diff options
Diffstat (limited to 'arch/x86/kernel/cpu/aperfmperf.c')
| -rw-r--r-- | arch/x86/kernel/cpu/aperfmperf.c | 564 |
1 files changed, 494 insertions, 70 deletions
diff --git a/arch/x86/kernel/cpu/aperfmperf.c b/arch/x86/kernel/cpu/aperfmperf.c index 804c49493938..7ffc78d5ebf2 100644 --- a/arch/x86/kernel/cpu/aperfmperf.c +++ b/arch/x86/kernel/cpu/aperfmperf.c @@ -1,128 +1,552 @@ +// SPDX-License-Identifier: GPL-2.0-only /* * x86 APERF/MPERF KHz calculation for * /sys/.../cpufreq/scaling_cur_freq * * Copyright (C) 2017 Intel Corp. * Author: Len Brown <len.brown@intel.com> - * - * This file is licensed under GPLv2. */ - +#include <linux/cpufreq.h> #include <linux/delay.h> #include <linux/ktime.h> #include <linux/math64.h> #include <linux/percpu.h> -#include <linux/cpufreq.h> +#include <linux/rcupdate.h> +#include <linux/sched/isolation.h> +#include <linux/sched/topology.h> #include <linux/smp.h> +#include <linux/syscore_ops.h> + +#include <asm/cpu.h> +#include <asm/cpu_device_id.h> +#include <asm/intel-family.h> +#include <asm/msr.h> #include "cpu.h" -struct aperfmperf_sample { - unsigned int khz; - ktime_t time; - u64 aperf; - u64 mperf; +struct aperfmperf { + seqcount_t seq; + unsigned long last_update; + u64 acnt; + u64 mcnt; + u64 aperf; + u64 mperf; }; -static DEFINE_PER_CPU(struct aperfmperf_sample, samples); +static DEFINE_PER_CPU_SHARED_ALIGNED(struct aperfmperf, cpu_samples) = { + .seq = SEQCNT_ZERO(cpu_samples.seq) +}; + +static void init_counter_refs(void *data) +{ + u64 aperf, mperf; -#define APERFMPERF_CACHE_THRESHOLD_MS 10 -#define APERFMPERF_REFRESH_DELAY_MS 10 -#define APERFMPERF_STALE_THRESHOLD_MS 1000 + rdmsrq(MSR_IA32_APERF, aperf); + rdmsrq(MSR_IA32_MPERF, mperf); + + this_cpu_write(cpu_samples.aperf, aperf); + this_cpu_write(cpu_samples.mperf, mperf); +} +#if defined(CONFIG_X86_64) && defined(CONFIG_SMP) /* - * aperfmperf_snapshot_khz() - * On the current CPU, snapshot APERF, MPERF, and jiffies - * unless we already did it within 10ms - * calculate kHz, save snapshot + * APERF/MPERF frequency ratio computation. + * + * The scheduler wants to do frequency invariant accounting and needs a <1 + * ratio to account for the 'current' frequency, corresponding to + * freq_curr / freq_max. + * + * Since the frequency freq_curr on x86 is controlled by micro-controller and + * our P-state setting is little more than a request/hint, we need to observe + * the effective frequency 'BusyMHz', i.e. the average frequency over a time + * interval after discarding idle time. This is given by: + * + * BusyMHz = delta_APERF / delta_MPERF * freq_base + * + * where freq_base is the max non-turbo P-state. + * + * The freq_max term has to be set to a somewhat arbitrary value, because we + * can't know which turbo states will be available at a given point in time: + * it all depends on the thermal headroom of the entire package. We set it to + * the turbo level with 4 cores active. + * + * Benchmarks show that's a good compromise between the 1C turbo ratio + * (freq_curr/freq_max would rarely reach 1) and something close to freq_base, + * which would ignore the entire turbo range (a conspicuous part, making + * freq_curr/freq_max always maxed out). + * + * An exception to the heuristic above is the Atom uarch, where we choose the + * highest turbo level for freq_max since Atom's are generally oriented towards + * power efficiency. + * + * Setting freq_max to