summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/fpu/core.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kernel/fpu/core.c')
-rw-r--r--arch/x86/kernel/fpu/core.c1001
1 files changed, 761 insertions, 240 deletions
diff --git a/arch/x86/kernel/fpu/core.c b/arch/x86/kernel/fpu/core.c
index 2e5003fef51a..da233f20ae6f 100644
--- a/arch/x86/kernel/fpu/core.c
+++ b/arch/x86/kernel/fpu/core.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 1994 Linus Torvalds
*
@@ -5,327 +6,725 @@
* General FPU state handling cleanups
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
-#include <asm/fpu/internal.h>
+#include <asm/fpu/api.h>
#include <asm/fpu/regset.h>
+#include <asm/fpu/sched.h>
#include <asm/fpu/signal.h>
#include <asm/fpu/types.h>
+#include <asm/msr.h>
#include <asm/traps.h>
#include <asm/irq_regs.h>
+#include <uapi/asm/kvm.h>
+
#include <linux/hardirq.h>
+#include <linux/kvm_types.h>
#include <linux/pkeys.h>
+#include <linux/vmalloc.h>
+
+#include "context.h"
+#include "internal.h"
+#include "legacy.h"
+#include "xstate.h"
#define CREATE_TRACE_POINTS
#include <asm/trace/fpu.h>
+#ifdef CONFIG_X86_64
+DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic);
+DEFINE_PER_CPU(u64, xfd_state);
+#endif
+
+/* The FPU state configuration data for kernel and user space */
+struct fpu_state_config fpu_kernel_cfg __ro_after_init;
+struct fpu_state_config fpu_user_cfg __ro_after_init;
+struct vcpu_fpu_config guest_default_cfg __ro_after_init;
+
/*
* Represents the initial FPU state. It's mostly (but not completely) zeroes,
* depending on the FPU hardware format:
*/
-union fpregs_state init_fpstate __read_mostly;
+struct fpstate init_fpstate __ro_after_init;
/*
- * Track whether the kernel is using the FPU state
- * currently.
- *
- * This flag is used:
- *
- * - by IRQ context code to potentially use the FPU
- * if it's unused.
- *
- * - to debug kernel_fpu_begin()/end() correctness
+ * Track FPU initialization and kernel-mode usage. 'true' means the FPU is
+ * initialized and is not currently being used by the kernel:
*/
-static DEFINE_PER_CPU(bool, in_kernel_fpu);
+DEFINE_PER_CPU(bool, kernel_fpu_allowed);
/*
* Track which context is using the FPU on the CPU:
*/
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
-static void kernel_fpu_disable(void)
+#ifdef CONFIG_X86_DEBUG_FPU
+struct fpu *x86_task_fpu(struct task_struct *task)
{
- WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
- this_cpu_write(in_kernel_fpu, true);
-}
+ if (WARN_ON_ONCE(task->flags & PF_KTHREAD))
+ return NULL;
-static void kernel_fpu_enable(void)
-{
- WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
- this_cpu_write(in_kernel_fpu, false);
+ return (void *)task + sizeof(*task);
}
+#endif
-static bool kernel_fpu_disabled(void)
+/*
+ * Can we use the FPU in kernel mode with the
+ * whole "kernel_fpu_begin/end()" sequence?
+ */
+bool irq_fpu_usable(void)
{
- return this_cpu_read(in_kernel_fpu);
+ if (WARN_ON_ONCE(in_nmi()))
+ return false;
+
+ /*
+ * Return false in the following cases:
+ *
+ * - FPU is not yet initialized. This can happen only when the call is
+ * coming from CPU onlining, for example for microcode checksumming.
+ * - The kernel is already using the FPU, either because of explicit
+ * nesting (which should never be done), or because of implicit
+ * nesting when a hardirq interrupted a kernel-mode FPU section.
+ *
+ * The single boolean check below handles both cases:
+ */
+ if (!this_cpu_read(kernel_fpu_allowed))
+ return false;
+
+ /*
+ * When not in NMI or hard interrupt context, FPU can be used in:
+ *
+ * - Task context except from within fpregs_lock()'ed critical
+ * regions.
+ *
+ * - Soft interrupt processing context which cannot happen
+ * while in a fpregs_lock()'ed critical region.
+ */
+ if (!in_hardirq())
+ return true;
+
+ /*
+ * In hard interrupt context it's safe when soft interrupts
+ * are enabled, which means the interrupt did not hit in
+ * a fpregs_lock()'ed critical region.
+ */
+ return !softirq_count();
}
+EXPORT_SYMBOL(irq_fpu_usable);
-static bool interrupted_kernel_fpu_idle(void)
+/*
+ * Track AVX512 state use because it is known to slow the max clock
+ * speed of the core.
+ */
+static void update_avx_timestamp(struct fpu *fpu)
{
- return !kernel_fpu_disabled();
+
+#define AVX512_TRACKING_MASK (XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM)
+
+ if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK)
+ fpu->avx512_timestamp = jiffies;
}
/*
- * Were we in user mode (or vm86 mode) when we were
- * interrupted?
+ * Save the FPU register state in fpu->fpstate->regs. The register state is
+ * preserved.
