summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/cpuid.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kvm/cpuid.c')
-rw-r--r--arch/x86/kvm/cpuid.c2308
1 files changed, 1761 insertions, 547 deletions
diff --git a/arch/x86/kvm/cpuid.c b/arch/x86/kvm/cpuid.c
index 59ca2eea522c..d563a948318b 100644
--- a/arch/x86/kvm/cpuid.c
+++ b/arch/x86/kvm/cpuid.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
/*
* Kernel-based Virtual Machine driver for Linux
* cpuid support routines
@@ -6,13 +7,11 @@
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates.
* Copyright IBM Corporation, 2008
- *
- * This work is licensed under the terms of the GNU GPL, version 2. See
- * the COPYING file in the top-level directory.
- *
*/
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kvm_host.h>
+#include "linux/lockdep.h"
#include <linux/export.h>
#include <linux/vmalloc.h>
#include <linux/uaccess.h>
@@ -21,167 +20,557 @@
#include <asm/processor.h>
#include <asm/user.h>
#include <asm/fpu/xstate.h>
+#include <asm/sgx.h>
+#include <asm/cpuid/api.h>
#include "cpuid.h"
#include "lapic.h"
#include "mmu.h"
#include "trace.h"
#include "pmu.h"
+#include "xen.h"
+
+/*
+ * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
+ * aligned to sizeof(unsigned long) because it's not accessed via bitops.
+ */
+u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_cpu_caps);
+
+struct cpuid_xstate_sizes {
+ u32 eax;
+ u32 ebx;
+ u32 ecx;
+};
+
+static struct cpuid_xstate_sizes xstate_sizes[XFEATURE_MAX] __ro_after_init;
+
+void __init kvm_init_xstate_sizes(void)
+{
+ u32 ign;
+ int i;
+
+ for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes); i++) {
+ struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
-static u32 xstate_required_size(u64 xstate_bv, bool compacted)
+ cpuid_count(0xD, i, &xs->eax, &xs->ebx, &xs->ecx, &ign);
+ }
+}
+
+u32 xstate_required_size(u64 xstate_bv, bool compacted)
{
- int feature_bit = 0;
u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
+ int i;
xstate_bv &= XFEATURE_MASK_EXTEND;
- while (xstate_bv) {
- if (xstate_bv & 0x1) {
- u32 eax, ebx, ecx, edx, offset;
- cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
- offset = compacted ? ret : ebx;
- ret = max(ret, offset + eax);
- }
+ for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes) && xstate_bv; i++) {
+ struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
+ u32 offset;
- xstate_bv >>= 1;
- feature_bit++;
+ if (!(xstate_bv & BIT_ULL(i)))
+ continue;
+
+ /* ECX[1]: 64B alignment in compacted form */
+ if (compacted)
+ offset = (xs->ecx & 0x2) ? ALIGN(ret, 64) : ret;
+ else
+ offset = xs->ebx;
+ ret = max(ret, offset + xs->eax);
+ xstate_bv &= ~BIT_ULL(i);
}
return ret;
}
-bool kvm_mpx_supported(void)
+struct kvm_cpuid_entry2 *kvm_find_cpuid_entry2(
+ struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
+{
+ struct kvm_cpuid_entry2 *e;
+ int i;
+
+ /*
+ * KVM has a semi-arbitrary rule that querying the guest's CPUID model
+ * with IRQs disabled is disallowed. The CPUID model can legitimately
+ * have over one hundred entries, i.e. the lookup is slow, and IRQs are
+ * typically disabled in KVM only when KVM is in a performance critical
+ * path, e.g. the core VM-Enter/VM-Exit run loop. Nothing will break
+ * if this rule is violated, this assertion is purely to flag potential
+ * performance issues. If this fires, consider moving the lookup out
+ * of the hotpath, e.g. by caching information during CPUID updates.
+ */
+ lockdep_assert_irqs_enabled();
+
+ for (i = 0; i < nent; i++) {
+ e = &entries[i];
+
+ if (e->function != function)
+ continue;
+
+ /*
+ * If the index isn't significant, use the first entry with a
+ * matching function. It's userspace's responsibility to not
+ * provide "duplicate" entries in all cases.
+ */
+ if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
+ return e;
+
+
+ /*
+ * Similarly, use the first matching entry if KVM is doing a
+ * lookup (as opposed to emulating CPUID) for a function that's
+ * architecturally defined as not having a significant index.
+ */
+ if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
+ /*
+ * Direct lookups from KVM should not diverge from what
+ * KVM defines internally (the architectural behavior).
+ */
+ WARN_ON_ONCE(cpuid_function_is_indexed(function));
+ return e;
+ }
+ }
+
+ return NULL;
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_find_cpuid_entry2);
+
+static int kvm_check_cpuid(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+ u64 xfeatures;
+
+ /*
+ * The existing code assumes virtual address is 48-bit or 57-bit in the
+ * canonical address checks; exit if it is ever changed.
