diff options
Diffstat (limited to 'arch/x86/kernel/traps.c')
| -rw-r--r-- | arch/x86/kernel/traps.c | 1119 |
1 files changed, 870 insertions, 249 deletions
diff --git a/arch/x86/kernel/traps.c b/arch/x86/kernel/traps.c index af75109485c2..bcf1dedc1d00 100644 --- a/arch/x86/kernel/traps.c +++ b/arch/x86/kernel/traps.c @@ -15,6 +15,7 @@ #include <linux/context_tracking.h> #include <linux/interrupt.h> #include <linux/kallsyms.h> +#include <linux/kmsan.h> #include <linux/spinlock.h> #include <linux/kprobes.h> #include <linux/uaccess.h> @@ -30,24 +31,30 @@ #include <linux/kexec.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> +#include <linux/static_call.h> #include <linux/timer.h> #include <linux/init.h> #include <linux/bug.h> #include <linux/nmi.h> #include <linux/mm.h> #include <linux/smp.h> +#include <linux/cpu.h> #include <linux/io.h> #include <linux/hardirq.h> #include <linux/atomic.h> +#include <linux/iommu.h> +#include <linux/ubsan.h> #include <asm/stacktrace.h> #include <asm/processor.h> #include <asm/debugreg.h> +#include <asm/realmode.h> #include <asm/text-patching.h> #include <asm/ftrace.h> #include <asm/traps.h> #include <asm/desc.h> -#include <asm/fpu/internal.h> +#include <asm/fred.h> +#include <asm/fpu/api.h> #include <asm/cpu.h> #include <asm/cpu_entry_area.h> #include <asm/mce.h> @@ -59,43 +66,214 @@ #include <asm/umip.h> #include <asm/insn.h> #include <asm/insn-eval.h> +#include <asm/vdso.h> +#include <asm/tdx.h> +#include <asm/cfi.h> +#include <asm/msr.h> #ifdef CONFIG_X86_64 #include <asm/x86_init.h> -#include <asm/pgalloc.h> -#include <asm/proto.h> #else #include <asm/processor-flags.h> #include <asm/setup.h> -#include <asm/proto.h> #endif +#include <asm/proto.h> + DECLARE_BITMAP(system_vectors, NR_VECTORS); -static inline void cond_local_irq_enable(struct pt_regs *regs) +__always_inline int is_valid_bugaddr(unsigned long addr) { - if (regs->flags & X86_EFLAGS_IF) - local_irq_enable(); -} + if (addr < TASK_SIZE_MAX) + return 0; -static inline void cond_local_irq_disable(struct pt_regs *regs) -{ - if (regs->flags & X86_EFLAGS_IF) - local_irq_disable(); + /* + * We got #UD, if the text isn't readable we'd have gotten + * a different exception. + */ + return *(unsigned short *)addr == INSN_UD2; } -int is_valid_bugaddr(unsigned long addr) +/* + * Check for UD1 or UD2, accounting for Address Size Override Prefixes. + * If it's a UD1, further decode to determine its use: + * + * FineIBT: d6 udb + * FineIBT: f0 75 f9 lock jne . - 6 + * UBSan{0}: 67 0f b9 00 ud1 (%eax),%eax + * UBSan{10}: 67 0f b9 40 10 ud1 0x10(%eax),%eax + * static_call: 0f b9 cc ud1 %esp,%ecx + * __WARN_trap: 67 48 0f b9 3a ud1 (%edx),%reg + * + * Notable, since __WARN_trap can use all registers, the distinction between + * UD1 users is through R/M. + */ +__always_inline int decode_bug(unsigned long addr, s32 *imm, int *len) { - unsigned short ud; + unsigned long start = addr; + u8 v, reg, rm, rex = 0; + int type = BUG_UD1; + bool lock = false; if (addr < TASK_SIZE_MAX) - return 0; + return BUG_NONE; + + for (;;) { + v = *(u8 *)(addr++); + if (v == INSN_ASOP) + continue; + + if (v == INSN_LOCK) { + lock = true; + continue; + } + + if ((v & 0xf0) == 0x40) { + rex = v; + continue; + } + + break; + } - if (probe_kernel_address((unsigned short *)addr, ud)) + switch (v) { + case 0x70 ... 0x7f: /* Jcc.d8 */ + addr += 1; /* d8 */ + *len = addr - start; + WARN_ON_ONCE(!lock); + return BUG_LOCK; + + case 0xd6: + *len = addr - start; + return BUG_UDB; + + case OPCODE_ESCAPE: + break; + + default: + return BUG_NONE; + } + + v = *(u8 *)(addr++); + if (v == SECOND_BYTE_OPCODE_UD2) { + *len = addr - start; + return BUG_UD2; + } + + if (v != SECOND_BYTE_OPCODE_UD1) + return BUG_NONE; + + *imm = 0; + v = *(u8 *)(addr++); /* ModRM */ + + if (X86_MODRM_MOD(v) != 3 && X86_MODRM_RM(v) == 4) + addr++; /* SIB */ + + reg = X86_MODRM_REG(v) + 8*!!X86_REX_R(rex); + rm = X86_MODRM_RM(v) + 8*!!X86_REX_B(rex); + + /* Decode immediate, if present */ + switch (X86_MODRM_MOD(v)) { + case 0: if (X86_MODRM_RM(v) == 5) + addr += 4; /* RIP + disp32 */ + + if (rm == 0) /* (%eax) */ + type = BUG_UD1_UBSAN; + + if (rm == 2) { /* (%edx) */ + *imm = reg; + type = BUG_UD1_WARN; + } + break; + + case 1: *imm = *(s8 *)addr; + addr += 1; + if (rm == 0) /* (%eax) */ + type = BUG_UD1_UBSAN; + break; + + case 2: *imm = *(s32 *)addr; + addr += 4; + if (rm == 0) /* (%eax) */ + type = BUG_UD1_UBSAN; + break; + + case 3: break; + } + + /* record instruction length */ + *len = addr - start; + + return type; +} + +static inline unsigned long pt_regs_val(struct pt_regs *regs, int nr) +{ + int offset = pt_regs_offset(regs, nr); + if (WARN_ON_ONCE(offset < -0)) return 0; + return *((unsigned long *)((void *)regs + offset)); +} + +#ifdef HAVE_ARCH_BUG_FORMAT_ARGS +DEFINE_STATIC_CALL(WARN_trap, __WARN_trap); +EXPORT_STATIC_CALL_TRAMP(WARN_trap); - return ud == INSN_UD0 || ud == INSN_UD2; +/* + * Create a va_list from an exception context. + */ +void *__warn_args(struct arch_va_list *args, struct pt_regs *regs) +{ + /* + * Register save area; populate with function call argument registers + */ + args->regs[0] = regs->di; + args->regs[1] = regs->si; + args->regs[2] = regs->dx; + args->regs[3] = regs->cx; + args->regs[4] = regs->r8; + args->regs[5] = regs->r9; + + /* + * From the ABI document: + * + * @gp_offset - the element holds the offset in bytes from + * reg_save_area to the place where the next available general purpose + * argument register is saved. In case all argument registers have + * been exhausted, it is set to the value 48 (6*8). + * + * @fp_offset - the element holds the offset in bytes from + * reg_save_area to the place where the next available floating point + * argument is saved. In case all argument registers have been + * exhausted, it is set to the value 176 (6*8 + 8*16) + * + * @overflow_arg_area - this pointer is used to fetch arguments passed + * on the stack. It is initialized with the address of the first + * argument passed on the stack, if any, and then always updated to + * point to the start of the next argument on the stack. + * + * @reg_save_area - the element points to the start of the register + * save area. + * + * Notably the vararg starts with the second argument and there are no + * floating point arguments in the kernel. + */ + args->args.gp_offset = 1*8; + args->args.fp_offset = 6*8 + 8*16; + args->args.reg_save_area = &args->regs; + args->args.overflow_arg_area = (void *)regs->sp; + + /* + * If the exception came from __WARN_trap, there is a return + * address on the stack, skip that. This is why any __WARN_trap() + * caller must inhibit tail-call optimization. + */ + if ((void *)regs->ip == &__WARN_trap) + args->args.overflow_arg_area += 8; + + return &args->args; } +#endif /* HAVE_ARCH_BUG_FORMAT */ static nokprobe_inline int do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, @@ -118,6 +296,9 @@ do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, tsk->thread.error_code = error_code; tsk->thread.trap_nr = trapnr; die(str, regs, error_code); + } else { + if (fixup_vdso_exception(regs, trapnr, error_code, 0)) + return 0; } /* @@ -197,7 +378,7 @@ static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs) DEFINE_IDTENTRY(exc_divide_error) { - do_error_trap(regs, 0, "divide_error", X86_TRAP_DE, SIGFPE, + do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE, FPE_INTDIV, error_get_trap_addr(regs)); } @@ -216,46 +397,103 @@ static inline void handle_invalid_op(struct pt_regs *regs) ILL_ILLOPN, error_get_trap_addr(regs)); } -DEFINE_IDTENTRY_RAW(exc_invalid_op) +static noinstr bool handle_bug(struct pt_regs *regs) { - bool rcu_exit; + unsigned long addr = regs->ip; + bool handled = false; + int ud_type, ud_len; + s32 ud_imm; + + ud_type = decode_bug(addr, &ud_imm, &ud_len); + if (ud_type == BUG_NONE) + return handled; /* - * Handle BUG/WARN like NMIs instead of like normal idtentries: - * if we bugged/warned in a bad RCU context, for example, the last - * thing we want is to BUG/WARN again in the idtentry code, ad - * infinitum. + * All lies, just get the WARN/BUG out. */ - if (!user_mode(regs) && is_valid_bugaddr(regs->ip)) { - enum bug_trap_type type; + instrumentation_begin(); + /* + * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug() + * is a rare case that uses @regs without passing them to + * irqentry_enter(). + */ + kmsan_unpoison_entry_regs(regs); + /* + * Since we're emulating a CALL with exceptions, restore the interrupt + * state to what it was at the exception site. + */ + if (regs->flags & X86_EFLAGS_IF) + raw_local_irq_enable(); + + switch (ud_type) { + case BUG_UD1_WARN: + if (report_bug_entry((void *)pt_regs_val(regs, ud_imm), regs) == BUG_TRAP_TYPE_WARN) + handled = true; + break; + + case BUG_UD2: + if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) { + handled = true; + break; + } + fallthrough; - nmi_enter(); - instrumentation_begin(); - trace_hardirqs_off_finish(); - type = report_bug(regs->ip, regs); - if (regs->flags & X86_EFLAGS_IF) - trace_hardirqs_on_prepare(); - instrumentation_end(); - nmi_exit(); + case BUG_UDB: + case BUG_LOCK: + if (handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) { + handled = true; + break; + } + break; - if (type == BUG_TRAP_TYPE_WARN) { - /* Skip the ud2. */ - regs->ip += LEN_UD2; - return; + case BUG_UD1_UBSAN: + if (IS_ENABLED(CONFIG_UBSAN_TRAP)) { + pr_crit("%s at %pS\n", + report_ubsan_failure(ud_imm), + (void *)regs->ip); } + break; - /* - * Else, if this was a BUG and report_bug returns or if this - * was just a normal #UD, we want to continue onward and - * crash. - */ + default: + break; } - rcu_exit = idtentry_enter_cond_rcu(regs); + /* + * When continuing, and regs->ip hasn't changed, move it to the next + * instruction. When not continuing execution, restore the instruction + * pointer. + */ + if (handled) { + if (regs->ip == addr) + regs->ip += ud_len; + } else { + regs->ip = addr; + } + + if (regs->flags & X86_EFLAGS_IF) + raw_local_irq_disable(); + instrumentation_end(); + + return handled; +} + +DEFINE_IDTENTRY_RAW(exc_invalid_op) +{ + irqentry_state_t state; + + /* + * We use UD2 as a short encoding for 'CALL __WARN', as such + * handle it before exception entry to avoid recursive WARN + * in case exception entry is the one triggering WARNs. + */ + if (!user_mode(regs) && handle_bug(regs)) + return; + + state = irqentry_enter(regs); instrumentation_begin(); handle_invalid_op(regs); instrumentation_end(); - idtentry_exit_cond_rcu(regs, rcu_exit); + irqentry_exit(regs, state); } DEFINE_IDTENTRY(exc_coproc_segment_overrun) @@ -295,28 +533,48 @@ DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check) local_irq_enable(); if (handle_user_split_lock(regs, error_code)) - return; + goto out; do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs, error_code, BUS_ADRALN, NULL); + +out: + local_irq_disable(); } #ifdef CONFIG_VMAP_STACK -__visible void __noreturn handle_stack_overflow(const char *message, - struct pt_regs *regs, - unsigned long fault_address) +__visible void __noreturn handle_stack_overflow(struct pt_regs *regs, + unsigned long fault_address, + struct stack_info *info) { - printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", - (void *)fault_address, current->stack, - (char *)current->stack + THREAD_SIZE - 1); - die(message, regs, 0); + const char *name = stack_type_name(info->type); + + printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n", + name, (void *)fault_address, info->begin, info->end); + + die("stack guard page", regs, 0); /* Be absolutely certain we don't return. */ - panic("%s", message); + panic("%s stack guard hit", name); } #endif /* + * Prevent the compiler and/or objtool from marking the !CONFIG_X86_ESPFIX64 + * version of exc_double_fault() as noreturn. Otherwise the noreturn mismatch + * between configs triggers objtool warnings. + * + * This is a temporary hack until we have compiler or plugin support for + * annotating noreturns. + */ +#ifdef CONFIG_X86_ESPFIX64 +#define always_true() true +#else +bool always_true(void); +bool __weak always_true(void) { return true; } +#endif + +/* * Runs on an IST stack for x86_64 and on a special task stack for x86_32. * * On x86_64, this is more or less a normal kernel entry. Notwithstanding the @@ -342,6 +600,7 @@ DEFINE_IDTENTRY_DF(exc_double_fault) #ifdef CONFIG_VMAP_STACK unsigned long address = read_cr2(); + struct stack_info info; #endif #ifdef CONFIG_X86_ESPFIX64 @@ -384,7 +643,7 @@ DEFINE_IDTENTRY_DF(exc_double_fault) /* * Adjust our frame so that we return straight to the #GP * vector with the expected RSP value. This is safe because - * we won't enable interupts or schedule before we invoke + * we won't enable interrupts or schedule before we invoke * general_protection, so nothing will clobber the stack * frame we just set up. * @@ -399,7 +658,7 @@ DEFINE_IDTENTRY_DF(exc_double_fault) } #endif - nmi_enter(); + irqentry_nmi_enter(regs); instrumentation_begin(); notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); @@ -444,15 +703,14 @@ DEFINE_IDTENTRY_DF(exc_double_fault) * stack even if the actual trigger for the double fault was * something else. */ - if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) { - handle_stack_overflow("kernel stack overflow (double-fault)", - regs, address); - } + if (get_stack_guard_info((void *)address, &info)) + handle_stack_overflow(regs, address, &info); #endif pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); die("double fault", regs, error_code); - panic("Machine halted."); + if (always_true()) + panic("Machine halted."); instrumentation_end(); } @@ -474,40 +732,66 @@ DEFINE_IDTENTRY(exc_bounds) enum kernel_gp_hint { GP_NO_HINT, GP_NON_CANONICAL, - GP_CANONICAL + GP_CANONICAL, + GP_LASS_VIOLATION, + GP_NULL_POINTER, +}; + +static const char * const kernel_gp_hint_help[] = { + [GP_NON_CANONICAL] = "probably for non-canonical address", + [GP_CANONICAL] = "maybe for address", + [GP_LASS_VIOLATION] = "probably LASS violation for address", + [GP_NULL_POINTER] = "kernel NULL pointer dereference", }; /* * When an uncaught #GP occurs, try to determine the memory address accessed by * the instruction and return that address to the caller. Also, try to figure - * out whether any part of the access to that address was non-canonical. + * out whether any part of the access to that address was non-canonical or + * across privilege levels. */ static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, unsigned long *addr) { u8 insn_buf[MAX_INSN_SIZE]; struct insn insn; + int ret; - if (probe_kernel_read(insn_buf, (void *)regs->ip, MAX_INSN_SIZE)) + if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip, + MAX_INSN_SIZE)) return GP_NO_HINT; - kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE); - insn_get_modrm(&insn); - insn_get_sib(&insn); + ret = insn_decode_kernel(&insn, insn_buf); + if (ret < 0) + return GP_NO_HINT; *addr = (unsigned long)insn_get_addr_ref(&insn, regs); if (*addr == -1UL) return GP_NO_HINT; #ifdef CONFIG_X86_64 + /* Operand is in the kernel half */ + if (*addr >= ~__VIRTUAL_MASK) + return GP_CANONICAL; + + /* The last byte of the operand is not in the user canonical half */ + if (*addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) + return GP_NON_CANONICAL; + /* - * Check that: - * - the operand is not in the kernel half - * - the last byte of the operand is not in the user canonical half + * A NULL pointer dereference usually causes a #PF. However, it + * can result in a #GP when LASS is active. Provide the same + * hint in the