summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/kprobes/core.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kernel/kprobes/core.c')
-rw-r--r--arch/x86/kernel/kprobes/core.c1350
1 files changed, 677 insertions, 673 deletions
diff --git a/arch/x86/kernel/kprobes/core.c b/arch/x86/kernel/kprobes/core.c
index 211bce445522..c1fac3a9fecc 100644
--- a/arch/x86/kernel/kprobes/core.c
+++ b/arch/x86/kernel/kprobes/core.c
@@ -1,20 +1,7 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Kernel Probes (KProbes)
*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
- *
* Copyright (C) IBM Corporation, 2002, 2004
*
* 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
@@ -45,28 +32,35 @@
#include <linux/slab.h>
#include <linux/hardirq.h>
#include <linux/preempt.h>
-#include <linux/module.h>
+#include <linux/sched/debug.h>
+#include <linux/perf_event.h>
+#include <linux/extable.h>
#include <linux/kdebug.h>
#include <linux/kallsyms.h>
+#include <linux/kgdb.h>
#include <linux/ftrace.h>
-
+#include <linux/kasan.h>
+#include <linux/objtool.h>
+#include <linux/vmalloc.h>
+#include <linux/pgtable.h>
+#include <linux/set_memory.h>
+#include <linux/cfi.h>
+#include <linux/execmem.h>
+
+#include <asm/text-patching.h>
#include <asm/cacheflush.h>
#include <asm/desc.h>
-#include <asm/pgtable.h>
-#include <asm/uaccess.h>
+#include <linux/uaccess.h>
#include <asm/alternative.h>
#include <asm/insn.h>
#include <asm/debugreg.h>
+#include <asm/ibt.h>
#include "common.h"
-void jprobe_return_end(void);
-
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
-#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
-
#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
(b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
@@ -84,7 +78,7 @@ static volatile u32 twobyte_is_boostable[256 / 32] = {
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
/* ---------------------------------------------- */
W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
- W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
+ W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
@@ -112,106 +106,97 @@ struct kretprobe_blackpoint kretprobe_blacklist[] = {
const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
-static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op)
+static nokprobe_inline void
+__synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
{
struct __arch_relative_insn {
u8 op;
s32 raddr;
} __packed *insn;
- insn = (struct __arch_relative_insn *)from;
+ insn = (struct __arch_relative_insn *)dest;
insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
insn->op = op;
}
/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
-void __kprobes synthesize_reljump(void *from, void *to)
+void synthesize_reljump(void *dest, void *from, void *to)
{
- __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
+ __synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
}
+NOKPROBE_SYMBOL(synthesize_reljump);
/* Insert a call instruction at address 'from', which calls address 'to'.*/
-void __kprobes synthesize_relcall(void *from, void *to)
+void synthesize_relcall(void *dest, void *from, void *to)
{
- __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
-}
-
-/*
- * Skip the prefixes of the instruction.
- */
-static kprobe_opcode_t *__kprobes skip_prefixes(kprobe_opcode_t *insn)
-{
- insn_attr_t attr;
-
- attr = inat_get_opcode_attribute((insn_byte_t)*insn);
- while (inat_is_legacy_prefix(attr)) {
- insn++;
- attr = inat_get_opcode_attribute((insn_byte_t)*insn);
- }
-#ifdef CONFIG_X86_64
- if (inat_is_rex_prefix(attr))
- insn++;
-#endif
- return insn;
+ __synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
}
+NOKPROBE_SYMBOL(synthesize_relcall);
/*
- * Returns non-zero if opcode is boostable.
+ * Returns non-zero if INSN is boostable.
* RIP relative instructions are adjusted at copying time in 64 bits mode
*/
-int __kprobes can_boost(kprobe_opcode_t *opcodes)
+bool can_boost(struct insn *insn, void *addr)
{
kprobe_opcode_t opcode;
- kprobe_opcode_t *orig_opcodes = opcodes;
+ insn_byte_t prefix;
- if (search_exception_tables((unsigned long)opcodes))
- return 0; /* Page fault may occur on this address. */
-
-retry:
- if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
- return 0;
- opcode = *(opcodes++);
+ if (search_exception_tables((unsigned long)addr))
+ return false; /* Page fault may occur on this address. */
/* 2nd-byte opcode */
- if (opcode == 0x0f) {
- if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
- return 0;
- return test_bit(*opcodes,
+ if (insn->opcode.nbytes == 2)
+ return test_bit(insn->opcode.bytes[1],
(unsigned long *)twobyte_is_boostable);
+
+ if (insn->opcode.nbytes != 1)
+ return false;
+
+ for_each_insn_prefix(insn, prefix) {
+ insn_attr_t attr;
+
+ attr = inat_get_opcode_attribute(prefix);
+ /* Can't boost Address-size override prefix and CS override prefix */
+ if (prefix == 0x2e || inat_is_address_size_prefix(attr))
+ return false;
}
- switch (opcode & 0xf0) {
-#ifdef CONFIG_X86_64
- case 0x40:
- goto retry; /* REX prefix is boostable */
-#endif
- case 0x60:
- if (0x63 < opcode && opcode < 0x67)
- goto retry; /* prefixes */
- /* can't boost Address-size override and bound */
- return (opcode != 0x62 && opcode != 0x67);
- case 0x70:
- return 0; /* can't boost conditional jump */
- case 0xc0:
- /* can't boost software-interruptions */
- return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
- case 0xd0:
- /* can boost AA* and XLAT */
- return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
- case 0xe0:
- /* can boost in/out and absolute jmps */
- return ((opcode & 0x04) || opcode == 0xea);
- case 0xf0:
- if ((opcode & 0x0c) == 0 && opcode != 0xf1)
- goto retry; /* lock/rep(ne) prefix */
- /* clear and set flags are boostable */
- return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
+ opcode = insn->opcode.bytes[0];
+
+ switch (opcode) {
+ case 0x62: /* bound */
+ case 0x70 ... 0x7f: /* Conditional jumps */
+ case 0x9a: /* Call far */
+ case 0xcc ... 0xce: /* software exceptions */
+ case 0xd6: /* (UD) */
+ case 0xd8 ... 0xdf: /* ESC */
+ case 0xe0 ... 0xe3: /* LOOP*, JCXZ */
+ case 0xe8 ... 0xe9: /* near Call, JMP */
+ case 0xeb: /* Short JMP */
+ case 0xf0 ... 0xf4: /* LOCK/REP, HLT */
+ /* ... are not boostable */
+ return false;
+ case 0xc0 ... 0xc1: /* Grp2 */
+ case 0xd0 ... 0xd3: /* Grp2 */
+ /*
+ * AMD uses nnn == 110 as SHL/SAL, but Intel makes it reserved.