+ */
+ best = kvm_find_cpuid_entry(vcpu, 0x80000008);
+ if (best) {
+ int vaddr_bits = (best->eax & 0xff00) >> 8;
+
+ if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
+ return -EINVAL;
+ }
+
+ /*
+ * Exposing dynamic xfeatures to the guest requires additional
+ * enabling in the FPU, e.g. to expand the guest XSAVE state size.
+ */
+ best = kvm_find_cpuid_entry_index(vcpu, 0xd, 0);
+ if (!best)
+ return 0;
+
+ xfeatures = best->eax | ((u64)best->edx << 32);
+ xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
+ if (!xfeatures)
+ return 0;
+
+ return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
+}
+
+static u32 kvm_apply_cpuid_pv_features_quirk(struct kvm_vcpu *vcpu);
+static void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu);
+
+/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
+static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
+ int nent)
+{
+ struct kvm_cpuid_entry2 *orig;
+ int i;
+
+ /*
+ * Apply runtime CPUID updates to the incoming CPUID entries to avoid
+ * false positives due mismatches on KVM-owned feature flags.
+ *
+ * Note! @e2 and @nent track the _old_ CPUID entries!
+ */
+ kvm_update_cpuid_runtime(vcpu);
+ kvm_apply_cpuid_pv_features_quirk(vcpu);
+
+ if (nent != vcpu->arch.cpuid_nent)
+ return -EINVAL;
+
+ for (i = 0; i < nent; i++) {
+ orig = &vcpu->arch.cpuid_entries[i];
+ if (e2[i].function != orig->function ||
+ e2[i].index != orig->index ||
+ e2[i].flags != orig->flags ||
+ e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
+ e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
+ const char *sig)
{
- return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
- && kvm_x86_ops->mpx_supported());
+ struct kvm_hypervisor_cpuid cpuid = {};
+ struct kvm_cpuid_entry2 *entry;
+ u32 base;
+
+ for_each_possible_cpuid_base_hypervisor(base) {
+ entry = kvm_find_cpuid_entry(vcpu, base);
+
+ if (entry) {
+ u32 signature[3];
+
+ signature[0] = entry->ebx;
+ signature[1] = entry->ecx;
+ signature[2] = entry->edx;
+
+ if (!memcmp(signature, sig, sizeof(signature))) {
+ cpuid.base = base;
+ cpuid.limit = entry->eax;
+ break;
+ }
+ }
+ }
+
+ return cpuid;
}
-EXPORT_SYMBOL_GPL(kvm_mpx_supported);
-u64 kvm_supported_xcr0(void)
+static u32 kvm_apply_cpuid_pv_features_quirk(struct kvm_vcpu *vcpu)
{
- u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
+ struct kvm_hypervisor_cpuid kvm_cpuid;
+ struct kvm_cpuid_entry2 *best;
+
+ kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
+ if (!kvm_cpuid.base)
+ return 0;
+
+ best = kvm_find_cpuid_entry(vcpu, kvm_cpuid.base | KVM_CPUID_FEATURES);
+ if (!best)
+ return 0;
- if (!kvm_mpx_supported())
- xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
+ if (kvm_hlt_in_guest(vcpu->kvm))
+ best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
- return xcr0;
+ return best->eax;
}
-#define F(x) bit(X86_FEATURE_##x)
+/*
+ * Calculate guest's supported XCR0 taking into account guest CPUID data and
+ * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
+ */
+static u64 cpuid_get_supported_xcr0(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
-/* These are scattered features in cpufeatures.h. */
-#define KVM_CPUID_BIT_AVX512_4VNNIW 2
-#define KVM_CPUID_BIT_AVX512_4FMAPS 3
-#define KF(x) bit(KVM_CPUID_BIT_##x)
+ best = kvm_find_cpuid_entry_index(vcpu, 0xd, 0);
+ if (!best)
+ return 0;
+
+ return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
+}
-int kvm_update_cpuid(struct kvm_vcpu *vcpu)
+static u64 cpuid_get_supported_xss(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
- struct kvm_lapic *apic = vcpu->arch.apic;
- best = kvm_find_cpuid_entry(vcpu, 1, 0);
+ best = kvm_find_cpuid_entry_index(vcpu, 0xd, 1);
if (!best)
return 0;
- /* Update OSXSAVE bit */
- if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
- best->ecx &= ~F(OSXSAVE);
- if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
- best->ecx |= F(OSXSAVE);
- }
+ return (best->ecx | ((u64)best->edx << 32)) & kvm_caps.supported_xss;
+}
- best->edx &= ~F(APIC);
- if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
- best->edx |= F(APIC);
+static __always_inline void kvm_update_feature_runtime(struct kvm_vcpu *vcpu,
+ struct kvm_cpuid_entry2 *entry,
+ unsigned int x86_feature,
+ bool has_feature)
+{
+ cpuid_entry_change(entry, x86_feature, has_feature);
+ guest_cpu_cap_change(vcpu, x86_feature, has_feature);
+}
- if (apic) {
- if (best->ecx & F(TSC_DEADLINE_TIMER))
- apic->lapic_timer.timer_mode_mask = 3 << 17;
- else