*
- * Doing kernel_fpu_begin/end() is ok if we are running
- * in an interrupt context from user mode - we'll just
- * save the FPU state as required.
+ * Must be called with fpregs_lock() held.
+ *
+ * The legacy FNSAVE instruction clears all FPU state unconditionally, so
+ * register state has to be reloaded. That might be a pointless exercise
+ * when the FPU is going to be used by another task right after that. But
+ * this only affects 20+ years old 32bit systems and avoids conditionals all
+ * over the place.
+ *
+ * FXSAVE and all XSAVE variants preserve the FPU register state.
*/
-static bool interrupted_user_mode(void)
+void save_fpregs_to_fpstate(struct fpu *fpu)
+{
+ if (likely(use_xsave())) {
+ os_xsave(fpu->fpstate);
+ update_avx_timestamp(fpu);
+ return;
+ }
+
+ if (likely(use_fxsr())) {
+ fxsave(&fpu->fpstate->regs.fxsave);
+ return;
+ }
+
+ /*
+ * Legacy FPU register saving, FNSAVE always clears FPU registers,
+ * so we have to reload them from the memory state.
+ */
+ asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave));
+ frstor(&fpu->fpstate->regs.fsave);
+}
+
+void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask)
+{
+ /*
+ * AMD K7/K8 and later CPUs up to Zen don't save/restore
+ * FDP/FIP/FOP unless an exception is pending. Clear the x87 state
+ * here by setting it to fixed values. "m" is a random variable
+ * that should be in L1.
+ */
+ if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
+ asm volatile(
+ "fnclex\n\t"
+ "emms\n\t"
+ "fildl %[addr]" /* set F?P to defined value */
+ : : [addr] "m" (*fpstate));
+ }
+
+ if (use_xsave()) {
+ /*
+ * Dynamically enabled features are enabled in XCR0, but
+ * usage requires also that the corresponding bits in XFD
+ * are cleared. If the bits are set then using a related
+ * instruction will raise #NM. This allows to do the
+ * allocation of the larger FPU buffer lazy from #NM or if
+ * the task has no permission to kill it which would happen
+ * via #UD if the feature is disabled in XCR0.
+ *
+ * XFD state is following the same life time rules as
+ * XSTATE and to restore state correctly XFD has to be
+ * updated before XRSTORS otherwise the component would
+ * stay in or go into init state even if the bits are set
+ * in fpstate::regs::xsave::xfeatures.
+ */
+ xfd_update_state(fpstate);
+
+ /*
+ * Restoring state always needs to modify all features
+ * which are in @mask even if the current task cannot use
+ * extended features.
+ *
+ * So fpstate->xfeatures cannot be used here, because then
+ * a feature for which the task has no permission but was
+ * used by the previous task would not go into init state.
+ */
+ mask = fpu_kernel_cfg.max_features & mask;
+
+ os_xrstor(fpstate, mask);
+ } else {
+ if (use_fxsr())
+ fxrstor(&fpstate->regs.fxsave);
+ else
+ frstor(&fpstate->regs.fsave);
+ }
+}
+
+void fpu_reset_from_exception_fixup(void)
+{
+ restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE);
+}
+
+#if IS_ENABLED(CONFIG_KVM)
+static void __fpstate_reset(struct fpstate *fpstate);
+
+static void fpu_lock_guest_permissions(void)
+{
+ struct fpu_state_perm *fpuperm;
+ u64 perm;
+
+ if (!IS_ENABLED(CONFIG_X86_64))
+ return;
+
+ spin_lock_irq(&current->sighand->siglock);
+ fpuperm = &x86_task_fpu(current->group_leader)->guest_perm;
+ perm = fpuperm->__state_perm;
+
+ /* First fpstate allocation locks down permissions. */
+ WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED);
+
+ spin_unlock_irq(&current->sighand->siglock);
+}
+
+bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu)
+{
+ struct fpstate *fpstate;
+ unsigned int size;
+
+ size = guest_default_cfg.size + ALIGN(offsetof(struct fpstate, regs), 64);
+
+ fpstate = vzalloc(size);
+ if (!fpstate)
+ return false;
+
+ /* Initialize indicators to reflect properties of the fpstate */
+ fpstate->is_valloc = true;
+ fpstate->is_guest = true;
+
+ __fpstate_reset(fpstate);
+ fpstate_init_user(fpstate);
+
+ gfpu->fpstate = fpstate;
+ gfpu->xfeatures = guest_default_cfg.features;
+
+ /*
+ * KVM sets the FP+SSE bits in the XSAVE header when copying FPU state
+ * to userspace, even when XSAVE is unsupported, so that restoring FPU
+ * state on a different CPU that does support XSAVE can cleanly load
+ * the incoming state using its natural XSAVE. In other words, KVM's
+ * uABI size may be larger than this host's default size. Conversely,
+ * the default size should never be larger than KVM's base uABI size;
+ * all features that can expand the uABI size must be opt-in.