+ */
+ return X86_MODRM_REG(insn->modrm.bytes[0]) != 0b110;
+ case 0xf6 ... 0xf7: /* Grp3 */
+ /* AMD uses nnn == 001 as TEST, but Intel makes it reserved. */
+ return X86_MODRM_REG(insn->modrm.bytes[0]) != 0b001;
+ case 0xfe: /* Grp4 */
+ /* Only INC and DEC are boostable */
+ return X86_MODRM_REG(insn->modrm.bytes[0]) == 0b000 ||
+ X86_MODRM_REG(insn->modrm.bytes[0]) == 0b001;
+ case 0xff: /* Grp5 */
+ /* Only INC, DEC, and indirect JMP are boostable */
+ return X86_MODRM_REG(insn->modrm.bytes[0]) == 0b000 ||
+ X86_MODRM_REG(insn->modrm.bytes[0]) == 0b001 ||
+ X86_MODRM_REG(insn->modrm.bytes[0]) == 0b100;
default:
- /* segment override prefixes are boostable */
- if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
- goto retry; /* prefixes */
- /* CS override prefix and call are not boostable */
- return (opcode != 0x2e && opcode != 0x9a);
+ return true;
}
}
@@ -219,27 +204,44 @@ static unsigned long
__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
{
struct kprobe *kp;
+ bool faddr;
kp = get_kprobe((void *)addr);
- /* There is no probe, return original address */
- if (!kp)
+ faddr = ftrace_location(addr) == addr;
+ /*
+ * Use the current code if it is not modified by Kprobe
+ * and it cannot be modified by ftrace.
+ */
+ if (!kp && !faddr)
return addr;
/*
- * Basically, kp->ainsn.insn has an original instruction.
- * However, RIP-relative instruction can not do single-stepping
- * at different place, __copy_instruction() tweaks the displacement of
- * that instruction. In that case, we can't recover the instruction
- * from the kp->ainsn.insn.
+ * Basically, kp->ainsn.insn has an original instruction.
+ * However, RIP-relative instruction can not do single-stepping
+ * at different place, __copy_instruction() tweaks the displacement of
+ * that instruction. In that case, we can't recover the instruction
+ * from the kp->ainsn.insn.
+ *
+ * On the other hand, in case on normal Kprobe, kp->opcode has a copy
+ * of the first byte of the probed instruction, which is overwritten
+ * by int3. And the instruction at kp->addr is not modified by kprobes
+ * except for the first byte, we can recover the original instruction
+ * from it and kp->opcode.
*
- * On the other hand, kp->opcode has a copy of the first byte of
- * the probed instruction, which is overwritten by int3. And
- * the instruction at kp->addr is not modified by kprobes except
- * for the first byte, we can recover the original instruction
- * from it and kp->opcode.
+ * In case of Kprobes using ftrace, we do not have a copy of
+ * the original instruction. In fact, the ftrace location might
+ * be modified at anytime and even could be in an inconsistent state.
+ * Fortunately, we know that the original code is the ideal 5-byte
+ * long NOP.
*/
- memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
- buf[0] = kp->opcode;
+ if (copy_from_kernel_nofault(buf, (void *)addr,
+ MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
+ return 0UL;
+
+ if (faddr)
+ memcpy(buf, x86_nops[5], 5);
+ else
+ buf[0] = kp->opcode;
return (unsigned long)buf;
}
@@ -247,6 +249,7 @@ __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
* Recover the probed instruction at addr for further analysis.
* Caller must lock kprobes by kprobe_mutex, or disable preemption
* for preventing to release referencing kprobes.
+ * Returns zero if the instruction can not get recovered (or access failed).
*/
unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
{
@@ -259,15 +262,36 @@ unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long add
return __recover_probed_insn(buf, addr);
}
-/* Check if paddr is at an instruction boundary */
-static int __kprobes can_probe(unsigned long paddr)
+/* Check if insn is INT or UD */
+static inline bool is_exception_insn(struct insn *insn)
+{
+ /* UD uses 0f escape */
+ if (insn->opcode.bytes[0] == 0x0f) {
+ /* UD0 / UD1 / UD2 */
+ return insn->opcode.bytes[1] == 0xff ||
+ insn->opcode.bytes[1] == 0xb9 ||
+ insn->opcode.bytes[1] == 0x0b;
+ }
+
+ /* INT3 / INT n / INTO / INT1 */
+ return insn->opcode.bytes[0] == 0xcc ||
+ insn->opcode.bytes[0] == 0xcd ||
+ insn->opcode.bytes[0] == 0xce ||
+ insn->opcode.bytes[0] == 0xf1;
+}
+
+/*
+ * Check if paddr is at an instruction boundary and that instruction can
+ * be probed
+ */
+static bool can_probe(unsigned long paddr)
{
unsigned long addr, __addr, offset = 0;
struct insn insn;
kprobe_opcode_t buf[MAX_INSN_SIZE];
if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
- return 0;
+ return false;
/* Decode instructions */
addr = paddr - offset;
@@ -281,65 +305,127 @@ static int __kprobes can_probe(unsigned long paddr)
* normally used, we just go through if there is no kprobe.
*/
__addr = recover_probed_instruction(buf, addr);
- kernel_insn_init(&insn, (void *)__addr);
- insn_get_length(&insn);
+ if (!__addr)
+ return false;
+
+ if (insn_decode_kernel(&insn, (void *)__addr) < 0)
+ return false;
+#ifdef CONFIG_KGDB
/*
- * Another debugging subsystem might insert this breakpoint.
- * In that case, we can't recover it.
+ * If there is a dynamically installed kgdb sw breakpoint,
+ * this function should not be probed.
*/
- if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
- return 0;
+ if (insn.opcode.bytes[0] == INT3_INSN_OPCODE &&
+ kgdb_has_hit_break(addr))
+ return false;
+#endif
addr += insn.length;
}
- return (addr == paddr);
+ /* Check if paddr is at an instruction boundary */
+ if (addr != paddr)
+ return false;
+
+ __addr = recover_probed_instruction(buf, addr);
+ if (!__addr)
+ return false;
+
+ if (insn_decode_kernel(&insn, (void *)__addr) < 0)
+ return false;
+
+ /* INT and UD are special and should not be kprobed */
+ if (is_exception_insn(&insn))
+ return false;
+
+ if (IS_ENABLED(CONFIG_CFI)) {
+ /*
+ * The compiler generates the following instruction sequence
+ * for indirect call checks and cfi.c decodes this;
+ *
+ *  movl -<id>, %r10d ; 6 bytes
+ * addl -4(%reg), %r10d ; 4 bytes
+ * je .Ltmp1 ; 2 bytes
+ * ud2 ; <- regs->ip
+ * .Ltmp1:
+ *
+ * Also, these movl and addl are used for showing expected
+ * type. So those must not be touched.