- apic->lapic_timer.timer_mode_mask = 1 << 17;
- }
+static void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+
+ vcpu->arch.cpuid_dynamic_bits_dirty = false;
- best = kvm_find_cpuid_entry(vcpu, 7, 0);
+ best = kvm_find_cpuid_entry(vcpu, 1);
if (best) {
- /* Update OSPKE bit */
- if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
- best->ecx &= ~F(OSPKE);
- if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
- best->ecx |= F(OSPKE);
- }
- }
+ kvm_update_feature_runtime(vcpu, best, X86_FEATURE_OSXSAVE,
+ kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
- best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
- if (!best) {
- vcpu->arch.guest_supported_xcr0 = 0;
- vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
- } else {
- vcpu->arch.guest_supported_xcr0 =
- (best->eax | ((u64)best->edx << 32)) &
- kvm_supported_xcr0();
- vcpu->arch.guest_xstate_size = best->ebx =
- xstate_required_size(vcpu->arch.xcr0, false);
+ kvm_update_feature_runtime(vcpu, best, X86_FEATURE_APIC,
+ vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
+
+ if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
+ kvm_update_feature_runtime(vcpu, best, X86_FEATURE_MWAIT,
+ vcpu->arch.ia32_misc_enable_msr &
+ MSR_IA32_MISC_ENABLE_MWAIT);
}
- best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
- if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
- best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
+ best = kvm_find_cpuid_entry_index(vcpu, 7, 0);
+ if (best)
+ kvm_update_feature_runtime(vcpu, best, X86_FEATURE_OSPKE,
+ kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
- /*
- * The existing code assumes virtual address is 48-bit in the canonical
- * address checks; exit if it is ever changed.
- */
- best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
- if (best && ((best->eax & 0xff00) >> 8) != 48 &&
- ((best->eax & 0xff00) >> 8) != 0)
- return -EINVAL;
- /* Update physical-address width */
- vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
+ best = kvm_find_cpuid_entry_index(vcpu, 0xD, 0);
+ if (best)
+ best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
- kvm_pmu_refresh(vcpu);
- return 0;
+ best = kvm_find_cpuid_entry_index(vcpu, 0xD, 1);
+ if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
+ cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
+ best->ebx = xstate_required_size(vcpu->arch.xcr0 |
+ vcpu->arch.ia32_xss, true);
}
-static int is_efer_nx(void)
+static bool kvm_cpuid_has_hyperv(struct kvm_vcpu *vcpu)
{
- unsigned long long efer = 0;
+#ifdef CONFIG_KVM_HYPERV
+ struct kvm_cpuid_entry2 *entry;
- rdmsrl_safe(MSR_EFER, &efer);
- return efer & EFER_NX;
+ entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_INTERFACE);
+ return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
+#else
+ return false;
+#endif
}
-static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
+static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
{
+ struct kvm_cpuid_entry2 *entry;
+
+ entry = kvm_find_cpuid_entry(vcpu, 0);
+ if (!entry)
+ return false;
+
+ return is_guest_vendor_amd(entry->ebx, entry->ecx, entry->edx) ||
+ is_guest_vendor_hygon(entry->ebx, entry->ecx, entry->edx);
+}
+
+/*
+ * This isn't truly "unsafe", but except for the cpu_caps initialization code,
+ * all register lookups should use __cpuid_entry_get_reg(), which provides
+ * compile-time validation of the input.
+ */
+static u32 cpuid_get_reg_unsafe(struct kvm_cpuid_entry2 *entry, u32 reg)
+{
+ switch (reg) {
+ case CPUID_EAX:
+ return entry->eax;
+ case CPUID_EBX:
+ return entry->ebx;
+ case CPUID_ECX:
+ return entry->ecx;
+ case CPUID_EDX:
+ return entry->edx;
+ default:
+ WARN_ON_ONCE(1);
+ return 0;
+ }
+}
+
+static int cpuid_func_emulated(struct kvm_cpuid_entry2 *entry, u32 func,
+ bool include_partially_emulated);
+
+void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+ struct kvm_cpuid_entry2 *best;
+ struct kvm_cpuid_entry2 *entry;
+ bool allow_gbpages;
int i;
- struct kvm_cpuid_entry2 *e, *entry;
- entry = NULL;
- for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
- e = &vcpu->arch.cpuid_entries[i];
- if (e->function == 0x80000001) {
- entry = e;
- break;
- }
+ memset(vcpu->arch.cpu_caps, 0, sizeof(vcpu->arch.cpu_caps));
+ BUILD_BUG_ON(ARRAY_SIZE(reverse_cpuid) != NR_KVM_CPU_CAPS);
+
+ /*
+ * Reset guest capabilities to userspace's guest CPUID definition, i.e.
+ * honor userspace's definition for features that don't require KVM or
+ * hardware management/support (or that KVM simply doesn't care about).