anything less than the 1C turbo ratio makes the ratio + * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1. */ -static void aperfmperf_snapshot_khz(void *dummy) + +DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key); + +static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE; +static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE; + +void arch_set_max_freq_ratio(bool turbo_disabled) +{ + arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE : + arch_turbo_freq_ratio; +} +EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio); + +static bool __init turbo_disabled(void) +{ + u64 misc_en; + int err; + + err = rdmsrq_safe(MSR_IA32_MISC_ENABLE, &misc_en); + if (err) + return false; + + return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); +} + +static bool __init slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq) +{ + int err; + + err = rdmsrq_safe(MSR_ATOM_CORE_RATIOS, base_freq); + if (err) + return false; + + err = rdmsrq_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq); + if (err) + return false; + + *base_freq = (*base_freq >> 16) & 0x3F; /* max P state */ + *turbo_freq = *turbo_freq & 0x3F; /* 1C turbo */ + + return true; +} + +#define X86_MATCH(vfm) \ + X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, NULL) + +static const struct x86_cpu_id has_knl_turbo_ratio_limits[] __initconst = { + X86_MATCH(INTEL_XEON_PHI_KNL), + X86_MATCH(INTEL_XEON_PHI_KNM), + {} +}; + +static const struct x86_cpu_id has_skx_turbo_ratio_limits[] __initconst = { + X86_MATCH(INTEL_SKYLAKE_X), + {} +}; + +static const struct x86_cpu_id has_glm_turbo_ratio_limits[] __initconst = { + X86_MATCH(INTEL_ATOM_GOLDMONT), + X86_MATCH(INTEL_ATOM_GOLDMONT_D), + X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS), + {} +}; + +static bool __init knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, + int num_delta_fratio) +{ + int fratio, delta_fratio, found; + int err, i; + u64 msr; + + err = rdmsrq_safe(MSR_PLATFORM_INFO, base_freq); + if (err) + return false; + + *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */ + + err = rdmsrq_safe(MSR_TURBO_RATIO_LIMIT, &msr); + if (err) + return false; + + fratio = (msr >> 8) & 0xFF; + i = 16; + found = 0; + do { + if (found >= num_delta_fratio) { + *turbo_freq = fratio; + return true; + } + + delta_fratio = (msr >> (i + 5)) & 0x7; + + if (delta_fratio) { + found += 1; + fratio -= delta_fratio; + } + + i += 8; + } while (i < 64); + + return true; +} + +static bool __init skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size) { - u64 aperf, aperf_delta; - u64 mperf, mperf_delta; - struct aperfmperf_sample *s = this_cpu_ptr(&samples); - unsigned long flags; + u64 ratios, counts; + u32 group_size; + int err, i; - local_irq_save(flags); - rdmsrl(MSR_IA32_APERF, aperf); - rdmsrl(MSR_IA32_MPERF, mperf); - local_irq_restore(flags); + err = rdmsrq_safe(MSR_PLATFORM_INFO, base_freq); + if (err) + return false; - aperf_delta = aperf - s->aperf; - mperf_delta = mperf - s->mperf; + *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */ + + err = rdmsrq_safe(MSR_TURBO_RATIO_LIMIT, &ratios); + if (err) + return false; + + err = rdmsrq_safe(MSR_TURBO_RATIO_LIMIT1, &counts); + if (err) + return false; + + for (i = 0; i < 64; i += 8) { + group_size = (counts >> i) & 0xFF; + if (group_size >= size) { + *turbo_freq = (ratios >> i) & 0xFF; + return true; + } + } + + return false; +} +static bool __init core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq) +{ + u64 msr; + int err; + + err = rdmsrq_safe(MSR_PLATFORM_INFO, base_freq); + if (err) + return false; + + err = rdmsrq_safe(MSR_TURBO_RATIO_LIMIT, &msr); + if (err) + return false; + + *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */ + *turbo_freq = (msr >> 24) & 0xFF; /* 4C turbo */ + + /* The CPU may have less than 4 cores */ + if (!