+ */
+ if (insn.opcode.value == 0xBA)
+ offset = 12;
+ else if (insn.opcode.value == 0x3)
+ offset = 6;
+ else
+ goto out;
+
+ /* This movl/addl is used for decoding CFI. */
+ if (is_cfi_trap(addr + offset))
+ return false;
+ }
+
+out:
+ return true;
}
-/*
- * Returns non-zero if opcode modifies the interrupt flag.
- */
-static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
+/* If x86 supports IBT (ENDBR) it must be skipped. */
+kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
+ bool *on_func_entry)
{
- /* Skip prefixes */
- insn = skip_prefixes(insn);
+ if (is_endbr((u32 *)addr)) {
+ *on_func_entry = !offset || offset == 4;
+ if (*on_func_entry)
+ offset = 4;
- switch (*insn) {
- case 0xfa: /* cli */
- case 0xfb: /* sti */
- case 0xcf: /* iret/iretd */
- case 0x9d: /* popf/popfd */
- return 1;
+ } else {
+ *on_func_entry = !offset;
}
- return 0;
+ return (kprobe_opcode_t *)(addr + offset);
}
/*
- * Copy an instruction and adjust the displacement if the instruction
- * uses the %rip-relative addressing mode.
- * If it does, Return the address of the 32-bit displacement word.
- * If not, return null.
- * Only applicable to 64-bit x86.
+ * Copy an instruction with recovering modified instruction by kprobes
+ * and adjust the displacement if the instruction uses the %rip-relative
+ * addressing mode. Note that since @real will be the final place of copied
+ * instruction, displacement must be adjust by @real, not @dest.
+ * This returns the length of copied instruction, or 0 if it has an error.
*/
-int __kprobes __copy_instruction(u8 *dest, u8 *src)
+int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
{
- struct insn insn;
kprobe_opcode_t buf[MAX_INSN_SIZE];
+ unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src);
+ int ret;
+
+ if (!recovered_insn || !insn)
+ return 0;
+
+ /* This can access kernel text if given address is not recovered */
+ if (copy_from_kernel_nofault(dest, (void *)recovered_insn,
+ MAX_INSN_SIZE))
+ return 0;
+
+ ret = insn_decode_kernel(insn, dest);
+ if (ret < 0)
+ return 0;
+
+ /* We can not probe force emulate prefixed instruction */
+ if (insn_has_emulate_prefix(insn))
+ return 0;
- kernel_insn_init(&insn, (void *)recover_probed_instruction(buf, (unsigned long)src));
- insn_get_length(&insn);
/* Another subsystem puts a breakpoint, failed to recover */
- if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
+ if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
+ return 0;
+
+ /* We should not singlestep on the exception masking instructions */
+ if (insn_masking_exception(insn))
return 0;
- memcpy(dest, insn.kaddr, insn.length);
#ifdef CONFIG_X86_64
- if (insn_rip_relative(&insn)) {
+ /* Only x86_64 has RIP relative instructions */
+ if (insn_rip_relative(insn)) {
s64 newdisp;
u8 *disp;
- kernel_insn_init(&insn, dest);
- insn_get_displacement(&insn);
/*
* The copied instruction uses the %rip-relative addressing
* mode. Adjust the displacement for the difference between
@@ -352,80 +438,383 @@ int __kprobes __copy_instruction(u8 *dest, u8 *src)
* extension of the original signed 32-bit displacement would
* have given.
*/
- newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
+ newdisp = (u8 *) src + (s64) insn->displacement.value
+ - (u8 *) real;
if ((s64) (s32) newdisp != newdisp) {
pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
- pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
return 0;
}
- disp = (u8 *) dest + insn_offset_displacement(&insn);
+ disp = (u8 *) dest + insn_offset_displacement(insn);
*(s32 *) disp = (s32) newdisp;
}
#endif
- return insn.length;
+ return insn->length;
}
-static int __kprobes arch_copy_kprobe(struct kprobe *p)
+/* Prepare reljump or int3 right after instruction */
+static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p,
+ struct insn *insn)
{
- int ret;
+ int len = insn->length;
+
+ if (!IS_ENABLED(CONFIG_PREEMPTION) &&
+ !p->post_handler && can_boost(insn, p->addr) &&
+ MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
+ /*
+ * These instructions can be executed directly if it
+ * jumps back to correct address.
+ */
+ synthesize_reljump(buf + len, p->ainsn.insn + len,
+ p->addr + insn->length);
+ len += JMP32_INSN_SIZE;
+ p->ainsn.boostable = 1;
+ } else {
+ /* Otherwise, put an int3 for trapping singlestep */
+ if (MAX_INSN_SIZE - len < INT3_INSN_SIZE)
+ return -ENOSPC;
+
+ buf[len] = INT3_INSN_OPCODE;
+ len += INT3_INSN_SIZE;
+ }
+
+ return len;
+}
+
+/* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */
+
+static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs)
+{
+ switch (p->ainsn.opcode) {
+ case 0xfa: /* cli */
+ regs->flags &= ~(X86_EFLAGS_IF);
+ break;
+ case 0xfb: /* sti */
+ regs->flags |= X86_EFLAGS_IF;
+ break;
+ case 0x9c: /* pushf */
+ int3_emulate_push(regs, regs->flags);
+ break;
+ case 0x9d: /* popf */
+ regs->flags = int3_emulate_pop(regs);
+ break;
+ }
+ regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
+}
+NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers);
+
+static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs)
+{
+ int3_emulate_ret(regs);
+}
+NOKPROBE_SYMBOL(kprobe_emulate_ret);
+
+static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs)
+{
+ unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
+
+ func += p->ainsn.rel32;
+ int3_emulate_call(regs, func);
+}
+NOKPROBE_SYMBOL(kprobe_emulate_call);
+
+static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs)
+{
+ unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
+
+ ip += p->ainsn.rel32;
+ int3_emulate_jmp(regs, ip);
+}
+NOKPROBE_SYMBOL(kprobe_emulate_jmp);
+
+static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs)
+{
+ unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
+
+ int3_emulate_jcc(regs, p->ainsn.jcc.type, ip, p->ainsn.rel32);
+}
+NOKPROBE_SYMBOL(kprobe_emulate_jcc);
+
+static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs)
+{
+ unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