+ */
+ gfpu->uabi_size = sizeof(struct kvm_xsave);
+ if (WARN_ON_ONCE(fpu_user_cfg.default_size > gfpu->uabi_size))
+ gfpu->uabi_size = fpu_user_cfg.default_size;
+
+ fpu_lock_guest_permissions();
+
+ return true;
+}
+EXPORT_SYMBOL_FOR_KVM(fpu_alloc_guest_fpstate);
+
+void fpu_free_guest_fpstate(struct fpu_guest *gfpu)
{
- struct pt_regs *regs = get_irq_regs();
- return regs && user_mode(regs);
+ struct fpstate *fpstate = gfpu->fpstate;
+
+ if (!fpstate)
+ return;
+
+ if (WARN_ON_ONCE(!fpstate->is_valloc || !fpstate->is_guest || fpstate->in_use))
+ return;
+
+ gfpu->fpstate = NULL;
+ vfree(fpstate);
}
+EXPORT_SYMBOL_FOR_KVM(fpu_free_guest_fpstate);
/*
- * Can we use the FPU in kernel mode with the
- * whole "kernel_fpu_begin/end()" sequence?
+ * fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable
+ * @guest_fpu: Pointer to the guest FPU container
+ * @xfeatures: Features requested by guest CPUID
+ *
+ * Enable all dynamic xfeatures according to guest perm and requested CPUID.
+ *
+ * Return: 0 on success, error code otherwise
+ */
+int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures)
+{
+ lockdep_assert_preemption_enabled();
+
+ /* Nothing to do if all requested features are already enabled. */
+ xfeatures &= ~guest_fpu->xfeatures;
+ if (!xfeatures)
+ return 0;
+
+ return __xfd_enable_feature(xfeatures, guest_fpu);
+}
+EXPORT_SYMBOL_FOR_KVM(fpu_enable_guest_xfd_features);
+
+#ifdef CONFIG_X86_64
+void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd)
+{
+ fpregs_lock();
+ guest_fpu->fpstate->xfd = xfd;
+ if (guest_fpu->fpstate->in_use)
+ xfd_update_state(guest_fpu->fpstate);
+ fpregs_unlock();
+}
+EXPORT_SYMBOL_FOR_KVM(fpu_update_guest_xfd);
+
+/**
+ * fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state
*
- * It's always ok in process context (ie "not interrupt")
- * but it is sometimes ok even from an irq.
+ * Must be invoked from KVM after a VMEXIT before enabling interrupts when
+ * XFD write emulation is disabled. This is required because the guest can
+ * freely modify XFD and the state at VMEXIT is not guaranteed to be the
+ * same as the state on VMENTER. So software state has to be updated before
+ * any operation which depends on it can take place.
+ *
+ * Note: It can be invoked unconditionally even when write emulation is
+ * enabled for the price of a then pointless MSR read.
*/
-bool irq_fpu_usable(void)
+void fpu_sync_guest_vmexit_xfd_state(void)
{
- return !in_interrupt() ||
- interrupted_user_mode() ||
- interrupted_kernel_fpu_idle();
+ struct fpstate *fpstate = x86_task_fpu(current)->fpstate;
+
+ lockdep_assert_irqs_disabled();
+ if (fpu_state_size_dynamic()) {
+ rdmsrq(MSR_IA32_XFD, fpstate->xfd);
+ __this_cpu_write(xfd_state, fpstate->xfd);
+ }
}
-EXPORT_SYMBOL(irq_fpu_usable);
+EXPORT_SYMBOL_FOR_KVM(fpu_sync_guest_vmexit_xfd_state);
+#endif /* CONFIG_X86_64 */
-static void __kernel_fpu_begin(void)
+int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest)
{
- struct fpu *fpu = &current->thread.fpu;
-
- WARN_ON_FPU(!irq_fpu_usable());
+ struct fpstate *guest_fps = guest_fpu->fpstate;
+ struct fpu *fpu = x86_task_fpu(current);
+ struct fpstate *cur_fps = fpu->fpstate;
+
+ fpregs_lock();
+ if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD))
+ save_fpregs_to_fpstate(fpu);
+
+ /* Swap fpstate */
+ if (enter_guest) {
+ fpu->__task_fpstate = cur_fps;
+ fpu->fpstate = guest_fps;
+ guest_fps->in_use = true;
+ } else {
+ guest_fps->in_use = false;
+ fpu->fpstate = fpu->__task_fpstate;
+ fpu->__task_fpstate = NULL;
+ }
- kernel_fpu_disable();
+ cur_fps = fpu->fpstate;
- if (fpu->initialized) {
+ if (!cur_fps->is_confidential) {
+ /* Includes XFD update */
+ restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE);
+ } else {
/*
- * Ignore return value -- we don't care if reg state
- * is clobbered.
