diff options
Diffstat (limited to 'arch/x86/include/asm/bitops.h')
| -rw-r--r-- | arch/x86/include/asm/bitops.h | 381 |
1 files changed, 145 insertions, 236 deletions
diff --git a/arch/x86/include/asm/bitops.h b/arch/x86/include/asm/bitops.h index ad7b210aa3f6..c2ce213f2b9b 100644 --- a/arch/x86/include/asm/bitops.h +++ b/arch/x86/include/asm/bitops.h @@ -36,245 +36,130 @@ * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). */ -#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1) -/* Technically wrong, but this avoids compilation errors on some gcc - versions. */ -#define BITOP_ADDR(x) "=m" (*(volatile long *) (x)) -#else -#define BITOP_ADDR(x) "+m" (*(volatile long *) (x)) -#endif +#define RLONG_ADDR(x) "m" (*(volatile long *) (x)) +#define WBYTE_ADDR(x) "+m" (*(volatile char *) (x)) -#define ADDR BITOP_ADDR(addr) +#define ADDR RLONG_ADDR(addr) /* * We do the locked ops that don't return the old value as * a mask operation on a byte. */ -#define IS_IMMEDIATE(nr) (__builtin_constant_p(nr)) -#define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3)) +#define CONST_MASK_ADDR(nr, addr) WBYTE_ADDR((void *)(addr) + ((nr)>>3)) #define CONST_MASK(nr) (1 << ((nr) & 7)) -/** - * set_bit - Atomically set a bit in memory - * @nr: the bit to set - * @addr: the address to start counting from - * - * This function is atomic and may not be reordered. See __set_bit() - * if you do not require the atomic guarantees. - * - * Note: there are no guarantees that this function will not be reordered - * on non x86 architectures, so if you are writing portable code, - * make sure not to rely on its reordering guarantees. - * - * Note that @nr may be almost arbitrarily large; this function is not - * restricted to acting on a single-word quantity. - */ static __always_inline void -set_bit(long nr, volatile unsigned long *addr) +arch_set_bit(long nr, volatile unsigned long *addr) { - if (IS_IMMEDIATE(nr)) { - asm volatile(LOCK_PREFIX "orb %1,%0" + if (__builtin_constant_p(nr)) { + asm_inline volatile(LOCK_PREFIX "orb %b1,%0" : CONST_MASK_ADDR(nr, addr) - : "iq" ((u8)CONST_MASK(nr)) + : "iq" (CONST_MASK(nr)) : "memory"); } else { - asm volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0" - : BITOP_ADDR(addr) : "Ir" (nr) : "memory"); + asm_inline volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0" + : : RLONG_ADDR(addr), "Ir" (nr) : "memory"); } } -/** - * __set_bit - Set a bit in memory - * @nr: the bit to set - * @addr: the address to start counting from - * - * Unlike set_bit(), this function is non-atomic and may be reordered. - * If it's called on the same region of memory simultaneously, the effect - * may be that only one operation succeeds. - */ -static __always_inline void __set_bit(long nr, volatile unsigned long *addr) +static __always_inline void +arch___set_bit(unsigned long nr, volatile unsigned long *addr) { - asm volatile(__ASM_SIZE(bts) " %1,%0" : ADDR : "Ir" (nr) : "memory"); + asm volatile(__ASM_SIZE(bts) " %1,%0" : : ADDR, "Ir" (nr) : "memory"); } -/** - * clear_bit - Clears a bit in memory - * @nr: Bit to clear - * @addr: Address to start counting from - * - * clear_bit() is atomic and may not be reordered. However, it does - * not contain a memory barrier, so if it is used for locking purposes, - * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic() - * in order to ensure changes are visible on other processors. - */ static __always_inline void -clear_bit(long nr, volatile unsigned long *addr) +arch_clear_bit(long nr, volatile unsigned long *addr) { - if (IS_IMMEDIATE(nr)) { - asm volatile(LOCK_PREFIX "andb %1,%0" + if (__builtin_constant_p(nr)) { + asm_inline volatile(LOCK_PREFIX "andb %b1,%0" : CONST_MASK_ADDR(nr, addr) - : "iq" ((u8)~CONST_MASK(nr))); + : "iq" (~CONST_MASK(nr))); } else { - asm volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0" - : BITOP_ADDR(addr) - : "Ir" (nr)); + asm_inline volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0" + : : RLONG_ADDR(addr), "Ir" (nr) : "memory"); } } -/* - * clear_bit_unlock - Clears a bit in memory - * @nr: Bit to clear - * @addr: Address to start counting from - * - * clear_bit() is atomic and implies release semantics before the memory - * operation. It can be used for an unlock. - */ -static __always_inline void clear_bit_unlock(long nr, volatile unsigned long *addr) +static __always_inline void +arch_clear_bit_unlock(long nr, volatile unsigned long *addr) { barrier(); - clear_bit(nr, addr); + arch_clear_bit(nr, addr); } -static __always_inline void __clear_bit(long nr, volatile unsigned long *addr) +static __always_inline void +arch___clear_bit(unsigned long nr, volatile unsigned long *addr) { - asm volatile(__ASM_SIZE(btr) " %1,%0" : ADDR : "Ir" (nr)); + asm volatile(__ASM_SIZE(btr) " %1,%0" : : ADDR, "Ir" (nr) : "memory"); } -static __always_inline bool clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr) +static __always_inline bool arch_xor_unlock_is_negative_byte(unsigned long mask, + volatile unsigned long *addr) { bool negative; - asm volatile(LOCK_PREFIX "andb %2,%1" - CC_SET(s) - : CC_OUT(s) (negative), ADDR - : "ir" ((char) ~(1 << nr)) : "memory"); + asm_inline volatile(LOCK_PREFIX "xorb %2,%1" + : "=@ccs" (negative), WBYTE_ADDR(addr) + : "iq" ((char)mask) : "memory"); return negative; } +#define arch_xor_unlock_is_negative_byte arch_xor_unlock_is_negative_byte -// Let everybody know we have it -#define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte - -/* - * __clear_bit_unlock - Clears a bit in memory - * @nr: Bit to clear - * @addr: Address to start counting from - * - * __clear_bit() is non-atomic and implies release semantics before the memory - * operation. It can be used for an unlock if no other CPUs can concurrently - * modify other bits in the word. - * - * No memory barrier is required here, because x86 cannot reorder stores past - * older loads. Same principle as spin_unlock. - */ -static __always_inline void __clear_bit_unlock(long nr, volatile unsigned long *addr) +static __always_inline void +arch___clear_bit_unlock(long nr, volatile unsigned long *addr) { - barrier(); - __clear_bit(nr, addr); + arch___clear_bit(nr, addr); } -/** - * __change_bit - Toggle a bit in memory - * @nr: the bit to change - * @addr: the address to start counting from - * - * Unlike change_bit(), this function is non-atomic and may be reordered. - * If it's called on the same region of memory simultaneously, the effect - * may be that only one operation succeeds. - */ -static __always_inline void __change_bit(long nr, volatile unsigned long *addr) +static __always_inline void +arch___change_bit(unsigned long nr, volatile unsigned long *addr) { - asm volatile(__ASM_SIZE(btc) " %1,%0" : ADDR : "Ir" (nr)); + asm volatile(__ASM_SIZE(btc) " %1,%0" : : ADDR, "Ir" (nr) : "memory"); } -/** - * change_bit - Toggle a bit in memory - * @nr: Bit to change - * @addr: Address to start counting from - * - * change_bit() is atomic and may not be reordered. - * Note that @nr may be almost arbitrarily large; this function is not - * restricted to acting on a single-word quantity. - */ -static __always_inline void change_bit(long nr, volatile unsigned long *addr) +static __always_inline void +arch_change_bit(long nr, volatile unsigned long *addr) { - if (IS_IMMEDIATE(nr)) { - asm volatile(LOCK_PREFIX "xorb %1,%0" + if (__builtin_constant_p(nr)) { + asm_inline volatile(LOCK_PREFIX "xorb %b1,%0" : CONST_MASK_ADDR(nr, addr) - : "iq" ((u8)CONST_MASK(nr))); + : "iq" (CONST_MASK(nr))); } else { - asm volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0" - : BITOP_ADDR(addr) - : "Ir" (nr)); + asm_inline volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0" + : : RLONG_ADDR(addr), "Ir" (nr) : "memory"); } } -/** - * test_and_set_bit - Set a bit and return its old value - * @nr: Bit to set - * @addr: Address to count from - * - * This operation is atomic and cannot be reordered. - * It also implies a memory barrier. - */ -static __always_inline bool test_and_set_bit(long nr, volatile unsigned long *addr) +static __always_inline bool +arch_test_and_set_bit(long nr, volatile unsigned long *addr) { return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr); } -/** - * test_and_set_bit_lock - Set a bit and return its old value for lock - * @nr: Bit to set - * @addr: Address to count from - * - * This is the same as test_and_set_bit on x86. - */ static __always_inline bool -test_and_set_bit_lock(long nr, volatile unsigned long *addr) +arch_test_and_set_bit_lock(long nr, volatile unsigned long *addr) { - return test_and_set_bit(nr, addr); + return arch_test_and_set_bit(nr, addr); } -/** - * __test_and_set_bit - Set a bit and return its old value - * @nr: Bit to set - * @addr: Address to count from - * - * This operation is non-atomic and can be reordered. - * If two examples of this operation race, one can appear to succeed - * but actually fail. You must protect multiple accesses with a lock. - */ -static __always_inline bool __test_and_set_bit(long nr, volatile unsigned long *addr) +static __always_inline bool +arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr) { bool oldbit; asm(__ASM_SIZE(bts) " %2,%1" - CC_SET(c) - : CC_OUT(c) (oldbit), ADDR - : "Ir" (nr)); + : "=@ccc" (oldbit) + : ADDR, "Ir" (nr) : "memory"); return oldbit; } -/** - * test_and_clear_bit - Clear a bit and return its old value - * @nr: Bit to clear - * @addr: Address to count from - * - * This operation is atomic and cannot be reordered. - * It also implies a memory barrier. - */ -static __always_inline bool test_and_clear_bit(long nr, volatile unsigned long *addr) +static __always_inline bool +arch_test_and_clear_bit(long nr, volatile unsigned long *addr) { return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr); } -/** - * __test_and_clear_bit - Clear a bit and return its old value - * @nr: Bit to clear - * @addr: Address to count from - * - * This operation is non-atomic and can be reordered. - * If two examples of this operation race, one can appear to succeed - * but actually fail. You must protect multiple accesses with a lock. - * +/* * Note: the operation is performed atomically with respect to * the local CPU, but not other CPUs. Portable code should not * rely on this behaviour. @@ -282,39 +167,31 @@ static __always_inline bool test_and_clear_bit(long nr, volatile unsigned long * * accessed from a hypervisor on the same CPU if running in a VM: don't change * this without also updating arch/x86/kernel/kvm.c */ -static __always_inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr) +static __always_inline bool +arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr) { bool oldbit; asm volatile(__ASM_SIZE(btr) " %2,%1" - CC_SET(c) - : CC_OUT(c) (oldbit), ADDR - : "Ir" (nr)); + : "=@ccc" (oldbit) + : ADDR, "Ir" (nr) : "memory"); return