+ bool match;
+
+ if (p->ainsn.loop.type != 3) { /* LOOP* */
+ if (p->ainsn.loop.asize == 32)
+ match = ((*(u32 *)&regs->cx)--) != 0;
+#ifdef CONFIG_X86_64
+ else if (p->ainsn.loop.asize == 64)
+ match = ((*(u64 *)&regs->cx)--) != 0;
+#endif
+ else
+ match = ((*(u16 *)&regs->cx)--) != 0;
+ } else { /* JCXZ */
+ if (p->ainsn.loop.asize == 32)
+ match = *(u32 *)(&regs->cx) == 0;
+#ifdef CONFIG_X86_64
+ else if (p->ainsn.loop.asize == 64)
+ match = *(u64 *)(&regs->cx) == 0;
+#endif
+ else
+ match = *(u16 *)(&regs->cx) == 0;
+ }
+
+ if (p->ainsn.loop.type == 0) /* LOOPNE */
+ match = match && !(regs->flags & X86_EFLAGS_ZF);
+ else if (p->ainsn.loop.type == 1) /* LOOPE */
+ match = match && (regs->flags & X86_EFLAGS_ZF);
+
+ if (match)
+ ip += p->ainsn.rel32;
+ int3_emulate_jmp(regs, ip);
+}
+NOKPROBE_SYMBOL(kprobe_emulate_loop);
+
+static const int addrmode_regoffs[] = {
+ offsetof(struct pt_regs, ax),
+ offsetof(struct pt_regs, cx),
+ offsetof(struct pt_regs, dx),
+ offsetof(struct pt_regs, bx),
+ offsetof(struct pt_regs, sp),
+ offsetof(struct pt_regs, bp),
+ offsetof(struct pt_regs, si),
+ offsetof(struct pt_regs, di),
+#ifdef CONFIG_X86_64
+ offsetof(struct pt_regs, r8),
+ offsetof(struct pt_regs, r9),
+ offsetof(struct pt_regs, r10),
+ offsetof(struct pt_regs, r11),
+ offsetof(struct pt_regs, r12),
+ offsetof(struct pt_regs, r13),
+ offsetof(struct pt_regs, r14),
+ offsetof(struct pt_regs, r15),
+#endif
+};
+
+static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs)
+{
+ unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
+
+ int3_emulate_push(regs, regs->ip - INT3_INSN_SIZE + p->ainsn.size);
+ int3_emulate_jmp(regs, regs_get_register(regs, offs));
+}
+NOKPROBE_SYMBOL(kprobe_emulate_call_indirect);
+
+static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs)
+{
+ unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
+
+ int3_emulate_jmp(regs, regs_get_register(regs, offs));
+}
+NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect);
+
+static int prepare_emulation(struct kprobe *p, struct insn *insn)
+{
+ insn_byte_t opcode = insn->opcode.bytes[0];
+
+ switch (opcode) {
+ case 0xfa: /* cli */
+ case 0xfb: /* sti */
+ case 0x9c: /* pushfl */
+ case 0x9d: /* popf/popfd */
+ /*
+ * IF modifiers must be emulated since it will enable interrupt while
+ * int3 single stepping.
+ */
+ p->ainsn.emulate_op = kprobe_emulate_ifmodifiers;
+ p->ainsn.opcode = opcode;
+ break;
+ case 0xc2: /* ret/lret */
+ case 0xc3:
+ case 0xca:
+ case 0xcb:
+ p->ainsn.emulate_op = kprobe_emulate_ret;
+ break;
+ case 0x9a: /* far call absolute -- segment is not supported */
+ case 0xea: /* far jmp absolute -- segment is not supported */
+ case 0xcc: /* int3 */
+ case 0xcf: /* iret -- in-kernel IRET is not supported */
+ return -EOPNOTSUPP;
+ break;
+ case 0xe8: /* near call relative */
+ p->ainsn.emulate_op = kprobe_emulate_call;
+ if (insn->immediate.nbytes == 2)
+ p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
+ else
+ p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
+ break;
+ case 0xeb: /* short jump relative */
+ case 0xe9: /* near jump relative */
+ p->ainsn.emulate_op = kprobe_emulate_jmp;
+ if (insn->immediate.nbytes == 1)
+ p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
+ else if (insn->immediate.nbytes == 2)
+ p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
+ else
+ p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
+ break;
+ case 0x70 ... 0x7f:
+ /* 1 byte conditional jump */
+ p->ainsn.emulate_op = kprobe_emulate_jcc;
+ p->ainsn.jcc.type = opcode & 0xf;
+ p->ainsn.rel32 = insn->immediate.value;
+ break;
+ case 0x0f:
+ opcode = insn->opcode.bytes[1];
+ if ((opcode & 0xf0) == 0x80) {
+ /* 2 bytes Conditional Jump */
+ p->ainsn.emulate_op = kprobe_emulate_jcc;
+ p->ainsn.jcc.type = opcode & 0xf;
+ if (insn->immediate.nbytes == 2)
+ p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
+ else
+ p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
+ } else if (opcode == 0x01 &&
+ X86_MODRM_REG(insn->modrm.bytes[0]) == 0 &&
+ X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) {
+ /* VM extensions - not supported */
+ return -EOPNOTSUPP;
+ }
+ break;
+ case 0xe0: /* Loop NZ */
+ case 0xe1: /* Loop */
+ case 0xe2: /* Loop */
+ case 0xe3: /* J*CXZ */
+ p->ainsn.emulate_op = kprobe_emulate_loop;
+ p->ainsn.loop.type = opcode & 0x3;
+ p->ainsn.loop.asize = insn->addr_bytes * 8;
+ p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
+ break;
+ case 0xff:
+ /*
+ * Since the 0xff is an extended group opcode, the instruction
+ * is determined by the MOD/RM byte.
+ */
+ opcode = insn->modrm.bytes[0];
+ switch (X86_MODRM_REG(opcode)) {
+ case 0b010: /* FF /2, call near, absolute indirect */
+ p->ainsn.emulate_op = kprobe_emulate_call_indirect;
+ break;
+ case 0b100: /* FF /4, jmp near, absolute indirect */
+ p->ainsn.emulate_op = kprobe_emulate_jmp_indirect;
+ break;
+ case 0b011: /* FF /3, call far, absolute indirect */
+ case 0b101: /* FF /5, jmp far, absolute indirect */
+ return -EOPNOTSUPP;
+ }
+
+ if (!p->ainsn.emulate_op)
+ break;
+
+ if (insn->addr_bytes != sizeof(unsigned long))
+ return -EOPNOTSUPP; /* Don't support different size */
+ if (X86_MODRM_MOD(opcode) != 3)
+ return -EOPNOTSUPP; /* TODO: support memory addressing */
+
+ p->ainsn.indirect.reg = X86_MODRM_RM(opcode);
+#ifdef CONFIG_X86_64
+ if (X86_REX_B(insn->rex_prefix.value))
+ p->ainsn.indirect.reg += 8;
+#endif
+ break;
+ default:
+ break;
+ }
+ p->ainsn.size = insn->length;
+
+ return 0;
+}
+
+static int arch_copy_kprobe(struct kprobe *p)
+{
+ struct insn insn;
+ kprobe_opcode_t buf[MAX_INSN_SIZE];
+ int ret, len;
/* Copy an instruction with recovering if other optprobe modifies it.*/
- ret = __copy_instruction(p->ainsn.insn, p->addr);
- if (!ret)
+ len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
+ if (!len)
return -EINVAL;
- /*
- * __copy_instruction can modify the displacement of the instruction,
- * but it doesn't affect boostable check.
