huge(pgd)) {
- ret_pte = (pte_t *) pgdp;
- goto out;
- } else if (is_hugepd(&pgd))
- hpdp = (hugepd_t *)&pgd;
- else {
+ if (radix_enabled())
+ order = PUD_SHIFT - PAGE_SHIFT;
+ else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift)
/*
- * Even if we end up with an unmap, the pgtable will not
- * be freed, because we do an rcu free and here we are
- * irq disabled
+ * For pseries we do use ibm,expected#pages for reserving 16G pages.
*/
- pdshift = PUD_SHIFT;
- pudp = pud_offset(&pgd, ea);
- pud = ACCESS_ONCE(*pudp);
+ order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT;
- if (pud_none(pud))
- return NULL;
- else if (pud_huge(pud)) {
- ret_pte = (pte_t *) pudp;
- goto out;
- } else if (is_hugepd(&pud))
- hpdp = (hugepd_t *)&pud;
- else {
- pdshift = PMD_SHIFT;
- pmdp = pmd_offset(&pud, ea);
- pmd = ACCESS_ONCE(*pmdp);
- /*
- * A hugepage collapse is captured by pmd_none, because
- * it mark the pmd none and do a hpte invalidate.
- *
- * A hugepage split is captured by pmd_trans_splitting
- * because we mark the pmd trans splitting and do a
- * hpte invalidate
- *
- */
- if (pmd_none(pmd) || pmd_trans_splitting(pmd))
- return NULL;
-
- if (pmd_huge(pmd) || pmd_large(pmd)) {
- ret_pte = (pte_t *) pmdp;
- goto out;
- } else if (is_hugepd(&pmd))
- hpdp = (hugepd_t *)&pmd;
- else
- return pte_offset_kernel(&pmd, ea);
- }
- }
- if (!hpdp)
- return NULL;
-
- ret_pte = hugepte_offset(hpdp, ea, pdshift);
- pdshift = hugepd_shift(*hpdp);
-out:
- if (shift)
- *shift = pdshift;
- return ret_pte;
-}
-EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);
-
-int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
- unsigned long end, int write, struct page **pages, int *nr)
-{
- unsigned long mask;
- unsigned long pte_end;
- struct page *head, *page, *tail;
- pte_t pte;
- int refs;
-
- pte_end = (addr + sz) & ~(sz-1);
- if (pte_end < end)
- end = pte_end;
-
- pte = ACCESS_ONCE(*ptep);
- mask = _PAGE_PRESENT | _PAGE_USER;
- if (write)
- mask |= _PAGE_RW;
-
- if ((pte_val(pte) & mask) != mask)
- return 0;
-
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
- /*
- * check for splitting here
- */
- if (pmd_trans_splitting(pte_pmd(pte)))
- return 0;
-#endif
-
- /* hugepages are never "special" */
- VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
-
- refs = 0;
- head = pte_page(pte);
-
- page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
- tail = page;
- do {
- VM_BUG_ON(compound_head(page) != head);
- pages[*nr] = page;
- (*nr)++;
- page++;
- refs++;
- } while (addr += PAGE_SIZE, addr != end);
-
- if (!page_cache_add_speculative(head, refs)) {
- *nr -= refs;
- return 0;
- }
-
- if (unlikely(pte_val(pte) != pte_val(*ptep))) {
- /* Could be optimized better */
- *nr -= refs;
- while (refs--)
- put_page(head);
- return 0;
- }
-
- /*
- * Any tail page need their mapcount reference taken before we
- * return.
- */
- while (refs--) {
- if (PageTail(tail))
- get_huge_page_tail(tail);
- tail++;
- }
-
- return 1;
+ if (order)
+ hugetlb_cma_reserve(order);
}