*turbo_freq) + *turbo_freq = msr & 0xFF; /* 1C turbo */ + + return true; +} + +static bool __init intel_set_max_freq_ratio(void) +{ + u64 base_freq, turbo_freq; + u64 turbo_ratio; + + if (slv_set_max_freq_ratio(&base_freq, &turbo_freq)) + goto out; + + if (x86_match_cpu(has_glm_turbo_ratio_limits) && + skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1)) + goto out; + + if (x86_match_cpu(has_knl_turbo_ratio_limits) && + knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1)) + goto out; + + if (x86_match_cpu(has_skx_turbo_ratio_limits) && + skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4)) + goto out; + + if (core_set_max_freq_ratio(&base_freq, &turbo_freq)) + goto out; + + return false; + +out: /* - * There is no architectural guarantee that MPERF - * increments faster than we can read it. + * Some hypervisors advertise X86_FEATURE_APERFMPERF + * but then fill all MSR's with zeroes. + * Some CPUs have turbo boost but don't declare any turbo ratio + * in MSR_TURBO_RATIO_LIMIT. */ - if (mperf_delta == 0) + if (!base_freq || !turbo_freq) { + pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n"); + return false; + } + + turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq); + if (!turbo_ratio) { + pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n"); + return false; + } + + arch_turbo_freq_ratio = turbo_ratio; + arch_set_max_freq_ratio(turbo_disabled()); + + return true; +} + +#ifdef CONFIG_PM_SLEEP +static const struct syscore_ops freq_invariance_syscore_ops = { + .resume = init_counter_refs, +}; + +static struct syscore freq_invariance_syscore = { + .ops = &freq_invariance_syscore_ops, +}; + +static void register_freq_invariance_syscore(void) +{ + register_syscore(&freq_invariance_syscore); +} +#else +static inline void register_freq_invariance_syscore(void) {} +#endif + +static void freq_invariance_enable(void) +{ + if (static_branch_unlikely(&arch_scale_freq_key)) { + WARN_ON_ONCE(1); return; + } + static_branch_enable_cpuslocked(&arch_scale_freq_key); + register_freq_invariance_syscore(); + pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio); +} - s->time = ktime_get(); - s->aperf = aperf; - s->mperf = mperf; - s->khz = div64_u64((cpu_khz * aperf_delta), mperf_delta); +void freq_invariance_set_perf_ratio(u64 ratio, bool turbo_disabled) +{ + arch_turbo_freq_ratio = ratio; + arch_set_max_freq_ratio(turbo_disabled); + freq_invariance_enable(); +} + +static void __init bp_init_freq_invariance(void) +{ + if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) + return; + + if (intel_set_max_freq_ratio()) { + guard(cpus_read_lock)(); + freq_invariance_enable(); + } } -static bool aperfmperf_snapshot_cpu(int cpu, ktime_t now, bool wait) +static void disable_freq_invariance_workfn(struct work_struct *work) { - s64 time_delta = ktime_ms_delta(now, per_cpu(samples.time, cpu)); + int cpu; - /* Don't bother re-computing within the cache threshold time. */ - if (time_delta < APERFMPERF_CACHE_THRESHOLD_MS) + static_branch_disable(&arch_scale_freq_key); + + /* + * Set