+ */
+ for (i = 0; i < NR_KVM_CPU_CAPS; i++) {
+ const struct cpuid_reg cpuid = reverse_cpuid[i];
+ struct kvm_cpuid_entry2 emulated;
+
+ if (!cpuid.function)
+ continue;
+
+ entry = kvm_find_cpuid_entry_index(vcpu, cpuid.function, cpuid.index);
+ if (!entry)
+ continue;
+
+ cpuid_func_emulated(&emulated, cpuid.function, true);
+
+ /*
+ * A vCPU has a feature if it's supported by KVM and is enabled
+ * in guest CPUID. Note, this includes features that are
+ * supported by KVM but aren't advertised to userspace!
+ */
+ vcpu->arch.cpu_caps[i] = kvm_cpu_caps[i] |
+ cpuid_get_reg_unsafe(&emulated, cpuid.reg);
+ vcpu->arch.cpu_caps[i] &= cpuid_get_reg_unsafe(entry, cpuid.reg);
}
- if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
- entry->edx &= ~F(NX);
- printk(KERN_INFO "kvm: guest NX capability removed\n");
+
+ kvm_update_cpuid_runtime(vcpu);
+
+ /*
+ * If TDP is enabled, let the guest use GBPAGES if they're supported in
+ * hardware. The hardware page walker doesn't let KVM disable GBPAGES,
+ * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
+ * walk for performance and complexity reasons. Not to mention KVM
+ * _can't_ solve the problem because GVA->GPA walks aren't visible to
+ * KVM once a TDP translation is installed. Mimic hardware behavior so
+ * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
+ * If TDP is disabled, honor *only* guest CPUID as KVM has full control
+ * and can install smaller shadow pages if the host lacks 1GiB support.
+ */
+ allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
+ guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES);
+ guest_cpu_cap_change(vcpu, X86_FEATURE_GBPAGES, allow_gbpages);
+
+ best = kvm_find_cpuid_entry(vcpu, 1);
+ if (best && apic) {
+ if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
+ apic->lapic_timer.timer_mode_mask = 3 << 17;
+ else
+ apic->lapic_timer.timer_mode_mask = 1 << 17;
+
+ kvm_apic_set_version(vcpu);
}
+
+ vcpu->arch.guest_supported_xcr0 = cpuid_get_supported_xcr0(vcpu);
+ vcpu->arch.guest_supported_xss = cpuid_get_supported_xss(vcpu);
+
+ vcpu->arch.pv_cpuid.features = kvm_apply_cpuid_pv_features_quirk(vcpu);
+
+ vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
+ vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
+ vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
+
+ kvm_pmu_refresh(vcpu);
+
+#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
+ vcpu->arch.cr4_guest_rsvd_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_) |
+ __cr4_reserved_bits(guest_cpu_cap_has, vcpu);
+#undef __kvm_cpu_cap_has
+
+ kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu));
+
+ /* Invoke the vendor callback only after the above state is updated. */
+ kvm_x86_call(vcpu_after_set_cpuid)(vcpu);
+
+ /*
+ * Except for the MMU, which needs to do its thing any vendor specific
+ * adjustments to the reserved GPA bits.
+ */
+ kvm_mmu_after_set_cpuid(vcpu);
+
+ kvm_make_request(KVM_REQ_RECALC_INTERCEPTS, vcpu);
}
int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
- best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
+ best = kvm_find_cpuid_entry(vcpu, 0x80000000);
if (!best || best->eax < 0x80000008)
goto not_found;
- best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
+ best = kvm_find_cpuid_entry(vcpu, 0x80000008);
if (best)
return best->eax & 0xff;
not_found:
return 36;
}
-EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
+
+int cpuid_query_maxguestphyaddr(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+
+ best = kvm_find_cpuid_entry(vcpu, 0x80000000);
+ if (!best || best->eax < 0x80000008)
+ goto not_found;
+ best = kvm_find_cpuid_entry(vcpu, 0x80000008);
+ if (best)
+ return (best->eax >> 16) & 0xff;
+not_found:
+ return 0;
+}
+
+/*
+ * This "raw" version returns the reserved GPA bits without any adjustments for
+ * encryption technologies that usurp bits. The raw mask should be used if and
+ * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
+ */
+u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
+{
+ return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
+}
+
+static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
+ int nent)
+{
+ u32 vcpu_caps[NR_KVM_CPU_CAPS];
+ int r;
+
+ /*
+ * Swap the existing (old) entries with the incoming (new) entries in
+ * order to massage the new entries, e.g. to account for dynamic bits
+ * that KVM controls, without clobbering the current guest CPUID, which
+ * KVM needs to preserve in order to unwind on failure.
+ *
+ * Similarly, save the vCPU's current cpu_caps so that the capabilities
+ * can be updated alongside the CPUID entries when performing runtime
+ * updates. Full initialization is done if and only if the vCPU hasn't
+ * run, i.e. only if userspace is potentially changing CPUID features.
+ */
+ swap(vcpu->arch.cpuid_entries, e2);
+ swap(vcpu->arch.cpuid_nent, nent);
+
+ memcpy(vcpu_caps, vcpu->arch.cpu_caps, sizeof(vcpu_caps));
+ BUILD_BUG_ON(sizeof(vcpu_caps) != sizeof(vcpu->arch.cpu_caps));
+
+ /*
+ * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
+ * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
+ * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page
+ * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
+ * the core vCPU model on the fly. It would've been better to forbid any
+ * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
+ * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
+ * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
+ * whether the supplied CPUID data is equal to what's already set.