rare case that the condition is hit without LASS. */ - if (*addr < ~__VIRTUAL_MASK && - *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) - return GP_NON_CANONICAL; + if (*addr < PAGE_SIZE) + return GP_NULL_POINTER; + + /* + * Assume that LASS caused the exception, because the address is + * canonical and in the user half. + */ + if (cpu_feature_enabled(X86_FEATURE_LASS)) + return GP_LASS_VIOLATION; #endif return GP_CANONICAL; @@ -515,13 +799,125 @@ static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, #define GPFSTR "general protection fault" +static bool fixup_iopl_exception(struct pt_regs *regs) +{ + struct thread_struct *t = ¤t->thread; + unsigned char byte; + unsigned long ip; + + if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3) + return false; + + if (insn_get_effective_ip(regs, &ip)) + return false; + + if (get_user(byte, (const char __user *)ip)) + return false; + + if (byte != 0xfa && byte != 0xfb) + return false; + + if (!t->iopl_warn && printk_ratelimit()) { + pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx", + current->comm, task_pid_nr(current), ip); + print_vma_addr(KERN_CONT " in ", ip); + pr_cont("\n"); + t->iopl_warn = 1; + } + + regs->ip += 1; + return true; +} + +/* + * The unprivileged ENQCMD instruction generates #GPs if the + * IA32_PASID MSR has not been populated. If possible, populate + * the MSR from a PASID previously allocated to the mm. + */ +static bool try_fixup_enqcmd_gp(void) +{ +#ifdef CONFIG_ARCH_HAS_CPU_PASID + u32 pasid; + + /* + * MSR_IA32_PASID is managed using XSAVE. Directly + * writing to the MSR is only possible when fpregs + * are valid and the fpstate is not. This is + * guaranteed when handling a userspace exception + * in *before* interrupts are re-enabled. + */ + lockdep_assert_irqs_disabled(); + + /* + * Hardware without ENQCMD will not generate + * #GPs that can be fixed up here. + */ + if (!cpu_feature_enabled(X86_FEATURE_ENQCMD)) + return false; + + /* + * If the mm has not been allocated a + * PASID, the #GP can not be fixed up. + */ + if (!mm_valid_pasid(current->mm)) + return false; + + pasid = mm_get_enqcmd_pasid(current->mm); + + /* + * Did this thread already have its PASID activated? + * If so, the #GP must be from something else. + */ + if (current->pasid_activated) + return false; + + wrmsrq(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID); + current->pasid_activated = 1; + + return true; +#else + return false; +#endif +} + +static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr, + unsigned long error_code, const char *str, + unsigned long address) +{ + if (fixup_exception(regs, trapnr, error_code, address)) + return true; + + current->thread.error_code = error_code; + current->thread.trap_nr = trapnr; + + /* + * To be potentially processing a kprobe fault and to trust the result + * from kprobe_running(), we have to be non-preemptible. + */ + if (!preemptible() && kprobe_running() && + kprobe_fault_handler(regs, trapnr)) + return true; + + return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP; +} + +static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr, + unsigned long error_code, const char *str) +{ + current->thread.error_code = error_code; + current->thread.trap_nr = trapnr; + show_signal(current, SIGSEGV, "", str, regs, error_code); + force_sig(SIGSEGV); +} + DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) { char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; enum kernel_gp_hint hint = GP_NO_HINT; - struct task_struct *tsk; unsigned long gp_addr; - int ret; + + if (user_mode(regs) && try_fixup_enqcmd_gp()) + return; cond_local_irq_enable(regs); @@ -537,34 +933,18 @@ DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) return; } - tsk = current; - if (user_mode(regs)) { - tsk->thread.error_code = error_code; - tsk->thread.trap_nr = X86_TRAP_GP; + if (fixup_iopl_exception(regs)) + goto exit; - show_signal(tsk, SIGSEGV, "", desc, regs, error_code); - force_sig(SIGSEGV); - goto exit; - } + if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0)) + goto exit; - if (fixup_exception(regs, X86_TRAP_GP, error_code, 0)) - goto exit; - - tsk->thread.error_code = error_code; - tsk->thread.trap_nr = X86_TRAP_GP; - - /* - * To be potentially processing a kprobe fault and to trust the result - * from kprobe_running(), we have to be non-preemptible. - */ - if (!preemptible() && - kprobe_running() && - kprobe_fault_handler(regs, X86_TRAP_GP)) + gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc); goto exit; + } - ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV); - if (ret == NOTIFY_STOP) + if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0)) goto exit; if (error_code) @@ -574,9 +954,7 @@ DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) if (hint != GP_NO_HINT) snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx", - (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" - : "maybe for address", - gp_addr); + kernel_gp_hint_help[hint], gp_addr); /* * KASAN is interested only in the non-canonical case, clear it @@ -609,6 +987,7 @@ static bool do_int3(struct pt_regs *regs) return res == NOTIFY_STOP; } +NOKPROBE_SYMBOL(do_int3); static void