- */
- if (can_boost(p->ainsn.insn))
- p->ainsn.boostable = 0;
- else
- p->ainsn.boostable = -1;
+ /* Analyze the opcode and setup emulate functions */
+ ret = prepare_emulation(p, &insn);
+ if (ret < 0)
+ return ret;
- /* Check whether the instruction modifies Interrupt Flag or not */
- p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
+ /* Add int3 for single-step or booster jmp */
+ len = prepare_singlestep(buf, p, &insn);
+ if (len < 0)
+ return len;
/* Also, displacement change doesn't affect the first byte */
- p->opcode = p->ainsn.insn[0];
+ p->opcode = buf[0];
+
+ p->ainsn.tp_len = len;
+ perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len);
+
+ /* OK, write back the instruction(s) into ROX insn buffer */
+ text_poke(p->ainsn.insn, buf, len);
return 0;
}
-int __kprobes arch_prepare_kprobe(struct kprobe *p)
+int arch_prepare_kprobe(struct kprobe *p)
{
+ int ret;
+
if (alternatives_text_reserved(p->addr, p->addr))
return -EINVAL;
if (!can_probe((unsigned long)p->addr))
return -EILSEQ;
+
+ memset(&p->ainsn, 0, sizeof(p->ainsn));
+
/* insn: must be on special executable page on x86. */
p->ainsn.insn = get_insn_slot();
if (!p->ainsn.insn)
return -ENOMEM;
- return arch_copy_kprobe(p);
+ ret = arch_copy_kprobe(p);
+ if (ret) {
+ free_insn_slot(p->ainsn.insn, 0);
+ p->ainsn.insn = NULL;
+ }
+
+ return ret;
}
-void __kprobes arch_arm_kprobe(struct kprobe *p)
+void arch_arm_kprobe(struct kprobe *p)
{
- text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
+ u8 int3 = INT3_INSN_OPCODE;
+
+ text_poke(p->addr, &int3, 1);
+ smp_text_poke_sync_each_cpu();
+ perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1);
}
-void __kprobes arch_disarm_kprobe(struct kprobe *p)
+void arch_disarm_kprobe(struct kprobe *p)
{
+ u8 int3 = INT3_INSN_OPCODE;
+
+ perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1);
text_poke(p->addr, &p->opcode, 1);
+ smp_text_poke_sync_each_cpu();
}
-void __kprobes arch_remove_kprobe(struct kprobe *p)
+void arch_remove_kprobe(struct kprobe *p)
{
if (p->ainsn.insn) {
- free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
+ /* Record the perf event before freeing the slot */
+ perf_event_text_poke(p->ainsn.insn, p->ainsn.insn,
+ p->ainsn.tp_len, NULL, 0);
+ free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
p->ainsn.insn = NULL;
}
}
-static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
+static nokprobe_inline void
+save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
kcb->prev_kprobe.kp = kprobe_running();
kcb->prev_kprobe.status = kcb->kprobe_status;
@@ -433,7 +822,8 @@ static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
}
-static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
+static nokprobe_inline void
+restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
kcb->kprobe_status = kcb->prev_kprobe.status;
@@ -441,55 +831,43 @@ static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
}
-static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
- struct kprobe_ctlblk *kcb)
+static nokprobe_inline void
+set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
+ struct kprobe_ctlblk *kcb)
{
__this_cpu_write(current_kprobe, p);
kcb->kprobe_saved_flags = kcb->kprobe_old_flags
- = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
- if (p->ainsn.if_modifier)
- kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
-}
-
-static void __kprobes clear_btf(void)
-{
- if (test_thread_flag(TIF_BLOCKSTEP)) {
- unsigned long debugctl = get_debugctlmsr();
-
- debugctl &= ~DEBUGCTLMSR_BTF;
- update_debugctlmsr(debugctl);
- }
+ = (regs->flags & X86_EFLAGS_IF);
}
-static void __kprobes restore_btf(void)
+static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs,
+ struct kprobe_ctlblk *kcb)
{
- if (test_thread_flag(TIF_BLOCKSTEP)) {
- unsigned long debugctl = get_debugctlmsr();
-
- debugctl |= DEBUGCTLMSR_BTF;
- update_debugctlmsr(debugctl);
+ /* Restore back the original saved kprobes variables and continue. */
+ if (kcb->kprobe_status == KPROBE_REENTER) {
+ /* This will restore both kcb and current_kprobe */
+ restore_previous_kprobe(kcb);
+ } else {
+ /*
+ * Always update the kcb status because
+ * reset_curent_kprobe() doesn't update kcb.
+ */
+ kcb->kprobe_status = KPROBE_HIT_SSDONE;
+ if (cur->post_handler)
+ cur->post_handler(cur, regs, 0);
+ reset_current_kprobe();
}
}
+NOKPROBE_SYMBOL(kprobe_post_process);
-void __kprobes
-arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
-{
- unsigned long *sara = stack_addr(regs);
-
- ri->ret_addr = (kprobe_opcode_t *) *sara;
-
- /* Replace the return addr with trampoline addr */
- *sara = (unsigned long) &kretprobe_trampoline;
-}
-
-static void __kprobes
-setup_singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb, int reenter)
+static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
+ struct kprobe_ctlblk *kcb, int reenter)
{
if (setup_detour_execution(p, regs, reenter))
return;
-#if !defined(CONFIG_PREEMPT)
- if (p->ainsn.boostable == 1 && !p->post_handler) {
+#if !defined(CONFIG_PREEMPTION)
+ if (p->ainsn.boostable) {
/* Boost up -- we can execute copied instructions directly */
if (!reenter)
reset_current_kprobe();
@@ -499,7 +877,6 @@ setup_singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *k
* stepping.