+ * XSTATE is restored by firmware from encrypted
+ * memory. Make sure XFD state is correct while
+ * running with guest fpstate
*/
- copy_fpregs_to_fpstate(fpu);
+ xfd_update_state(cur_fps);
+ }
+
+ fpregs_mark_activate();
+ fpregs_unlock();
+ return 0;
+}
+EXPORT_SYMBOL_FOR_KVM(fpu_swap_kvm_fpstate);
+
+void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf,
+ unsigned int size, u64 xfeatures, u32 pkru)
+{
+ struct fpstate *kstate = gfpu->fpstate;
+ union fpregs_state *ustate = buf;
+ struct membuf mb = { .p = buf, .left = size };
+
+ if (cpu_feature_enabled(X86_FEATURE_XSAVE)) {
+ __copy_xstate_to_uabi_buf(mb, kstate, xfeatures, pkru,
+ XSTATE_COPY_XSAVE);
} else {
- __cpu_invalidate_fpregs_state();
+ memcpy(&ustate->fxsave, &kstate->regs.fxsave,
+ sizeof(ustate->fxsave));
+ /* Make it restorable on a XSAVE enabled host */
+ ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE;
}
}
+EXPORT_SYMBOL_FOR_KVM(fpu_copy_guest_fpstate_to_uabi);
-static void __kernel_fpu_end(void)
+int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf,
+ u64 xcr0, u32 *vpkru)
{
- struct fpu *fpu = &current->thread.fpu;
+ struct fpstate *kstate = gfpu->fpstate;
+ const union fpregs_state *ustate = buf;
+
+ if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) {
+ if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE)
+ return -EINVAL;
+ if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask)
+ return -EINVAL;
+ memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave));
+ return 0;
+ }
- if (fpu->initialized)
- copy_kernel_to_fpregs(&fpu->state);
+ if (ustate->xsave.header.xfeatures & ~xcr0)
+ return -EINVAL;
- kernel_fpu_enable();
+ /*
+ * Nullify @vpkru to preserve its current value if PKRU's bit isn't set
+ * in the header. KVM's odd ABI is to leave PKRU untouched in this
+ * case (all other components are eventually re-initialized).
+ */
+ if (!(ustate->xsave.header.xfeatures & XFEATURE_MASK_PKRU))
+ vpkru = NULL;
+
+ return copy_uabi_from_kernel_to_xstate(kstate, ustate, vpkru);
}
+EXPORT_SYMBOL_FOR_KVM(fpu_copy_uabi_to_guest_fpstate);
+#endif /* CONFIG_KVM */
-void kernel_fpu_begin(void)
+void kernel_fpu_begin_mask(unsigned int kfpu_mask)
{
- preempt_disable();
- __kernel_fpu_begin();
+ if (!irqs_disabled())
+ fpregs_lock();
+
+ WARN_ON_FPU(!irq_fpu_usable());
+
+ /* Toggle kernel_fpu_allowed to false: */
+ WARN_ON_FPU(!this_cpu_read(kernel_fpu_allowed));
+ this_cpu_write(kernel_fpu_allowed, false);
+
+ if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER)) &&
+ !test_thread_flag(TIF_NEED_FPU_LOAD)) {
+ set_thread_flag(TIF_NEED_FPU_LOAD);
+ save_fpregs_to_fpstate(x86_task_fpu(current));
+ }
+ __cpu_invalidate_fpregs_state();
+
+ /* Put sane initial values into the control registers. */
+ if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
+ ldmxcsr(MXCSR_DEFAULT);
+
+ if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
+ asm volatile ("fninit");
}
-EXPORT_SYMBOL_GPL(kernel_fpu_begin);
+EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
void kernel_fpu_end(void)
{
- __kernel_fpu_end();
- preempt_enable();
+ /* Toggle kernel_fpu_allowed back to true: */
+ WARN_ON_FPU(this_cpu_read(kernel_fpu_allowed));
+ this_cpu_write(kernel_fpu_allowed, true);
+
+ if (!irqs_disabled())
+ fpregs_unlock();
}
EXPORT_SYMBOL_GPL(kernel_fpu_end);
/*
- * Save the FPU state (mark it for reload if necessary):
- *
- * This only ever gets called for the current task.
+ * Sync the FPU register state to current's memory register state when the
+ * current task owns the FPU. The hardware register state is preserved.
*/
-void fpu__save(struct fpu *fpu)
+void fpu_sync_fpstate(struct fpu *fpu)
{
- WARN_ON_FPU(fpu != &current->thread.fpu);
+ WARN_ON_FPU(fpu != x86_task_fpu(current));
- preempt_disable();
+ fpregs_lock();
trace_x86_fpu_before_save(fpu);
- if (fpu->initialized) {
- if (!copy_fpregs_to_fpstate(fpu)) {
- copy_kernel_to_fpregs(&fpu->state);
- }
- }
+
+ if (!test_thread_flag(TIF_NEED_FPU_LOAD))
+ save_fpregs_to_fpstate(fpu);
+
trace_x86_fpu_after_save(fpu);
- preempt_enable();
+ fpregs_unlock();
+}
+
+static inline unsigned int init_fpstate_copy_size(void)
+{
+ if (!use_xsave())
+ return fpu_kernel_cfg.default_size;
+
+ /* XSAVE(S) just needs the legacy and the xstate header part */
+ return sizeof(init_fpstate.regs.xsave);
+}
+
+static inline void fpstate_init_fxstate(struct fpstate *fpstate)
+{
+ fpstate->regs.fxsave.cwd = 0x37f;
+ fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT;
}
-EXPORT_SYMBOL_GPL(fpu__save);
/*
* Legacy x87 fpstate state init:
*/