do_int3_user(struct pt_regs *regs) { @@ -623,36 +1002,34 @@ static void do_int3_user(struct pt_regs *regs) DEFINE_IDTENTRY_RAW(exc_int3) { /* - * poke_int3_handler() is completely self contained code; it does (and + * smp_text_poke_int3_handler() is completely self contained code; it does (and * must) *NOT* call out to anything, lest it hits upon yet another * INT3. */ - if (poke_int3_handler(regs)) + if (smp_text_poke_int3_handler(regs)) return; /* - * idtentry_enter_user() uses static_branch_{,un}likely() and therefore - * can trigger INT3, hence poke_int3_handler() must be done - * before. If the entry came from kernel mode, then use nmi_enter() - * because the INT3 could have been hit in any context including - * NMI. + * irqentry_enter_from_user_mode() uses static_branch_{,un}likely() + * and therefore can trigger INT3, hence smp_text_poke_int3_handler() must + * be done before. If the entry came from kernel mode, then use + * nmi_enter() because the INT3 could have been hit in any context + * including NMI. */ if (user_mode(regs)) { - idtentry_enter_user(regs); + irqentry_enter_from_user_mode(regs); instrumentation_begin(); do_int3_user(regs); instrumentation_end(); - idtentry_exit_user(regs); + irqentry_exit_to_user_mode(regs); } else { - nmi_enter(); + irqentry_state_t irq_state = irqentry_nmi_enter(regs); + instrumentation_begin(); - trace_hardirqs_off_finish(); if (!do_int3(regs)) die("int3", regs, 0); - if (regs->flags & X86_EFLAGS_IF) - trace_hardirqs_on_prepare(); instrumentation_end(); - nmi_exit(); + irqentry_nmi_exit(regs, irq_state); } } @@ -664,20 +1041,59 @@ DEFINE_IDTENTRY_RAW(exc_int3) */ asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs) { - struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; + struct pt_regs *regs = (struct pt_regs *)current_top_of_stack() - 1; if (regs != eregs) *regs = *eregs; return regs; } -struct bad_iret_stack { - void *error_entry_ret; - struct pt_regs regs; -}; +#ifdef CONFIG_AMD_MEM_ENCRYPT +asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs) +{ + unsigned long sp, *stack; + struct stack_info info; + struct pt_regs *regs_ret; + + /* + * In the SYSCALL entry path the RSP value comes from user-space - don't + * trust it and switch to the current kernel stack + */ + if (ip_within_syscall_gap(regs)) { + sp = current_top_of_stack(); + goto sync; + } + + /* + * From here on the RSP value is trusted. Now check whether entry + * happened from a safe stack. Not safe are the entry or unknown stacks, + * use the fall-back stack instead in this case. + */ + sp = regs->sp; + stack = (unsigned long *)sp; -asmlinkage __visible noinstr -struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) + if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY || + info.type > STACK_TYPE_EXCEPTION_LAST) + sp = __this_cpu_ist_top_va(VC2); + +sync: + /* + * Found a safe stack - switch to it as if the entry didn't happen via + * IST stack. The code below only copies pt_regs, the real switch happens + * in assembly code. + */ + sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret); + + regs_ret = (struct pt_regs *)sp; + *regs_ret = *regs; + + return regs_ret; +} +#endif + +asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs) { + struct pt_regs tmp, *new_stack; + /* * This is called from entry_64.S early in handling a fault * caused by a bad iret to user mode. To handle the fault @@ -686,19 +1102,18 @@ struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) * just below the IRET frame) and we want to pretend that the * exception came from the IRET target. */ - struct bad_iret_stack tmp, *new_stack = - (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; + new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; /* Copy the IRET target to the temporary storage. */ - memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8); + __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8); /* Copy the remainder of the stack from the current stack. */ - memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip)); + __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip)); /* Update the entry stack */ - memcpy(new_stack, &tmp, sizeof(tmp)); + __memcpy(new_stack, &tmp, sizeof(tmp)); - BUG_ON(!user_mode(&new_stack->regs)); + BUG_ON(!user_mode(new_stack)); return new_stack; } #endif @@ -726,41 +1141,34 @@ static bool is_sysenter_singlestep(struct pt_regs *regs) #endif } -static __always_inline void debug_enter(unsigned long *dr6, unsigned long *dr7) +static __always_inline unsigned long debug_read_reset_dr6(void) { - /* - * Disable breakpoints during exception handling; recursive exceptions - * are exceedingly 'fun'. - * - * Since this function is NOKPROBE, and that also applies to - * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a - * HW_BREAKPOINT_W on our stack) - * - * Entry text is excluded for HW_BP_X and cpu_entry_area, which - * includes the entry stack is excluded for everything. - */ - *dr7 = local_db_save(); + unsigned long dr6; + + get_debugreg(dr6, 6); + dr6 ^= DR6_RESERVED; /* Flip to positive polarity */ /* * The Intel SDM says: * - * Certain debug exceptions may clear bits 0-3. The remaining - * contents of the DR6 