*/
regs->ip = (unsigned long)p->ainsn.insn;
- preempt_enable_no_resched();
return;
}
#endif
@@ -509,40 +886,73 @@ setup_singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *k
kcb->kprobe_status = KPROBE_REENTER;
} else
kcb->kprobe_status = KPROBE_HIT_SS;
- /* Prepare real single stepping */
- clear_btf();
- regs->flags |= X86_EFLAGS_TF;
+
+ if (p->ainsn.emulate_op) {
+ p->ainsn.emulate_op(p, regs);
+ kprobe_post_process(p, regs, kcb);
+ return;
+ }
+
+ /* Disable interrupt, and set ip register on trampoline */
regs->flags &= ~X86_EFLAGS_IF;
- /* single step inline if the instruction is an int3 */
- if (p->opcode == BREAKPOINT_INSTRUCTION)
- regs->ip = (unsigned long)p->addr;
- else
- regs->ip = (unsigned long)p->ainsn.insn;
+ regs->ip = (unsigned long)p->ainsn.insn;
+}
+NOKPROBE_SYMBOL(setup_singlestep);
+
+/*
+ * Called after single-stepping. p->addr is the address of the
+ * instruction whose first byte has been replaced by the "int3"
+ * instruction. To avoid the SMP problems that can occur when we
+ * temporarily put back the original opcode to single-step, we
+ * single-stepped a copy of the instruction. The address of this
+ * copy is p->ainsn.insn. We also doesn't use trap, but "int3" again
+ * right after the copied instruction.
+ * Different from the trap single-step, "int3" single-step can not
+ * handle the instruction which changes the ip register, e.g. jmp,
+ * call, conditional jmp, and the instructions which changes the IF
+ * flags because interrupt must be disabled around the single-stepping.
+ * Such instructions are software emulated, but others are single-stepped
+ * using "int3".
+ *
+ * When the 2nd "int3" handled, the regs->ip and regs->flags needs to
+ * be adjusted, so that we can resume execution on correct code.
+ */
+static void resume_singlestep(struct kprobe *p, struct pt_regs *regs,
+ struct kprobe_ctlblk *kcb)
+{
+ unsigned long copy_ip = (unsigned long)p->ainsn.insn;
+ unsigned long orig_ip = (unsigned long)p->addr;
+
+ /* Restore saved interrupt flag and ip register */
+ regs->flags |= kcb->kprobe_saved_flags;
+ /* Note that regs->ip is executed int3 so must be a step back */
+ regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE;
}
+NOKPROBE_SYMBOL(resume_singlestep);
/*
* We have reentered the kprobe_handler(), since another probe was hit while
* within the handler. We save the original kprobes variables and just single
* step on the instruction of the new probe without calling any user handlers.
*/
-static int __kprobes
-reenter_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
+static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
+ struct kprobe_ctlblk *kcb)
{
switch (kcb->kprobe_status) {
case KPROBE_HIT_SSDONE:
case KPROBE_HIT_ACTIVE:
+ case KPROBE_HIT_SS:
kprobes_inc_nmissed_count(p);
setup_singlestep(p, regs, kcb, 1);
break;
- case KPROBE_HIT_SS:
+ case KPROBE_REENTER:
/* A probe has been hit in the codepath leading up to, or just
* after, single-stepping of a probed instruction. This entire
* codepath should strictly reside in .kprobes.text section.
* Raise a BUG or we'll continue in an endless reentering loop
* and eventually a stack overflow.
*/
- printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
- p->addr);
+ pr_err("Unrecoverable kprobe detected.\n");
dump_kprobe(p);
BUG();
default:
@@ -553,25 +963,33 @@ reenter_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb
return 1;
}
+NOKPROBE_SYMBOL(reenter_kprobe);
+
+static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb)
+{
+ return (kcb->kprobe_status == KPROBE_HIT_SS ||
+ kcb->kprobe_status == KPROBE_REENTER);
+}
/*
* Interrupts are disabled on entry as trap3 is an interrupt gate and they
* remain disabled throughout this function.
*/
-static int __kprobes kprobe_handler(struct pt_regs *regs)
+int kprobe_int3_handler(struct pt_regs *regs)
{
kprobe_opcode_t *addr;
struct kprobe *p;
struct kprobe_ctlblk *kcb;
+ if (user_mode(regs))
+ return 0;
+
addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
/*
- * We don't want to be preempted for the entire
- * duration of kprobe processing. We conditionally
- * re-enable preemption at the end of this function,
- * and also in reenter_kprobe() and setup_singlestep().
+ * We don't want to be preempted for the entire duration of kprobe
+ * processing. Since int3 and debug trap disables irqs and we clear
+ * IF while singlestepping, it must be no preemptible.
*/
- preempt_disable();
kcb = get_kprobe_ctlblk();
p = get_kprobe(addr);
@@ -587,319 +1005,40 @@ static int __kprobes kprobe_handler(struct pt_regs *regs)
/*
* If we have no pre-handler or it returned 0, we
* continue with normal processing. If we have a
- * pre-handler and it returned non-zero, it prepped
- * for calling the break_handler below on re-entry
- * for jprobe processing, so get out doing nothing
- * more here.
+ * pre-handler and it returned non-zero, that means
+ * user handler setup registers to exit to another
+ * instruction, we must skip the single stepping.
*/
if (!p->pre_handler || !p->pre_handler(p, regs))
setup_singlestep(p, regs, kcb, 0);
+ else
+ reset_current_kprobe();
return 1;
}
- } else if (*addr != BREAKPOINT_INSTRUCTION) {
- /*
- * The breakpoint instruction was removed right
- * after we hit it. Another cpu has removed
- * either a probepoint or a debugger breakpoint
- * at this address. In either case, no further
- * handling of this interrupt is appropriate.
- * Back up over the (now missing) int3 and run
- * the original instruction.
- */
- regs->ip = (unsigned long)addr;
- preempt_enable_no_resched();
- return 1;
- } else if (kprobe_running()) {
- p = __this_cpu_read(current_kprobe);
- if (p->break_handler && p->break_handler(p, regs)) {
- if (!skip_singlestep(p, regs, kcb))
- setup_singlestep(p, regs, kcb, 0);
+ } else if (kprobe_is_ss(kcb)) {
+ p = kprobe_running();
+ if ((unsigned long)p->ainsn.insn < regs->ip &&
+ (unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) {
+ /* Most provably this is the second int3 for singlestep */
+ resume_singlestep(p, regs, kcb);
+ kprobe_post_process(p, regs, kcb);
return 1;
}
} /* else: not a kprobe fault; let the kernel handle it */
- preempt_enable_no_resched();
return 0;
}
+NOKPROBE_SYMBOL(kprobe_int3_handler);
-/*
- * When a retprobed function returns, this code saves registers and
- * calls trampoline_handler() runs, which calls the kretprobe's handler.