+ */
+ if (kvm_vcpu_has_run(vcpu)) {
+ r = kvm_cpuid_check_equal(vcpu, e2, nent);
+ if (r)
+ goto err;
+ goto success;
+ }
+
+#ifdef CONFIG_KVM_HYPERV
+ if (kvm_cpuid_has_hyperv(vcpu)) {
+ r = kvm_hv_vcpu_init(vcpu);
+ if (r)
+ goto err;
+ }
+#endif
+
+ r = kvm_check_cpuid(vcpu);
+ if (r)
+ goto err;
+
+#ifdef CONFIG_KVM_XEN
+ vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
+#endif
+ kvm_vcpu_after_set_cpuid(vcpu);
+
+success:
+ kvfree(e2);
+ return 0;
+
+err:
+ memcpy(vcpu->arch.cpu_caps, vcpu_caps, sizeof(vcpu_caps));
+ swap(vcpu->arch.cpuid_entries, e2);
+ swap(vcpu->arch.cpuid_nent, nent);
+ return r;
+}
/* when an old userspace process fills a new kernel module */
int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
@@ -189,42 +578,43 @@ int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
struct kvm_cpuid_entry __user *entries)
{
int r, i;
- struct kvm_cpuid_entry *cpuid_entries = NULL;
+ struct kvm_cpuid_entry *e = NULL;
+ struct kvm_cpuid_entry2 *e2 = NULL;
- r = -E2BIG;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
- goto out;
- r = -ENOMEM;
+ return -E2BIG;
+
if (cpuid->nent) {
- cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
- cpuid->nent);
- if (!cpuid_entries)
- goto out;
- r = -EFAULT;
- if (copy_from_user(cpuid_entries, entries,
- cpuid->nent * sizeof(struct kvm_cpuid_entry)))
- goto out;
+ e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
+ if (IS_ERR(e))
+ return PTR_ERR(e);
+
+ e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
+ if (!e2) {
+ r = -ENOMEM;
+ goto out_free_cpuid;
+ }
}
for (i = 0; i < cpuid->nent; i++) {
- vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
- vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
- vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
- vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
- vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
- vcpu->arch.cpuid_entries[i].index = 0;
- vcpu->arch.cpuid_entries[i].flags = 0;
- vcpu->arch.cpuid_entries[i].padding[0] = 0;
- vcpu->arch.cpuid_entries[i].padding[1] = 0;
- vcpu->arch.cpuid_entries[i].padding[2] = 0;
- }
- vcpu->arch.cpuid_nent = cpuid->nent;
- cpuid_fix_nx_cap(vcpu);
- kvm_apic_set_version(vcpu);
- kvm_x86_ops->cpuid_update(vcpu);
- r = kvm_update_cpuid(vcpu);
+ e2[i].function = e[i].function;
+ e2[i].eax = e[i].eax;
+ e2[i].ebx = e[i].ebx;
+ e2[i].ecx = e[i].ecx;
+ e2[i].edx = e[i].edx;
+ e2[i].index = 0;
+ e2[i].flags = 0;
+ e2[i].padding[0] = 0;
+ e2[i].padding[1] = 0;
+ e2[i].padding[2] = 0;
+ }
+
+ r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
+ if (r)
+ kvfree(e2);
+
+out_free_cpuid:
+ kvfree(e);
-out:
- vfree(cpuid_entries);
return r;
}
@@ -232,20 +622,22 @@ int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
+ struct kvm_cpuid_entry2 *e2 = NULL;
int r;
- r = -E2BIG;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
- goto out;
- r = -EFAULT;
- if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
- cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
- goto out;
- vcpu->arch.cpuid_nent = cpuid->nent;
- kvm_apic_set_version(vcpu);
- kvm_x86_ops->cpuid_update(vcpu);
- r = kvm_update_cpuid(vcpu);
-out:
+ return -E2BIG;
+
+ if (cpuid->nent) {
+ e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
+ if (IS_ERR(e2))
+ return PTR_ERR(e2);
+ }
+
+ r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
+ if (r)
+ kvfree(e2);
+
return r;
}
@@ -253,329 +645,1002 @@ int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
- int r;
-
- r = -E2BIG;
if (cpuid->nent < vcpu->arch.cpuid_nent)
- goto out;
- r = -EFAULT;
- if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
+ return -E2BIG;
+
+ if (vcpu->arch.cpuid_dynamic_bits_dirty)
+ kvm_update_cpuid_runtime(vcpu);
+
+ if (copy_to_user(entries, vcpu->arch.cpuid_entries,
vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
- goto out;
- return 0;
+ return -EFAULT;
-out:
cpuid->nent = vcpu->arch.cpuid_nent;
- return r;
+ return 0;
}
-static void cpuid_mask(u32 *word, int wordnum)
+static __always_inline u32 raw_cpuid_get(struct cpuid_reg cpuid)
{
- *word &= boot_cpu_data.x86_capability[wordnum];
+ struct kvm_cpuid_entry2 entry;
+ u32 base;
+
+ /*
+ * KVM only supports features defined by Intel (0x0), AMD (0x80000000),
+ * and Centaur (0xc0000000). WARN if a feature for new vendor base is
+ * defined, as this and other code would need to be updated.