register are never cleared by the - * processor. To avoid confusion in identifying debug - * exceptions, debug handlers should clear the register before - * returning to the interrupted task. + * Certain debug exceptions may clear bits 0-3 of DR6. + * + * BLD induced #DB clears DR6.BLD and any other debug + * exception doesn't modify DR6.BLD. + * + * RTM induced #DB clears DR6.RTM and any other debug + * exception sets DR6.RTM. * - * Keep it simple: clear DR6 immediately. + * To avoid confusion in identifying debug exceptions, + * debug handlers should set DR6.BLD and DR6.RTM, and + * clear other DR6 bits before returning. + * + * Keep it simple: write DR6 with its architectural reset + * value 0xFFFF0FF0, defined as DR6_RESERVED, immediately. */ - get_debugreg(*dr6, 6); - set_debugreg(0, 6); - /* Filter out all the reserved bits which are preset to 1 */ - *dr6 &= ~DR6_RESERVED; -} + set_debugreg(DR6_RESERVED, 6); -static __always_inline void debug_exit(unsigned long dr7) -{ - local_db_restore(dr7); + return dr6; } /* @@ -787,143 +1195,223 @@ static __always_inline void debug_exit(unsigned long dr7) * * May run on IST stack. */ -static void handle_debug(struct pt_regs *regs, unsigned long dr6, bool user) -{ - struct task_struct *tsk = current; - bool user_icebp; - int si_code; +static bool notify_debug(struct pt_regs *regs, unsigned long *dr6) +{ /* - * The SDM says "The processor clears the BTF flag when it - * generates a debug exception." Clear TIF_BLOCKSTEP to keep - * TIF_BLOCKSTEP in sync with the hardware BTF flag. + * Notifiers will clear bits in @dr6 to indicate the event has been + * consumed - hw_breakpoint_handler(), single_stop_cont(). + * + * Notifiers will set bits in @virtual_dr6 to indicate the desire + * for signals - ptrace_triggered(), kgdb_hw_overflow_handler(). */ - clear_thread_flag(TIF_BLOCKSTEP); + if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP) + return true; + + return false; +} +static noinstr void exc_debug_kernel(struct pt_regs *regs, unsigned long dr6) +{ /* - * If DR6 is zero, no point in trying to handle it. The kernel is - * not using INT1. + * Disable breakpoints during exception handling; recursive exceptions + * are exceedingly 'fun'. + * + * Since this function is NOKPROBE, and that also applies to + * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a + * HW_BREAKPOINT_W on our stack) + * + * Entry text is excluded for HW_BP_X and cpu_entry_area, which + * includes the entry stack is excluded for everything. + * + * For FRED, nested #DB should just work fine. But when a watchpoint or + * breakpoint is set in the code path which is executed by #DB handler, + * it results in an endless recursion and stack overflow. Thus we stay + * with the IDT approach, i.e., save DR7 and disable #DB. */ - if (!user && !dr6) - return; + unsigned long dr7 = local_db_save(); + irqentry_state_t irq_state = irqentry_nmi_enter(regs); + instrumentation_begin(); /* - * If dr6 has no reason to give us about the origin of this trap, - * then it's very likely the result of an icebp/int01 trap. - * User wants a sigtrap for that. + * If something gets miswired and we end up here for a user mode + * #DB, we will malfunction. */ - user_icebp = user && !dr6; + WARN_ON_ONCE(user_mode(regs)); - /* Store the virtualized DR6 value */ - tsk->thread.debugreg6 = dr6; + if (test_thread_flag(TIF_BLOCKSTEP)) { + /* + * The SDM says "The processor clears the BTF flag when it + * generates a debug exception." but PTRACE_BLOCKSTEP requested + * it for userspace, but we just took a kernel #DB, so re-set + * BTF. + */ + unsigned long debugctl; -#ifdef CONFIG_KPROBES - if (kprobe_debug_handler(regs)) { - return; + rdmsrq(MSR_IA32_DEBUGCTLMSR, debugctl); + debugctl |= DEBUGCTLMSR_BTF; + wrmsrq(MSR_IA32_DEBUGCTLMSR, debugctl); } -#endif - if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, 0, - SIGTRAP) == NOTIFY_STOP) { - return; - } + /* + * Catch SYSENTER with TF set and clear DR_STEP. If this hit a + * watchpoint at the same time then that will still be handled. + */ + if (!cpu_feature_enabled(X86_FEATURE_FRED) && + (dr6 & DR_STEP) && is_sysenter_singlestep(regs)) + dr6 &= ~DR_STEP; - /* It's safe to allow irq's after DR6 has been saved */ - cond_local_irq_enable(regs); + /* + * The kernel doesn't use INT1 + */ + if (!dr6) + goto out; - if (v8086_mode(regs)) { - handle_vm86_trap((struct kernel_vm86_regs *) regs, 0, - X86_TRAP_DB); + if (notify_debug(regs, &dr6)) goto out; - } - if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { - /* - * Historical junk that used to handle SYSENTER single-stepping. - * This should be unreachable now. If we survive for a while - * without anyone hitting this warning, we'll turn this into - * an oops. - */ - tsk->thread.debugreg6 &= ~DR_STEP; - set_tsk_thread_flag(tsk, TIF_SINGLESTEP); + /* + * The kernel doesn't use TF single-step outside of: + * + * - Kprobes, consumed through kprobe_debug_handler() + * - KGDB, consumed through notify_debug() + * + * So if we get here with DR_STEP set, something is wonky. + * + * A known way to trigger this is through QEMU's GDB stub, + * which leaks #DB into the guest and causes IST recursion. + */ + if (WARN_ON_ONCE(dr6 & DR_STEP)) regs->flags &= ~X86_EFLAGS_TF; - } - - si_code = get_si_code(tsk->thread.debugreg6); - if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) - send_sigtrap(regs, 0, si_code); - out: - cond_local_irq_disable(regs); + instrumentation_end(); + irqentry_nmi_exit(regs, irq_state); + + local_db_restore(dr7); } -static __always_inline void exc_debug_kernel(struct pt_regs *regs, - unsigned long dr6) +static noinstr void exc_debug_user(struct pt_regs *regs, unsigned long dr6) { - nmi_enter(); + bool icebp; + + /* + * If something gets miswired and we end up here for a kernel mode + * #DB, we will malfunction. + */ + WARN_ON_ONCE(!user_mode(regs)); + + /* + * NB: We can't easily clear DR7 here because + * irqentry_exit_to_usermode() can invoke ptrace, schedule, access + * user memory, etc. This means that a recursive #DB is possible. If + * this happens, that #DB will hit exc_debug_kernel() and clear DR7. + * Since we're not on the IST stack right now, everything will be + * fine. + */ + + irqentry_enter_from_user_mode(regs); instrumentation_begin(); - trace_hardirqs_off_finish(); /* - * Catch SYSENTER with TF set and clear DR_STEP. If this hit a - * watchpoint at the same time then that will still be handled. + * Start the virtual/ptrace DR6 value with just the DR_STEP mask + * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits. + * + * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6) + * even if it is not the result of PTRACE_SINGLESTEP. */ - if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs)) - dr6 &= ~DR_STEP; + current->thread.virtual_dr6 = (dr6 & DR_STEP); - handle_debug(regs, dr6, false); + /* + * The SDM says "The processor clears the BTF flag when it + * generates a debug exception." Clear TIF_BLOCKSTEP to keep + * TIF_BLOCKSTEP in sync with the hardware BTF flag. + */ + clear_thread_flag(TIF_BLOCKSTEP); - if (regs->flags & X86_EFLAGS_IF) - trace_hardirqs_on_prepare(); - instrumentation_end(); - nmi_exit(); -} + /* + * If dr6 has no reason to give us about the origin of this trap, + * then it's very likely the result of an icebp/int01 trap. + * User wants a sigtrap for that. + */ + icebp = !dr6; -static __always_inline void exc_debug_user(struct pt_regs *regs, - unsigned long dr6) -{ - idtentry_enter_user(regs); - instrumentation_begin(); + if (notify_debug(regs, &dr6)) + goto out; + + /* It's safe to allow irq's after DR6 has been saved */ + local_irq_enable(); + + if (v8086_mode(regs)) { + handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB); + goto out_irq; + } - handle_debug(regs, dr6, true); + /* #DB for bus lock can only be triggered from userspace. */ + if (dr6 & DR_BUS_LOCK) + handle_bus_lock(regs); + + /* Add the virtual_dr6 bits for signals. */ + dr6 |= current->thread.virtual_dr6; + if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp) + send_sigtrap(regs, 0, get_si_code(dr6)); + +out_irq: + local_irq_disable(); +out: instrumentation_end(); - idtentry_exit_user(regs); + irqentry_exit_to_user_mode(regs); } #ifdef CONFIG_X86_64 /* IST stack entry */ DEFINE_IDTENTRY_DEBUG(exc_debug) { - unsigned long dr6, dr7; - - debug_enter(&dr6, &dr7); - exc_debug_kernel(regs, dr6); - debug_exit(dr7); + exc_debug_kernel(regs, debug_read_reset_dr6()); } /* User entry, runs on regular task stack */ DEFINE_IDTENTRY_DEBUG_USER(exc_debug) { - unsigned long dr6, dr7; + exc_debug_user(regs, debug_read_reset_dr6()); +} - debug_enter(&dr6, &dr7); - exc_debug_user(regs, dr6); - debug_exit(dr7); +#ifdef CONFIG_X86_FRED +/* + * When occurred on different ring level, i.e., from user or kernel + * context, #DB needs to be handled on different stack: User #DB on + * current task stack, while kernel #DB on a dedicated stack. + * + * This is exactly how FRED event delivery invokes an exception + * handler: ring 3 event on level 0 stack, i.e., current task stack; + * ring 0 event on the #DB dedicated stack specified in the + * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug exception + * entry stub doesn't do stack switch. + */ +DEFINE_FREDENTRY_DEBUG(exc_debug) +{ + /* + * FRED #DB stores DR6 on the stack in the format which + * debug_read_reset_dr6() returns for the IDT entry points. + */ + unsigned long dr6 = fred_event_data(regs); + + if (user_mode(regs)) + exc_debug_user(regs, dr6); + else + exc_debug_kernel(regs, dr6); } +#endif /* CONFIG_X86_FRED */ + #else /* 32 bit does not have separate entry points. */ -DEFINE_IDTENTRY_DEBUG(exc_debug) +DEFINE_IDTENTRY_RAW(exc_debug) { - unsigned long dr6, dr7; - - debug_enter(&dr6, &dr7); + unsigned long dr6 = debug_read_reset_dr6(); if (user_mode(regs)) exc_debug_user(regs, dr6); else exc_debug_kernel(regs, dr6); - - debug_exit(dr7); } #endif @@ -935,7 +1423,7 @@ DEFINE_IDTENTRY_DEBUG(exc_debug) static void math_error(struct pt_regs *regs, int trapnr) { struct task_struct *task = current; - struct fpu *fpu = &task->thread.fpu; + struct fpu *fpu = x86_task_fpu(task); int si_code; char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : "simd exception"; @@ -956,9 +1444,10 @@ static void math_error(struct pt_regs *regs, int trapnr) } /* - * Save the info for the exception handler and clear the error. + * Synchronize