- */
-static void __used __kprobes kretprobe_trampoline_holder(void)
-{
- asm volatile (
- ".global kretprobe_trampoline\n"
- "kretprobe_trampoline: \n"
-#ifdef CONFIG_X86_64
- /* We don't bother saving the ss register */
- " pushq %rsp\n"
- " pushfq\n"
- SAVE_REGS_STRING
- " movq %rsp, %rdi\n"
- " call trampoline_handler\n"
- /* Replace saved sp with true return address. */
- " movq %rax, 152(%rsp)\n"
- RESTORE_REGS_STRING
- " popfq\n"
-#else
- " pushf\n"
- SAVE_REGS_STRING
- " movl %esp, %eax\n"
- " call trampoline_handler\n"
- /* Move flags to cs */
- " movl 56(%esp), %edx\n"
- " movl %edx, 52(%esp)\n"
- /* Replace saved flags with true return address. */
- " movl %eax, 56(%esp)\n"
- RESTORE_REGS_STRING
- " popf\n"
-#endif
- " ret\n");
-}
-
-/*
- * Called from kretprobe_trampoline
- */
-static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
-{
- struct kretprobe_instance *ri = NULL;
- struct hlist_head *head, empty_rp;
- struct hlist_node *tmp;
- unsigned long flags, orig_ret_address = 0;
- unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
- kprobe_opcode_t *correct_ret_addr = NULL;
-
- INIT_HLIST_HEAD(&empty_rp);
- kretprobe_hash_lock(current, &head, &flags);
- /* fixup registers */
-#ifdef CONFIG_X86_64
- regs->cs = __KERNEL_CS;
-#else
- regs->cs = __KERNEL_CS | get_kernel_rpl();
- regs->gs = 0;
-#endif
- regs->ip = trampoline_address;
- regs->orig_ax = ~0UL;
-
- /*
- * It is possible to have multiple instances associated with a given
- * task either because multiple functions in the call path have
- * return probes installed on them, and/or more than one
- * return probe was registered for a target function.
- *
- * We can handle this because:
- * - instances are always pushed into the head of the list
- * - when multiple return probes are registered for the same
- * function, the (chronologically) first instance's ret_addr
- * will be the real return address, and all the rest will
- * point to kretprobe_trampoline.
- */
- hlist_for_each_entry_safe(ri, tmp, head, hlist) {
- if (ri->task != current)
- /* another task is sharing our hash bucket */
- continue;
-
- orig_ret_address = (unsigned long)ri->ret_addr;
-
- if (orig_ret_address != trampoline_address)
- /*
- * This is the real return address. Any other
- * instances associated with this task are for
- * other calls deeper on the call stack
- */
- break;
- }
-
- kretprobe_assert(ri, orig_ret_address, trampoline_address);
-
- correct_ret_addr = ri->ret_addr;
- hlist_for_each_entry_safe(ri, tmp, head, hlist) {
- if (ri->task != current)
- /* another task is sharing our hash bucket */
- continue;
-
- orig_ret_address = (unsigned long)ri->ret_addr;
- if (ri->rp && ri->rp->handler) {
- __this_cpu_write(current_kprobe, &ri->rp->kp);
- get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
- ri->ret_addr = correct_ret_addr;
- ri->rp->handler(ri, regs);
- __this_cpu_write(current_kprobe, NULL);
- }
-
- recycle_rp_inst(ri, &empty_rp);
-
- if (orig_ret_address != trampoline_address)
- /*
- * This is the real return address. Any other
- * instances associated with this task are for
- * other calls deeper on the call stack
- */
- break;
- }
-
- kretprobe_hash_unlock(current, &flags);
-
- hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
- hlist_del(&ri->hlist);
- kfree(ri);
- }
- return (void *)orig_ret_address;
-}
-
-/*
- * Called after single-stepping. p->addr is the address of the
- * instruction whose first byte has been replaced by the "int 3"
- * instruction. To avoid the SMP problems that can occur when we
- * temporarily put back the original opcode to single-step, we
- * single-stepped a copy of the instruction. The address of this
- * copy is p->ainsn.insn.
- *
- * This function prepares to return from the post-single-step
- * interrupt. We have to fix up the stack as follows:
- *
- * 0) Except in the case of absolute or indirect jump or call instructions,
- * the new ip is relative to the copied instruction. We need to make
- * it relative to the original instruction.
- *
- * 1) If the single-stepped instruction was pushfl, then the TF and IF
- * flags are set in the just-pushed flags, and may need to be cleared.
- *
- * 2) If the single-stepped instruction was a call, the return address
- * that is atop the stack is the address following the copied instruction.
- * We need to make it the address following the original instruction.
- *
- * If this is the first time we've single-stepped the instruction at
- * this probepoint, and the instruction is boostable, boost it: add a
- * jump instruction after the copied instruction, that jumps to the next
- * instruction after the probepoint.
- */
-static void __kprobes
-resume_execution(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
-{
- unsigned long *tos = stack_addr(regs);
- unsigned long copy_ip = (unsigned long)p->ainsn.insn;
- unsigned long orig_ip = (unsigned long)p->addr;
- kprobe_opcode_t *insn = p->ainsn.insn;
-
- /* Skip prefixes */
- insn = skip_prefixes(insn);
-
- regs->flags &= ~X86_EFLAGS_TF;
- switch (*insn) {
- case 0x9c: /* pushfl */
- *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
- *tos |= kcb->kprobe_old_flags;
- break;
- case 0xc2: /* iret/ret/lret */
- case 0xc3:
- case 0xca:
- case 0xcb:
- case 0xcf:
- case 0xea: /* jmp absolute -- ip is correct */
- /* ip is already adjusted, no more changes required */
- p->ainsn.boostable = 1;
- goto no_change;
- case 0xe8: /* call relative - Fix return addr */
- *tos = orig_ip + (*tos - copy_ip);
- break;
-#ifdef CONFIG_X86_32
- case 0x9a: /* call absolute -- same as call absolute, indirect */
- *tos = orig_ip + (*tos - copy_ip);
- goto no_change;
-#endif
- case 0xff:
- if ((insn[1] & 0x30) == 0x10) {
- /*
- * call absolute, indirect
- * Fix return addr; ip is correct.
- * But this is not boostable
- */
- *tos = orig_ip + (*tos - copy_ip);
- goto no_change;
- } else if (((insn[1] & 0x31) == 0x20) ||
- ((insn[1] & 0x31) == 0x21)) {
- /*
- * jmp near and far, absolute indirect
- * ip is correct. And this is boostable
- */
- p->ainsn.boostable = 1;
- goto no_change;
- }
- default:
- break;
- }
-
- if (p->ainsn.boostable == 0) {
- if ((regs->ip > copy_ip) &&
- (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
- /*
- * These instructions can be executed directly if it
- * jumps back to correct address.