+ */
+ base = cpuid.function & 0xffff0000;
+ if (WARN_ON_ONCE(base && base != 0x80000000 && base != 0xc0000000))
+ return 0;
+
+ if (cpuid_eax(base) < cpuid.function)
+ return 0;
+
+ cpuid_count(cpuid.function, cpuid.index,
+ &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
+
+ return *__cpuid_entry_get_reg(&entry, cpuid.reg);
}
-static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
- u32 index)
+/*
+ * For kernel-defined leafs, mask KVM's supported feature set with the kernel's
+ * capabilities as well as raw CPUID. For KVM-defined leafs, consult only raw
+ * CPUID, as KVM is the one and only authority (in the kernel).
+ */
+#define kvm_cpu_cap_init(leaf, feature_initializers...) \
+do { \
+ const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32); \
+ const u32 __maybe_unused kvm_cpu_cap_init_in_progress = leaf; \
+ const u32 *kernel_cpu_caps = boot_cpu_data.x86_capability; \
+ u32 kvm_cpu_cap_passthrough = 0; \
+ u32 kvm_cpu_cap_synthesized = 0; \
+ u32 kvm_cpu_cap_emulated = 0; \
+ u32 kvm_cpu_cap_features = 0; \
+ \
+ feature_initializers \
+ \
+ kvm_cpu_caps[leaf] = kvm_cpu_cap_features; \
+ \
+ if (leaf < NCAPINTS) \
+ kvm_cpu_caps[leaf] &= kernel_cpu_caps[leaf]; \
+ \
+ kvm_cpu_caps[leaf] |= kvm_cpu_cap_passthrough; \
+ kvm_cpu_caps[leaf] &= (raw_cpuid_get(cpuid) | \
+ kvm_cpu_cap_synthesized); \
+ kvm_cpu_caps[leaf] |= kvm_cpu_cap_emulated; \
+} while (0)
+
+/*
+ * Assert that the feature bit being declared, e.g. via F(), is in the CPUID
+ * word that's being initialized. Exempt 0x8000_0001.EDX usage of 0x1.EDX
+ * features, as AMD duplicated many 0x1.EDX features into 0x8000_0001.EDX.
+ */
+#define KVM_VALIDATE_CPU_CAP_USAGE(name) \
+do { \
+ u32 __leaf = __feature_leaf(X86_FEATURE_##name); \
+ \
+ BUILD_BUG_ON(__leaf != kvm_cpu_cap_init_in_progress); \
+} while (0)
+
+#define F(name) \
+({ \
+ KVM_VALIDATE_CPU_CAP_USAGE(name); \
+ kvm_cpu_cap_features |= feature_bit(name); \
+})
+
+/* Scattered Flag - For features that are scattered by cpufeatures.h. */
+#define SCATTERED_F(name) \
+({ \
+ BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES); \
+ KVM_VALIDATE_CPU_CAP_USAGE(name); \
+ if (boot_cpu_has(X86_FEATURE_##name)) \
+ F(name); \
+})
+
+/* Features that KVM supports only on 64-bit kernels. */
+#define X86_64_F(name) \
+({ \
+ KVM_VALIDATE_CPU_CAP_USAGE(name); \
+ if (IS_ENABLED(CONFIG_X86_64)) \
+ F(name); \
+})
+
+/*
+ * Emulated Feature - For features that KVM emulates in software irrespective
+ * of host CPU/kernel support.
+ */
+#define EMULATED_F(name) \
+({ \
+ kvm_cpu_cap_emulated |= feature_bit(name); \
+ F(name); \
+})
+
+/*
+ * Synthesized Feature - For features that are synthesized into boot_cpu_data,
+ * i.e. may not be present in the raw CPUID, but can still be advertised to
+ * userspace. Primarily used for mitigation related feature flags.
+ */
+#define SYNTHESIZED_F(name) \
+({ \
+ kvm_cpu_cap_synthesized |= feature_bit(name); \
+ F(name); \
+})
+
+/*
+ * Passthrough Feature - For features that KVM supports based purely on raw
+ * hardware CPUID, i.e. that KVM virtualizes even if the host kernel doesn't
+ * use the feature. Simply force set the feature in KVM's capabilities, raw
+ * CPUID support will be factored in by kvm_cpu_cap_mask().
+ */
+#define PASSTHROUGH_F(name) \
+({ \
+ kvm_cpu_cap_passthrough |= feature_bit(name); \
+ F(name); \
+})
+
+/*
+ * Aliased Features - For features in 0x8000_0001.EDX that are duplicates of
+ * identical 0x1.EDX features, and thus are aliased from 0x1 to 0x8000_0001.