the FPU register state to the memory register state + * if necessary. This allows the exception handler to inspect it. */ - fpu__save(fpu); + fpu_sync_fpstate(fpu); task->thread.trap_nr = trapnr; task->thread.error_code = 0; @@ -968,6 +1457,9 @@ static void math_error(struct pt_regs *regs, int trapnr) if (!si_code) goto exit; + if (fixup_vdso_exception(regs, trapnr, 0, 0)) + goto exit; + force_sig_fault(SIGFPE, si_code, (void __user *)uprobe_get_trap_addr(regs)); exit: @@ -1014,10 +1506,48 @@ DEFINE_IDTENTRY(exc_spurious_interrupt_bug) */ } +static bool handle_xfd_event(struct pt_regs *regs) +{ + u64 xfd_err; + int err; + + if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD)) + return false; + + rdmsrq(MSR_IA32_XFD_ERR, xfd_err); + if (!xfd_err) + return false; + + wrmsrq(MSR_IA32_XFD_ERR, 0); + + /* Die if that happens in kernel space */ + if (WARN_ON(!user_mode(regs))) + return false; + + local_irq_enable(); + + err = xfd_enable_feature(xfd_err); + + switch (err) { + case -EPERM: + force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs)); + break; + case -EFAULT: + force_sig(SIGSEGV); + break; + } + + local_irq_disable(); + return true; +} + DEFINE_IDTENTRY(exc_device_not_available) { unsigned long cr0 = read_cr0(); + if (handle_xfd_event(regs)) + return; + #ifdef CONFIG_MATH_EMULATION if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { struct math_emu_info info = { }; @@ -1046,6 +1576,94 @@ DEFINE_IDTENTRY(exc_device_not_available) } } +#ifdef CONFIG_INTEL_TDX_GUEST + +#define VE_FAULT_STR "VE fault" + +static void ve_raise_fault(struct pt_regs *regs, long error_code, + unsigned long address) +{ + if (user_mode(regs)) { + gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR); + return; + } + + if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code, + VE_FAULT_STR, address)) { + return; + } + + die_addr(VE_FAULT_STR, regs, error_code, address); +} + +/* + * Virtualization Exceptions (#VE) are delivered to TDX guests due to + * specific guest actions which may happen in either user space or the + * kernel: + * + * * Specific instructions (WBINVD, for example) + * * Specific MSR accesses + * * Specific CPUID leaf accesses + * * Access to specific guest physical addresses + * + * In the settings that Linux will run in, virtualization exceptions are + * never generated on accesses to normal, TD-private memory that has been + * accepted (by BIOS or with tdx_enc_status_changed()). + * + * Syscall entry code has a critical window where the kernel stack is not + * yet set up. Any exception in this window leads to hard to debug issues + * and can be exploited for privilege escalation. Exceptions in the NMI + * entry code also cause issues. Returning from the exception handler with + * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack. + * + * For these reasons, the kernel avoids #VEs during the syscall gap and + * the NMI entry code. Entry code paths do not access TD-shared memory, + * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves + * that might generate #VE. VMM can remove memory from TD at any point, + * but access to unaccepted (or missing) private memory leads to VM + * termination, not to #VE. + * + * Similarly to page faults and breakpoints, #VEs are allowed in NMI + * handlers once the kernel is ready to deal with nested NMIs. + * + * During #VE delivery, all interrupts, including NMIs, are blocked until + * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads + * the VE info. + * + * If a guest kernel action which would normally cause a #VE occurs in + * the interrupt-disabled region before TDGETVEINFO, a #DF (fault + * exception) is delivered to the guest which will result in an oops. + * + * The entry code has been audited carefully for following these expectations. + * Changes in the entry code have to be audited for correctness vs. this + * aspect. Similarly to #PF, #VE in these places will expose kernel to + * privilege escalation or may lead to random crashes. + */ +DEFINE_IDTENTRY(exc_virtualization_exception) +{ + struct ve_info ve; + + /* + * NMIs/Machine-checks/Interrupts will be in a disabled state + * till TDGETVEINFO TDCALL is executed. This ensures that VE + * info cannot be overwritten by a nested #VE. + */ + tdx_get_ve_info(&ve); + + cond_local_irq_enable(regs); + + /* + * If tdx_handle_virt_exception() could not process + * it successfully, treat it as #GP(0) and handle it. + */ + if (!tdx_handle_virt_exception(regs, &ve)) + ve_raise_fault(regs, 0, ve.gla); + + cond_local_irq_disable(regs); +} + +#endif + #ifdef CONFIG_X86_32 DEFINE_IDTENTRY_SW(iret_error) { @@ -1064,12 +1682,15 @@ void __init trap_init(void) /* Init cpu_entry_area before IST entries are set up */ setup_cpu_entry_areas(); - idt_setup_traps(); + /* Init GHCB memory pages when running as an SEV-ES guest */ + sev_es_init_vc_handling(); - /* - * Should be a barrier for any external CPU state: - */ - cpu_init(); + /* Initialize TSS before setting up traps so ISTs work */ + cpu_init_exception_handling(true); + + /* Setup traps as cpu_init() might #GP */ + if (!cpu_feature_enabled(X86_FEATURE_FRED)) + idt_setup_traps(); - idt_setup_ist_traps(); + cpu_init(); } |