oldbit; } -/* WARNING: non atomic and it can be reordered! */ -static __always_inline bool __test_and_change_bit(long nr, volatile unsigned long *addr) +static __always_inline bool +arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr) { bool oldbit; asm volatile(__ASM_SIZE(btc) " %2,%1" - CC_SET(c) - : CC_OUT(c) (oldbit), ADDR - : "Ir" (nr) : "memory"); + : "=@ccc" (oldbit) + : ADDR, "Ir" (nr) : "memory"); return oldbit; } -/** - * test_and_change_bit - Change a bit and return its old value - * @nr: Bit to change - * @addr: Address to count from - * - * This operation is atomic and cannot be reordered. - * It also implies a memory barrier. - */ -static __always_inline bool test_and_change_bit(long nr, volatile unsigned long *addr) +static __always_inline bool +arch_test_and_change_bit(long nr, volatile unsigned long *addr) { return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr); } @@ -325,31 +202,51 @@ static __always_inline bool constant_test_bit(long nr, const volatile unsigned l (addr[nr >> _BITOPS_LONG_SHIFT])) != 0; } +static __always_inline bool constant_test_bit_acquire(long nr, const volatile unsigned long *addr) +{ + bool oldbit; + + asm volatile("testb %2,%1" + : "=@ccnz" (oldbit) + : "m" (((unsigned char *)addr)[nr >> 3]), + "i" (1 << (nr & 7)) + :"memory"); + + return oldbit; +} + static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr) { bool oldbit; asm volatile(__ASM_SIZE(bt) " %2,%1" - CC_SET(c) - : CC_OUT(c) (oldbit) - : "m" (*(unsigned long *)addr), "Ir" (nr)); + : "=@ccc" (oldbit) + : "m" (*(unsigned long *)addr), "Ir" (nr) : "memory"); return oldbit; } -#if 0 /* Fool kernel-doc since it doesn't do macros yet */ -/** - * test_bit - Determine whether a bit is set - * @nr: bit number to test - * @addr: Address to start counting from - */ -static bool test_bit(int nr, const volatile unsigned long *addr); -#endif +static __always_inline bool +arch_test_bit(unsigned long nr, const volatile unsigned long *addr) +{ + return __builtin_constant_p(nr) ? constant_test_bit(nr, addr) : + variable_test_bit(nr, addr); +} -#define test_bit(nr, addr) \ - (__builtin_constant_p((nr)) \ - ? constant_test_bit((nr), (addr)) \ - : variable_test_bit((nr), (addr))) +static __always_inline bool +arch_test_bit_acquire(unsigned long nr, const volatile unsigned long *addr) +{ + return __builtin_constant_p(nr) ? constant_test_bit_acquire(nr, addr) : + variable_test_bit(nr, addr); +} + +static __always_inline __attribute_const__ unsigned long variable__ffs(unsigned long word) +{ + asm("tzcnt %1,%0" + : "=r" (word) + : ASM_INPUT_RM (word)); + return word; +} /** * __ffs - find first set bit in word @@ -357,12 +254,14 @@ static bool test_bit(int nr, const volatile unsigned long *addr); * * Undefined if no bit exists, so code should check against 0 first. */ -static __always_inline unsigned long __ffs(unsigned long word) +#define __ffs(word) \ + (__builtin_constant_p(word) ? \ + (unsigned long)__builtin_ctzl(word) : \ + variable__ffs(word)) + +static __always_inline __attribute_const__ unsigned long variable_ffz(unsigned long word) { - asm("rep; bsf %1,%0" - : "=r" (word) - : "rm" (word)); - return word; + return variable__ffs(~word); } /** @@ -371,13 +270,10 @@ static __always_inline unsigned long __ffs(unsigned long word) * * Undefined if no zero exists, so code should check against ~0UL first. */ -static __always_inline unsigned long ffz(unsigned long word) -{ - asm("rep; bsf %1,%0" - : "=r" (word) - : "r" (~word)); - return word; -} +#define ffz(word) \ + (__builtin_constant_p(word) ? \ + (unsigned