-static inline void fpstate_init_fstate(struct fregs_state *fp)
+static inline void fpstate_init_fstate(struct fpstate *fpstate)
{
- fp->cwd = 0xffff037fu;
- fp->swd = 0xffff0000u;
- fp->twd = 0xffffffffu;
- fp->fos = 0xffff0000u;
+ fpstate->regs.fsave.cwd = 0xffff037fu;
+ fpstate->regs.fsave.swd = 0xffff0000u;
+ fpstate->regs.fsave.twd = 0xffffffffu;
+ fpstate->regs.fsave.fos = 0xffff0000u;
}
-void fpstate_init(union fpregs_state *state)
+/*
+ * Used in two places:
+ * 1) Early boot to setup init_fpstate for non XSAVE systems
+ * 2) fpu_alloc_guest_fpstate() which is invoked from KVM
+ */
+void fpstate_init_user(struct fpstate *fpstate)
{
- if (!static_cpu_has(X86_FEATURE_FPU)) {
- fpstate_init_soft(&state->soft);
+ if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
+ fpstate_init_soft(&fpstate->regs.soft);
return;
}
- memset(state, 0, fpu_kernel_xstate_size);
+ xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures);
- if (static_cpu_has(X86_FEATURE_XSAVES))
- fpstate_init_xstate(&state->xsave);
- if (static_cpu_has(X86_FEATURE_FXSR))
- fpstate_init_fxstate(&state->fxsave);
+ if (cpu_feature_enabled(X86_FEATURE_FXSR))
+ fpstate_init_fxstate(fpstate);
else
- fpstate_init_fstate(&state->fsave);
+ fpstate_init_fstate(fpstate);
}
-EXPORT_SYMBOL_GPL(fpstate_init);
-int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
+static void __fpstate_reset(struct fpstate *fpstate)
{
- dst_fpu->last_cpu = -1;
-
- if (!src_fpu->initialized || !static_cpu_has(X86_FEATURE_FPU))
- return 0;
-
- WARN_ON_FPU(src_fpu != &current->thread.fpu);
-
/*
- * Don't let 'init optimized' areas of the XSAVE area
- * leak into the child task:
- */
- memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
-
- /*
- * Save current FPU registers directly into the child
- * FPU context, without any memory-to-memory copying.
+ * Supervisor features (and thus sizes) may diverge between guest
+ * FPUs and host FPUs, as some supervisor features are supported
+ * for guests despite not being utilized by the host. User
+ * features and sizes are always identical, which allows for
+ * common guest and userspace ABI.
*
- * ( The function 'fails' in the FNSAVE case, which destroys
- * register contents so we have to copy them back. )
+ * For the host, set XFD to the kernel's desired initialization
+ * value. For guests, set XFD to its architectural RESET value.
*/
- if (!copy_fpregs_to_fpstate(dst_fpu)) {
- memcpy(&src_fpu->state, &dst_fpu->state, fpu_kernel_xstate_size);
- copy_kernel_to_fpregs(&src_fpu->state);
+ if (fpstate->is_guest) {
+ fpstate->size = guest_default_cfg.size;
+ fpstate->xfeatures = guest_default_cfg.features;
+ fpstate->xfd = 0;
+ } else {
+ fpstate->size = fpu_kernel_cfg.default_size;
+ fpstate->xfeatures = fpu_kernel_cfg.default_features;
+ fpstate->xfd = init_fpstate.xfd;
}
- trace_x86_fpu_copy_src(src_fpu);
- trace_x86_fpu_copy_dst(dst_fpu);
-
- return 0;
+ fpstate->user_size = fpu_user_cfg.default_size;
+ fpstate->user_xfeatures = fpu_user_cfg.default_features;
}
-/*
- * Activate the current task's in-memory FPU context,
- * if it has not been used before:
- */
-void fpu__initialize(struct fpu *fpu)
+void fpstate_reset(struct fpu *fpu)
{
- WARN_ON_FPU(fpu != &current->thread.fpu);
+ /* Set the fpstate pointer to the default fpstate */
+ fpu->fpstate = &fpu->__fpstate;
+ __fpstate_reset(fpu->fpstate);
- if (!fpu->initialized) {
- fpstate_init(&fpu->state);
- trace_x86_fpu_init_state(fpu);
+ /* Initialize the permission related info in fpu */
+ fpu->perm.__state_perm = fpu_kernel_cfg.default_features;
+ fpu->perm.__state_size = fpu_kernel_cfg.default_size;
+ fpu->perm.__user_state_size = fpu_user_cfg.default_size;
- trace_x86_fpu_activate_state(fpu);
- /* Safe to do for the current task: */
- fpu->initialized = 1;
+ fpu->guest_perm.__state_perm = guest_default_cfg.features;
+ fpu->guest_perm.__state_size = guest_default_cfg.size;
+ /*
+ * User features and sizes are always identical between host and
+ * guest FPUs, which allows for common guest and userspace ABI.
+ */
+ fpu->guest_perm.__user_state_size = fpu_user_cfg.default_size;
+}
+
+static inline void fpu_inherit_perms(struct fpu *dst_fpu)
+{
+ if (fpu_state_size_dynamic()) {
+ struct fpu *src_fpu = x86_task_fpu(current->group_leader);
+
+ spin_lock_irq(&current->sighand->siglock);
+ /* Fork also inherits the permissions of the parent */
+ dst_fpu->perm = src_fpu->perm;
+ dst_fpu->guest_perm = src_fpu->guest_perm;
+ spin_unlock_irq(&current->sighand->siglock);
}
}
-EXPORT_SYMBOL_GPL(fpu__initialize);
-/*
- * This function must be called before we read a task's fpstate.