- */
- synthesize_reljump((void *)regs->ip,
- (void *)orig_ip + (regs->ip - copy_ip));
- p->ainsn.boostable = 1;
- } else {
- p->ainsn.boostable = -1;
- }
- }
-
- regs->ip += orig_ip - copy_ip;
-
-no_change:
- restore_btf();
-}
-
-/*
- * Interrupts are disabled on entry as trap1 is an interrupt gate and they
- * remain disabled throughout this function.
- */
-static int __kprobes post_kprobe_handler(struct pt_regs *regs)
+int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
- if (!cur)
- return 0;
-
- resume_execution(cur, regs, kcb);
- regs->flags |= kcb->kprobe_saved_flags;
-
- if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
- kcb->kprobe_status = KPROBE_HIT_SSDONE;
- cur->post_handler(cur, regs, 0);
- }
-
- /* Restore back the original saved kprobes variables and continue. */
- if (kcb->kprobe_status == KPROBE_REENTER) {
- restore_previous_kprobe(kcb);
- goto out;
- }
- reset_current_kprobe();
-out:
- preempt_enable_no_resched();
-
- /*
- * if somebody else is singlestepping across a probe point, flags
- * will have TF set, in which case, continue the remaining processing
- * of do_debug, as if this is not a probe hit.
- */
- if (regs->flags & X86_EFLAGS_TF)
- return 0;
-
- return 1;
-}
-
-int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
-{
- struct kprobe *cur = kprobe_running();
- struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
-
- switch (kcb->kprobe_status) {
- case KPROBE_HIT_SS:
- case KPROBE_REENTER:
+ if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
+ /* This must happen on single-stepping */
+ WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
+ kcb->kprobe_status != KPROBE_REENTER);
/*
* We are here because the instruction being single
* stepped caused a page fault. We reset the current
@@ -908,170 +1047,35 @@ int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
* normal page fault.
*/
regs->ip = (unsigned long)cur->addr;
+
+ /*
+ * If the IF flag was set before the kprobe hit,
+ * don't touch it:
+ */
regs->flags |= kcb->kprobe_old_flags;
+
if (kcb->kprobe_status == KPROBE_REENTER)
restore_previous_kprobe(kcb);
else
reset_current_kprobe();
- preempt_enable_no_resched();
- break;
- case KPROBE_HIT_ACTIVE:
- case KPROBE_HIT_SSDONE:
- /*
- * We increment the nmissed count for accounting,
- * we can also use npre/npostfault count for accounting
- * these specific fault cases.
- */
- kprobes_inc_nmissed_count(cur);
-
- /*
- * We come here because instructions in the pre/post
- * handler caused the page_fault, this could happen
- * if handler tries to access user space by
- * copy_from_user(), get_user() etc. Let the
- * user-specified handler try to fix it first.
- */
- if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
- return 1;
-
- /*
- * In case the user-specified fault handler returned
- * zero, try to fix up.
- */
- if (fixup_exception(regs))
- return 1;
-
- /*
- * fixup routine could not handle it,
- * Let do_page_fault() fix it.
- */
- break;
- default:
- break;
}
- return 0;
-}
-
-/*
- * Wrapper routine for handling exceptions.
- */
-int __kprobes
-kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data)
-{
- struct die_args *args = data;
- int ret = NOTIFY_DONE;
-
- if (args->regs && user_mode_vm(args->regs))
- return ret;
- switch (val) {
- case DIE_INT3:
- if (kprobe_handler(args->regs))
- ret = NOTIFY_STOP;
- break;
- case DIE_DEBUG:
- if (post_kprobe_handler(args->regs)) {
- /*
- * Reset the BS bit in dr6 (pointed by args->err) to
- * denote completion of processing
- */
- (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
- ret = NOTIFY_STOP;
- }
- break;
- case DIE_GPF:
- /*
- * To be potentially processing a kprobe fault and to
- * trust the result from kprobe_running(), we have
- * be non-preemptible.
- */
- if (!preemptible() && kprobe_running() &&
- kprobe_fault_handler(args->regs, args->trapnr))
- ret = NOTIFY_STOP;
- break;
- default:
- break;
- }
- return ret;
-}
-
-int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
-{
- struct jprobe *jp = container_of(p, struct jprobe, kp);
- unsigned long addr;
- struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
-
- kcb->jprobe_saved_regs = *regs;
- kcb->jprobe_saved_sp = stack_addr(regs);
- addr = (unsigned long)(kcb->jprobe_saved_sp);
-
- /*
- * As Linus pointed out, gcc assumes that the callee
- * owns the argument space and could overwrite it, e.g.
- * tailcall optimization. So, to be absolutely safe
- * we also save and restore enough stack bytes to cover
- * the argument area.
- */
- memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
- MIN_STACK_SIZE(addr));
- regs->flags &= ~X86_EFLAGS_IF;
- trace_hardirqs_off();
- regs->ip = (unsigned long)(jp->entry);
- return 1;
-}
-
-void __kprobes jprobe_return(void)
-{
- struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
-
- asm volatile (
-#ifdef CONFIG_X86_64
- " xchg %%rbx,%%rsp \n"
-#else
- " xchgl %%ebx,%%esp \n"
-#endif
- " int3 \n"
- " .globl jprobe_return_end\n"
- " jprobe_return_end: \n"
- " nop \n"::"b"
- (kcb->jprobe_saved_sp):"memory");
+ return 0;
}
+NOKPROBE_SYMBOL(kprobe_fault_handler);
-int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
+int __init arch_populate_kprobe_blacklist(void)
{
- struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
- u8 *addr = (u8 *) (regs->ip - 1);
- struct jprobe *jp = container_of(p, struct jprobe, kp);
-
- if ((addr > (u8 *) jprobe_return) &&
- (addr < (u8 *) jprobe_return_end)) {
- if (stack_addr(regs) != kcb->jprobe_saved_sp) {
- struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
- printk(KERN_ERR
- "current sp %p does not match saved sp %p\n",
- stack_addr(regs), kcb->jprobe_saved_sp);
- printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
- show_regs(saved_regs);
- printk(KERN_ERR "Current registers\n");
- show_regs(regs);
- BUG();
- }
- *regs = kcb->jprobe_saved_regs;
- memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
- kcb->jprobes_stack,
- MIN_STACK_SIZE(kcb->jprobe_saved_sp));
- preempt_enable_no_resched();
- return 1;
- }
- return 0;
+ return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
+ (unsigned long)__entry_text_end);
}
int __init arch_init_kprobes(void)
{
- return arch_init_optprobes();
+ return 0;
}
-int __kprobes arch_trampoline_kprobe(struct kprobe *p)
+int arch_trampoline_kprobe(struct kprobe *p)
{
return 0;
}