arch_freq_scale to a default value on all cpus + * This negates the effect of scaling + */ + for_each_possible_cpu(cpu) + per_cpu(arch_freq_scale, cpu) = SCHED_CAPACITY_SCALE; +} + +static DECLARE_WORK(disable_freq_invariance_work, + disable_freq_invariance_workfn); + +DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE; +EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale); + +static DEFINE_STATIC_KEY_FALSE(arch_hybrid_cap_scale_key); + +struct arch_hybrid_cpu_scale { + unsigned long capacity; + unsigned long freq_ratio; +}; + +static struct arch_hybrid_cpu_scale __percpu *arch_cpu_scale; + +/** + * arch_enable_hybrid_capacity_scale() - Enable hybrid CPU capacity scaling + * + * Allocate memory for per-CPU data used by hybrid CPU capacity scaling, + * initialize it and set the static key controlling its code paths. + * + * Must be called before arch_set_cpu_capacity(). + */ +bool arch_enable_hybrid_capacity_scale(void) +{ + int cpu; + + if (static_branch_unlikely(&arch_hybrid_cap_scale_key)) { + WARN_ONCE(1, "Hybrid CPU capacity scaling already enabled"); return true; + } + + arch_cpu_scale = alloc_percpu(struct arch_hybrid_cpu_scale); + if (!arch_cpu_scale) + return false; + + for_each_possible_cpu(cpu) { + per_cpu_ptr(arch_cpu_scale, cpu)->capacity = SCHED_CAPACITY_SCALE; + per_cpu_ptr(arch_cpu_scale, cpu)->freq_ratio = arch_max_freq_ratio; + } - smp_call_function_single(cpu, aperfmperf_snapshot_khz, NULL, wait); + static_branch_enable(&arch_hybrid_cap_scale_key); - /* Return false if the previous iteration was too long ago. */ - return time_delta <= APERFMPERF_STALE_THRESHOLD_MS; + pr_info("Hybrid CPU capacity scaling enabled\n"); + + return true; } -unsigned int aperfmperf_get_khz(int cpu) +/** + * arch_set_cpu_capacity() - Set scale-invariance parameters for a CPU + * @cpu: Target CPU. + * @cap: Capacity of @cpu at its maximum frequency, relative to @max_cap. + * @max_cap: System-wide maximum CPU capacity. + * @cap_freq: Frequency of @cpu corresponding to @cap. + * @base_freq: Frequency of @cpu at which MPERF counts. + * + * The units in which @cap and @max_cap are expressed do not matter, so long + * as they are consistent, because the former is effectively divided by the + * latter. Analogously for @cap_freq and @base_freq. + * + * After calling this function for all CPUs, call arch_rebuild_sched_domains() + * to let the scheduler know that capacity-aware scheduling can be used going + * forward. + */ +void arch_set_cpu_capacity(int cpu, unsigned long cap, unsigned long max_cap, + unsigned long cap_freq, unsigned long base_freq) { - if (!cpu_khz) - return 0; + if (static_branch_likely(&arch_hybrid_cap_scale_key)) { + WRITE_ONCE(per_cpu_ptr(arch_cpu_scale, cpu)->capacity, + div_u64(cap << SCHED_CAPACITY_SHIFT, max_cap)); + WRITE_ONCE(per_cpu_ptr(arch_cpu_scale, cpu)->freq_ratio, + div_u64(cap_freq << SCHED_CAPACITY_SHIFT, base_freq)); + } else { + WARN_ONCE(1, "Hybrid CPU capacity scaling not enabled"); + } +} - if (!static_cpu_has(X86_FEATURE_APERFMPERF)) - return 0; +unsigned long arch_scale_cpu_capacity(int cpu) +{ + if (static_branch_unlikely(&arch_hybrid_cap_scale_key)) + return READ_ONCE(per_cpu_ptr(arch_cpu_scale, cpu)->capacity); - aperfmperf_snapshot_cpu(cpu, ktime_get(), true); - return per_cpu(samples.khz, cpu); + return SCHED_CAPACITY_SCALE; } +EXPORT_SYMBOL_GPL(arch_scale_cpu_capacity); -void