- *
- * There's two cases where this gets called:
- *
- * - for the current task (when coredumping), in which case we have
- * to save the latest FPU registers into the fpstate,
- *
- * - or it's called for stopped tasks (ptrace), in which case the
- * registers were already saved by the context-switch code when
- * the task scheduled out - we only have to initialize the registers
- * if they've never been initialized.
- *
- * If the task has used the FPU before then save it.
- */
-void fpu__prepare_read(struct fpu *fpu)
+/* A passed ssp of zero will not cause any update */
+static int update_fpu_shstk(struct task_struct *dst, unsigned long ssp)
{
- if (fpu == &current->thread.fpu) {
- fpu__save(fpu);
- } else {
- if (!fpu->initialized) {
- fpstate_init(&fpu->state);
- trace_x86_fpu_init_state(fpu);
+#ifdef CONFIG_X86_USER_SHADOW_STACK
+ struct cet_user_state *xstate;
- trace_x86_fpu_activate_state(fpu);
- /* Safe to do for current and for stopped child tasks: */
- fpu->initialized = 1;
- }
- }
+ /* If ssp update is not needed. */
+ if (!ssp)
+ return 0;
+
+ xstate = get_xsave_addr(&x86_task_fpu(dst)->fpstate->regs.xsave,
+ XFEATURE_CET_USER);
+
+ /*
+ * If there is a non-zero ssp, then 'dst' must be configured with a shadow
+ * stack and the fpu state should be up to date since it was just copied
+ * from the parent in fpu_clone(). So there must be a valid non-init CET
+ * state location in the buffer.
+ */
+ if (WARN_ON_ONCE(!xstate))
+ return 1;
+
+ xstate->user_ssp = (u64)ssp;
+#endif
+ return 0;
}
-/*
- * This function must be called before we write a task's fpstate.
- *
- * If the task has used the FPU before then invalidate any cached FPU registers.
- * If the task has not used the FPU before then initialize its fpstate.
- *
- * After this function call, after registers in the fpstate are
- * modified and the child task has woken up, the child task will
- * restore the modified FPU state from the modified context. If we
- * didn't clear its cached status here then the cached in-registers
- * state pending on its former CPU could be restored, corrupting
- * the modifications.
- */
-void fpu__prepare_write(struct fpu *fpu)
+/* Clone current's FPU state on fork */
+int fpu_clone(struct task_struct *dst, u64 clone_flags, bool minimal,
+ unsigned long ssp)
{
/*
- * Only stopped child tasks can be used to modify the FPU
- * state in the fpstate buffer:
+ * We allocate the new FPU structure right after the end of the task struct.
+ * task allocation size already took this into account.
+ *
+ * This is safe because task_struct size is a multiple of cacheline size,
+ * thus x86_task_fpu() will always be cacheline aligned as well.
*/
- WARN_ON_FPU(fpu == &current->thread.fpu);
+ struct fpu *dst_fpu = (void *)dst + sizeof(*dst);
- if (fpu->initialized) {
- /* Invalidate any cached state: */
- __fpu_invalidate_fpregs_state(fpu);
- } else {
- fpstate_init(&fpu->state);
- trace_x86_fpu_init_state(fpu);
+ BUILD_BUG_ON(sizeof(*dst) % SMP_CACHE_BYTES != 0);
+
+ /* The new task's FPU state cannot be valid in the hardware. */
+ dst_fpu->last_cpu = -1;
- trace_x86_fpu_activate_state(fpu);
- /* Safe to do for stopped child tasks: */
- fpu->initialized = 1;
+ fpstate_reset(dst_fpu);
+
+ if (!cpu_feature_enabled(X86_FEATURE_FPU))
+ return 0;
+
+ /*
+ * Enforce reload for user space tasks and prevent kernel threads
+ * from trying to save the FPU registers on context switch.
+ */
+ set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
+
+ /*
+ * No FPU state inheritance for kernel threads and IO
+ * worker threads.
+ */
+ if (minimal) {
+ /* Clear out the minimal state */
+ memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs,
+ init_fpstate_copy_size());
+ return 0;
}
+
+ /*
+ * If a new feature is added, ensure all dynamic features are
+ * caller-saved from here!
+ */
+ BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
+
+ /*
+ * Save the default portion of the current FPU state into the
+ * clone. Assume all dynamic features to be defined as caller-
+ * saved, which enables skipping both the expansion of fpstate
+ * and the copying of any dynamic state.
+ *
+ * Do not use memcpy() when TIF_NEED_FPU_LOAD is set because
+ * copying is not valid when current uses non-default states.
+ */
+ fpregs_lock();
+ if (test_thread_flag(TIF_NEED_FPU_LOAD))
+ fpregs_restore_userregs();
+ save_fpregs_to_fpstate(dst_fpu);
+ fpregs_unlock();
+ if (!(clone_flags & CLONE_THREAD))
+ fpu_inherit_perms(dst_fpu);
+
+ /*
+ * Children never inherit PASID state.