+ */
+#define ALIASED_1_EDX_F(name) \
+({ \
+ BUILD_BUG_ON(__feature_leaf(X86_FEATURE_##name) != CPUID_1_EDX); \
+ BUILD_BUG_ON(kvm_cpu_cap_init_in_progress != CPUID_8000_0001_EDX); \
+ kvm_cpu_cap_features |= feature_bit(name); \
+})
+
+/*
+ * Vendor Features - For features that KVM supports, but are added in later
+ * because they require additional vendor enabling.
+ */
+#define VENDOR_F(name) \
+({ \
+ KVM_VALIDATE_CPU_CAP_USAGE(name); \
+})
+
+/*
+ * Runtime Features - For features that KVM dynamically sets/clears at runtime,
+ * e.g. when CR4 changes, but which are never advertised to userspace.
+ */
+#define RUNTIME_F(name) \
+({ \
+ KVM_VALIDATE_CPU_CAP_USAGE(name); \
+})
+
+/*
+ * Undefine the MSR bit macro to avoid token concatenation issues when
+ * processing X86_FEATURE_SPEC_CTRL_SSBD.
+ */
+#undef SPEC_CTRL_SSBD
+
+/* DS is defined by ptrace-abi.h on 32-bit builds. */
+#undef DS
+
+void kvm_set_cpu_caps(void)
+{
+ memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
+
+ BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
+ sizeof(boot_cpu_data.x86_capability));
+
+ kvm_cpu_cap_init(CPUID_1_ECX,
+ F(XMM3),
+ F(PCLMULQDQ),
+ VENDOR_F(DTES64),
+ /*
+ * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
+ * advertised to guests via CPUID! MWAIT is also technically a
+ * runtime flag thanks to IA32_MISC_ENABLES; mark it as such so
+ * that KVM is aware that it's a known, unadvertised flag.
+ */
+ RUNTIME_F(MWAIT),
+ /* DS-CPL */
+ VENDOR_F(VMX),
+ /* SMX, EST */
+ /* TM2 */
+ F(SSSE3),
+ /* CNXT-ID */
+ /* Reserved */
+ F(FMA),
+ F(CX16),
+ /* xTPR Update */
+ F(PDCM),
+ F(PCID),
+ /* Reserved, DCA */
+ F(XMM4_1),
+ F(XMM4_2),
+ EMULATED_F(X2APIC),
+ F(MOVBE),
+ F(POPCNT),
+ EMULATED_F(TSC_DEADLINE_TIMER),
+ F(AES),
+ F(XSAVE),
+ RUNTIME_F(OSXSAVE),
+ F(AVX),
+ F(F16C),
+ F(RDRAND),
+ EMULATED_F(HYPERVISOR),
+ );
+
+ kvm_cpu_cap_init(CPUID_1_EDX,
+ F(FPU),
+ F(VME),
+ F(DE),
+ F(PSE),
+ F(TSC),
+ F(MSR),
+ F(PAE),
+ F(MCE),
+ F(CX8),
+ F(APIC),
+ /* Reserved */
+ F(SEP),
+ F(MTRR),
+ F(PGE),
+ F(MCA),
+ F(CMOV),
+ F(PAT),
+ F(PSE36),
+ /* PSN */
+ F(CLFLUSH),
+ /* Reserved */
+ VENDOR_F(DS),
+ /* ACPI */
+ F(MMX),
+ F(FXSR),
+ F(XMM),
+ F(XMM2),
+ F(SELFSNOOP),
+ /* HTT, TM, Reserved, PBE */
+ );
+
+ kvm_cpu_cap_init(CPUID_7_0_EBX,
+ F(FSGSBASE),
+ EMULATED_F(TSC_ADJUST),
+ F(SGX),
+ F(BMI1),
+ F(HLE),
+ F(AVX2),
+ F(FDP_EXCPTN_ONLY),
+ F(SMEP),
+ F(BMI2),
+ F(ERMS),
+ F(INVPCID),
+ F(RTM),
+ F(ZERO_FCS_FDS),
+ VENDOR_F(MPX),
+ F(AVX512F),
+ F(AVX512DQ),
+ F(RDSEED),
+ F(ADX),
+ F(SMAP),
+ F(AVX512IFMA),
+ F(CLFLUSHOPT),
+ F(CLWB),
+ VENDOR_F(INTEL_PT),
+ F(AVX512PF),
+ F(AVX512ER),
+ F(AVX512CD),
+ F(SHA_NI),
+ F(AVX512BW),
+ F(AVX512VL),
+ );
+
+ kvm_cpu_cap_init(CPUID_7_ECX,
+ F(AVX512VBMI),
+ PASSTHROUGH_F(LA57),
+ F(PKU),
+ RUNTIME_F(OSPKE),
+ F(RDPID),
+ F(AVX512_VPOPCNTDQ),
+ F(UMIP),
+ F(AVX512_VBMI2),
+ F(GFNI),
+ F(VAES),
+ F(VPCLMULQDQ),
+ F(AVX512_VNNI),
+ F(AVX512_BITALG),
+ F(CLDEMOTE),
+ F(MOVDIRI),
+ F(MOVDIR64B),
+ VENDOR_F(WAITPKG),
+ F(SGX_LC),
+ F(BUS_LOCK_DETECT),
+ X86_64_F(SHSTK),
+ );
+
+ /*
+ * PKU not yet implemented for shadow paging and requires OSPKE
+ * to be set on the host. Clear it if that is not the case
+ */
+ if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
+ kvm_cpu_cap_clear(X86_FEATURE_PKU);
+
+ /*
+ * Shadow Stacks aren't implemented in the Shadow MMU. Shadow Stack
+ * accesses require "magic" Writable=0,Dirty=1 protection, which KVM
+ * doesn't know how to emulate or map.