arch_freq_prepare_all(void) +static void scale_freq_tick(u64 acnt, u64 mcnt) { - ktime_t now = ktime_get(); - bool wait = false; - int cpu; + u64 freq_scale, freq_ratio; - if (!cpu_khz) + if (!arch_scale_freq_invariant()) return; - if (!static_cpu_has(X86_FEATURE_APERFMPERF)) + if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt)) + goto error; + + if (static_branch_unlikely(&arch_hybrid_cap_scale_key)) + freq_ratio = READ_ONCE(this_cpu_ptr(arch_cpu_scale)->freq_ratio); + else + freq_ratio = arch_max_freq_ratio; + + if (check_mul_overflow(mcnt, freq_ratio, &mcnt) || !mcnt) + goto error; + + freq_scale = div64_u64(acnt, mcnt); + if (!freq_scale) + goto error; + + if (freq_scale > SCHED_CAPACITY_SCALE) + freq_scale = SCHED_CAPACITY_SCALE; + + this_cpu_write(arch_freq_scale, freq_scale); + return; + +error: + pr_warn("Scheduler frequency invariance went wobbly, disabling!\n"); + schedule_work(&disable_freq_invariance_work); +} +#else +static inline void bp_init_freq_invariance(void) { } +static inline void scale_freq_tick(u64 acnt, u64 mcnt) { } +#endif /* CONFIG_X86_64 && CONFIG_SMP */ + +void arch_scale_freq_tick(void) +{ + struct aperfmperf *s = this_cpu_ptr(&cpu_samples); + u64 acnt, mcnt, aperf, mperf; + + if (!cpu_feature_enabled(X86_FEATURE_APERFMPERF)) return; - for_each_online_cpu(cpu) - if (!aperfmperf_snapshot_cpu(cpu, now, false)) - wait = true; + rdmsrq(MSR_IA32_APERF, aperf); + rdmsrq(MSR_IA32_MPERF, mperf); + acnt = aperf - s->aperf; + mcnt = mperf - s->mperf; - if (wait) - msleep(APERFMPERF_REFRESH_DELAY_MS); + s->aperf = aperf; + s->mperf = mperf; + + raw_write_seqcount_begin(&s->seq); + s->last_update = jiffies; + s->acnt = acnt; + s->mcnt = mcnt; + raw_write_seqcount_end(&s->seq); + + scale_freq_tick(acnt, mcnt); } -unsigned int arch_freq_get_on_cpu(int cpu) +/* + * Discard samples older than the define maximum sample age of 20ms. There + * is no point in sending IPIs in such a case. If the scheduler tick was + * not running then the CPU is either idle or isolated. + */ +#define MAX_SAMPLE_AGE ((unsigned long)HZ / 50) + +int arch_freq_get_on_cpu(int cpu) { - if (!cpu_khz) - return 0; + struct aperfmperf *s = per_cpu_ptr(&cpu_samples, cpu); + unsigned int seq, freq; + unsigned long last; + u64 acnt, mcnt; - if (!static_cpu_has(X86_FEATURE_APERFMPERF)) - return 0; + if (!cpu_feature_enabled(X86_FEATURE_APERFMPERF)) + goto fallback; - if (aperfmperf_snapshot_cpu(cpu, ktime_get(), true)) - return per_cpu(samples.khz, cpu); + do { + seq = raw_read_seqcount_begin(&s->seq); + last = s->last_update; + acnt = s->acnt; + mcnt = s->mcnt; + } while (read_seqcount_retry(&s->seq, seq)); - msleep(APERFMPERF_REFRESH_DELAY_MS); - smp_call_function_single(cpu, aperfmperf_snapshot_khz, NULL, 1); + /* + * Bail on invalid count and when the last update was too long ago, + * which covers idle and NOHZ full CPUs. + */ + if (!mcnt || (jiffies - last) > MAX_SAMPLE_AGE) + goto fallback; - return per_cpu(samples.khz, cpu); + return div64_u64((cpu_khz * acnt), mcnt); + +fallback: + freq = cpufreq_quick_get(cpu); + return freq ? freq : cpu_khz; +} + +static int __init bp_init_aperfmperf(void) +{ + if (!cpu_feature_enabled(X86_FEATURE_APERFMPERF)) + return 0; + + init_counter_refs(NULL); + bp_init_freq_invariance(); + return 0; +} +early_initcall(bp_init_aperfmperf); + +void ap_init_aperfmperf(void) +{ + if (cpu_feature_enabled(X86_FEATURE_APERFMPERF)) + init_counter_refs(NULL); } |