+ * Force it to have its init value:
+ */
+ if (use_xsave())
+ dst_fpu->fpstate->regs.xsave.header.xfeatures &= ~XFEATURE_MASK_PASID;
+
+ /*
+ * Update shadow stack pointer, in case it changed during clone.
+ */
+ if (update_fpu_shstk(dst, ssp))
+ return 1;
+
+ trace_x86_fpu_copy_dst(dst_fpu);
+
+ return 0;
}
/*
- * 'fpu__restore()' is called to copy FPU registers from
- * the FPU fpstate to the live hw registers and to activate
- * access to the hardware registers, so that FPU instructions
- * can be used afterwards.
- *
- * Must be called with kernel preemption disabled (for example
- * with local interrupts disabled, as it is in the case of
- * do_device_not_available()).
+ * While struct fpu is no longer part of struct thread_struct, it is still
+ * allocated after struct task_struct in the "task_struct" kmem cache. But
+ * since FPU is expected to be part of struct thread_struct, we have to
+ * adjust for it here.
*/
-void fpu__restore(struct fpu *fpu)
+void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size)
{
- fpu__initialize(fpu);
-
- /* Avoid __kernel_fpu_begin() right after fpregs_activate() */
- kernel_fpu_disable();
- trace_x86_fpu_before_restore(fpu);
- fpregs_activate(fpu);
- copy_kernel_to_fpregs(&fpu->state);
- trace_x86_fpu_after_restore(fpu);
- kernel_fpu_enable();
+ /* The allocation follows struct task_struct. */
+ *offset = sizeof(struct task_struct) - offsetof(struct task_struct, thread);
+ *offset += offsetof(struct fpu, __fpstate.regs);
+ *size = fpu_kernel_cfg.default_size;
}
-EXPORT_SYMBOL_GPL(fpu__restore);
/*
* Drops current FPU state: deactivates the fpregs and
@@ -336,66 +735,174 @@ EXPORT_SYMBOL_GPL(fpu__restore);
* a state-restore is coming: either an explicit one,
* or a reschedule.
*/
-void fpu__drop(struct fpu *fpu)
+void fpu__drop(struct task_struct *tsk)
{
+ struct fpu *fpu;
+
+ if (test_tsk_thread_flag(tsk, TIF_NEED_FPU_LOAD))
+ return;
+
+ fpu = x86_task_fpu(tsk);
+
preempt_disable();
- if (fpu == &current->thread.fpu) {
- if (fpu->initialized) {
- /* Ignore delayed exceptions from user space */
- asm volatile("1: fwait\n"
- "2:\n"
- _ASM_EXTABLE(1b, 2b));
- fpregs_deactivate(fpu);
- }
+ if (fpu == x86_task_fpu(current)) {
+ /* Ignore delayed exceptions from user space */
+ asm volatile("1: fwait\n"
+ "2:\n"
+ _ASM_EXTABLE(1b, 2b));
+ fpregs_deactivate(fpu);
}
- fpu->initialized = 0;
-
trace_x86_fpu_dropped(fpu);
preempt_enable();
}
/*
- * Clear FPU registers by setting them up from
- * the init fpstate:
+ * Clear FPU registers by setting them up from the init fpstate.
+ * Caller must do fpregs_[un]lock() around it.
*/
-static inline void copy_init_fpstate_to_fpregs(void)
+static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
{
if (use_xsave())
- copy_kernel_to_xregs(&init_fpstate.xsave, -1);
- else if (static_cpu_has(X86_FEATURE_FXSR))
- copy_kernel_to_fxregs(&init_fpstate.fxsave);
+ os_xrstor(&init_fpstate, features_mask);
+ else if (use_fxsr())
+ fxrstor(&init_fpstate.regs.fxsave);
else
- copy_kernel_to_fregs(&init_fpstate.fsave);
+ frstor(&init_fpstate.regs.fsave);
- if (boot_cpu_has(X86_FEATURE_OSPKE))
- copy_init_pkru_to_fpregs();
+ pkru_write_default();
}
/*
- * Clear the FPU state back to init state.
- *
- * Called by sys_execve(), by the signal handler code and by various
- * error paths.
+ * Reset current->fpu memory state to the init values.
*/
-void fpu__clear(struct fpu *fpu)
+static void fpu_reset_fpstate_regs(void)
{
- WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
-
- fpu__drop(fpu);
+ struct fpu *fpu = x86_task_fpu(current);
+ fpregs_lock();
+ __fpu_invalidate_fpregs_state(fpu);
/*
- * Make sure fpstate is cleared and initialized.
+ * This does not change the actual hardware registers. It just
+ * resets the memory image and sets TIF_NEED_FPU_LOAD so a
+ * subsequent return to usermode will reload the registers from the
+ * task's memory image.
+ *
+ * Do not use fpstate_init() here. Just copy init_fpstate which has
+ * the correct content already except for PKRU.
+ *
+ * PKRU handling does not rely on the xstate when restoring for
+ * user space as PKRU is eagerly written in switch_to() and
+ * flush_thread().