long)__builtin_ctzl(~word) : \ + variable_ffz(word)) /* * __fls: find last set bit in word @@ -385,29 +281,21 @@ static __always_inline unsigned long ffz(unsigned long word) * * Undefined if no set bit exists, so code should check against 0 first. */ -static __always_inline unsigned long __fls(unsigned long word) +static __always_inline __attribute_const__ unsigned long __fls(unsigned long word) { + if (__builtin_constant_p(word)) + return BITS_PER_LONG - 1 - __builtin_clzl(word); + asm("bsr %1,%0" : "=r" (word) - : "rm" (word)); + : ASM_INPUT_RM (word)); return word; } #undef ADDR #ifdef __KERNEL__ -/** - * ffs - find first set bit in word - * @x: the word to search - * - * This is defined the same way as the libc and compiler builtin ffs - * routines, therefore differs in spirit from the other bitops. - * - * ffs(value) returns 0 if value is 0 or the position of the first - * set bit if value is nonzero. The first (least significant) bit - * is at position 1. - */ -static __always_inline int ffs(int x) +static __always_inline __attribute_const__ int variable_ffs(int x) { int r; @@ -423,7 +311,7 @@ static __always_inline int ffs(int x) */ asm("bsfl %1,%0" : "=r" (r) - : "rm" (x), "0" (-1)); + : ASM_INPUT_RM (x), "0" (-1)); #elif defined(CONFIG_X86_CMOV) asm("bsfl %1,%0\n\t" "cmovzl %2,%0" @@ -438,6 +326,19 @@ static __always_inline int ffs(int x) } /** + * ffs - find first set bit in word + * @x: the word to search + * + * This is defined the same way as the libc and compiler builtin ffs + * routines, therefore differs in spirit from the other bitops. + * + * ffs(value) returns 0 if value is 0 or the position of the first + * set bit if value is nonzero. The first (least significant) bit + * is at position 1. + */ +#define ffs(x) (__builtin_constant_p(x) ? __builtin_ffs(x) : variable_ffs(x)) + +/** * fls - find last set bit in word * @x: the word to search * @@ -448,10 +349,13 @@ static __always_inline int ffs(int x) * set bit if value is nonzero. The last (most significant) bit is * at position 32. */ -static __always_inline int fls(unsigned int x) +static __always_inline __attribute_const__ int fls(unsigned int x) { int r; + if (__builtin_constant_p(x)) + return x ? 32 - __builtin_clz(x) : 0; + #ifdef CONFIG_X86_64 /* * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the @@ -464,7 +368,7 @@ static __always_inline int fls(unsigned int x) */ asm("bsrl %1,%0" : "=r" (r) - : "rm" (x), "0" (-1)); + : ASM_INPUT_RM (x), "0" (-1)); #elif defined(CONFIG_X86_CMOV) asm("bsrl %1,%0\n\t" "cmovzl %2,%0" @@ -490,9 +394,12 @@ static __always_inline int fls(unsigned int x) * at position 64. */ #ifdef CONFIG_X86_64 -static __always_inline int fls64(__u64 x) +static __always_inline __attribute_const__ int fls64(__u64 x) { int bitpos = -1; + + if (__builtin_constant_p(x)) + return x ? 64 - __builtin_clzll(x) : 0; /* * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the * dest reg is undefined if x==0, but their CPU architect says its @@ -500,21 +407,23 @@ static __always_inline int fls64(__u64 x) */ asm("bsrq %1,%q0" : "+r" (bitpos) - : "rm" (x)); + : ASM_INPUT_RM (x)); return bitpos + 1; } #else #include <asm-generic/bitops/fls64.h> #endif -#include <asm-generic/bitops/find.h> - #include <asm-generic/bitops/sched.h> #include <asm/arch_hweight.h> #include <asm-generic/bitops/const_hweight.h> +#include <asm-generic/bitops/instrumented-atomic.h> +#include <asm-generic/bitops/instrumented-non-atomic.h> +#include <asm-generic/bitops/instrumented-lock.h> + #include <asm-generic/bitops/le.h> #include <asm-generic/bitops/ext2-atomic-setbit.h> |