*/
- if (static_cpu_has(X86_FEATURE_FPU)) {
- preempt_disable();
- fpu__initialize(fpu);
- user_fpu_begin();
- copy_init_fpstate_to_fpregs();
- preempt_enable();
+ memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size());
+ set_thread_flag(TIF_NEED_FPU_LOAD);
+ fpregs_unlock();
+}
+
+/*
+ * Reset current's user FPU states to the init states. current's
+ * supervisor states, if any, are not modified by this function. The
+ * caller guarantees that the XSTATE header in memory is intact.
+ */
+void fpu__clear_user_states(struct fpu *fpu)
+{
+ WARN_ON_FPU(fpu != x86_task_fpu(current));
+
+ fpregs_lock();
+ if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
+ fpu_reset_fpstate_regs();
+ fpregs_unlock();
+ return;
}
+
+ /*
+ * Ensure that current's supervisor states are loaded into their
+ * corresponding registers.
+ */
+ if (xfeatures_mask_supervisor() &&
+ !fpregs_state_valid(fpu, smp_processor_id()))
+ os_xrstor_supervisor(fpu->fpstate);
+
+ /* Ensure XFD state is in sync before reloading XSTATE */
+ xfd_update_state(fpu->fpstate);
+
+ /* Reset user states in registers. */
+ restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE);
+
+ /*
+ * Now all FPU registers have their desired values. Inform the FPU
+ * state machine that current's FPU registers are in the hardware
+ * registers. The memory image does not need to be updated because
+ * any operation relying on it has to save the registers first when
+ * current's FPU is marked active.
+ */
+ fpregs_mark_activate();
+ fpregs_unlock();
+}
+
+void fpu_flush_thread(void)
+{
+ fpstate_reset(x86_task_fpu(current));
+ fpu_reset_fpstate_regs();
+}
+/*
+ * Load FPU context before returning to userspace.
+ */
+void switch_fpu_return(void)
+{
+ if (!static_cpu_has(X86_FEATURE_FPU))
+ return;
+
+ fpregs_restore_userregs();
+}
+EXPORT_SYMBOL_FOR_KVM(switch_fpu_return);
+
+void fpregs_lock_and_load(void)
+{
+ /*
+ * fpregs_lock() only disables preemption (mostly). So modifying state
+ * in an interrupt could screw up some in progress fpregs operation.
+ * Warn about it.
+ */
+ WARN_ON_ONCE(!irq_fpu_usable());
+ WARN_ON_ONCE(current->flags & PF_KTHREAD);
+
+ fpregs_lock();
+
+ fpregs_assert_state_consistent();
+
+ if (test_thread_flag(TIF_NEED_FPU_LOAD))
+ fpregs_restore_userregs();
+}
+
+#ifdef CONFIG_X86_DEBUG_FPU
+/*
+ * If current FPU state according to its tracking (loaded FPU context on this
+ * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
+ * loaded on return to userland.
+ */
+void fpregs_assert_state_consistent(void)
+{
+ struct fpu *fpu = x86_task_fpu(current);
+
+ if (test_thread_flag(TIF_NEED_FPU_LOAD))
+ return;
+
+ WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
+}
+EXPORT_SYMBOL_FOR_KVM(fpregs_assert_state_consistent);
+#endif
+
+void fpregs_mark_activate(void)
+{
+ struct fpu *fpu = x86_task_fpu(current);
+
+ fpregs_activate(fpu);
+ fpu->last_cpu = smp_processor_id();
+ clear_thread_flag(TIF_NEED_FPU_LOAD);
}
/*
@@ -419,11 +926,11 @@ int fpu__exception_code(struct fpu *fpu, int trap_nr)
* fully reproduce the context of the exception.
*/
if (boot_cpu_has(X86_FEATURE_FXSR)) {
- cwd = fpu->state.fxsave.cwd;
- swd = fpu->state.fxsave.swd;
+ cwd = fpu->fpstate->regs.fxsave.cwd;
+ swd = fpu->fpstate->regs.fxsave.swd;
} else {
- cwd = (unsigned short)fpu->state.fsave.cwd;
- swd = (unsigned short)fpu->state.fsave.swd;
+ cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd;
+ swd = (unsigned short)fpu->fpstate->regs.fsave.swd;
}
err = swd & ~cwd;
@@ -437,7 +944,7 @@ int fpu__exception_code(struct fpu *fpu, int trap_nr)
unsigned short mxcsr = MXCSR_DEFAULT;
if (boot_cpu_has(X86_FEATURE_XMM))
- mxcsr = fpu->state.fxsave.mxcsr;
+ mxcsr = fpu->fpstate->regs.fxsave.mxcsr;
err = ~(mxcsr >> 7) & mxcsr;
}
@@ -466,3 +973,17 @@ int fpu__exception_code(struct fpu *fpu, int trap_nr)
*/
return 0;
}
+
+/*
+ * Initialize register state that may prevent from entering low-power idle.
+ * This function will be invoked from the cpuidle driver only when needed.
+ */
+noinstr void fpu_idle_fpregs(void)
+{
+ /* Note: AMX_TILE being enabled implies XGETBV1 support */
+ if (cpu_feature_enabled(X86_FEATURE_AMX_TILE) &&
+ (xfeatures_in_use() & XFEATURE_MASK_XTILE)) {
+ tile_release();
+ __this_cpu_write(fpu_fpregs_owner_ctx, NULL);
+ }
+}