+ */
+ if (!tdp_enabled)
+ kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
+
+ kvm_cpu_cap_init(CPUID_7_EDX,
+ F(AVX512_4VNNIW),
+ F(AVX512_4FMAPS),
+ F(SPEC_CTRL),
+ F(SPEC_CTRL_SSBD),
+ EMULATED_F(ARCH_CAPABILITIES),
+ F(INTEL_STIBP),
+ F(MD_CLEAR),
+ F(AVX512_VP2INTERSECT),
+ F(FSRM),
+ F(SERIALIZE),
+ F(TSXLDTRK),
+ F(AVX512_FP16),
+ F(AMX_TILE),
+ F(AMX_INT8),
+ F(AMX_BF16),
+ F(FLUSH_L1D),
+ F(IBT),
+ );
+
+ /*
+ * Disable support for IBT and SHSTK if KVM is configured to emulate
+ * accesses to reserved GPAs, as KVM's emulator doesn't support IBT or
+ * SHSTK, nor does KVM handle Shadow Stack #PFs (see above).
+ */
+ if (allow_smaller_maxphyaddr) {
+ kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
+ kvm_cpu_cap_clear(X86_FEATURE_IBT);
+ }
+
+ if (boot_cpu_has(X86_FEATURE_AMD_IBPB_RET) &&
+ boot_cpu_has(X86_FEATURE_AMD_IBPB) &&
+ boot_cpu_has(X86_FEATURE_AMD_IBRS))
+ kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
+ if (boot_cpu_has(X86_FEATURE_STIBP))
+ kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
+ if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
+ kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
+
+ kvm_cpu_cap_init(CPUID_7_1_EAX,
+ F(SHA512),
+ F(SM3),
+ F(SM4),
+ F(AVX_VNNI),
+ F(AVX512_BF16),
+ F(CMPCCXADD),
+ F(FZRM),
+ F(FSRS),
+ F(FSRC),
+ F(WRMSRNS),
+ X86_64_F(LKGS),
+ F(AMX_FP16),
+ F(AVX_IFMA),
+ F(LAM),
+ );
+
+ kvm_cpu_cap_init(CPUID_7_1_ECX,
+ SCATTERED_F(MSR_IMM),
+ );
+
+ kvm_cpu_cap_init(CPUID_7_1_EDX,
+ F(AVX_VNNI_INT8),
+ F(AVX_NE_CONVERT),
+ F(AMX_COMPLEX),
+ F(AVX_VNNI_INT16),
+ F(PREFETCHITI),
+ F(AVX10),
+ );
+
+ kvm_cpu_cap_init(CPUID_7_2_EDX,
+ F(INTEL_PSFD),
+ F(IPRED_CTRL),
+ F(RRSBA_CTRL),
+ F(DDPD_U),
+ F(BHI_CTRL),
+ F(MCDT_NO),
+ );
+
+ kvm_cpu_cap_init(CPUID_D_1_EAX,
+ F(XSAVEOPT),
+ F(XSAVEC),
+ F(XGETBV1),
+ F(XSAVES),
+ X86_64_F(XFD),
+ );
+
+ kvm_cpu_cap_init(CPUID_12_EAX,
+ SCATTERED_F(SGX1),
+ SCATTERED_F(SGX2),
+ SCATTERED_F(SGX_EDECCSSA),
+ );
+
+ kvm_cpu_cap_init(CPUID_24_0_EBX,
+ F(AVX10_128),
+ F(AVX10_256),
+ F(AVX10_512),
+ );
+
+ kvm_cpu_cap_init(CPUID_8000_0001_ECX,
+ F(LAHF_LM),
+ F(CMP_LEGACY),
+ VENDOR_F(SVM),
+ /* ExtApicSpace */
+ F(CR8_LEGACY),
+ F(ABM),
+ F(SSE4A),
+ F(MISALIGNSSE),
+ F(3DNOWPREFETCH),
+ F(OSVW),
+ /* IBS */
+ F(XOP),
+ /* SKINIT, WDT, LWP */
+ F(FMA4),
+ F(TBM),
+ F(TOPOEXT),
+ VENDOR_F(PERFCTR_CORE),
+ );
+
+ kvm_cpu_cap_init(CPUID_8000_0001_EDX,
+ ALIASED_1_EDX_F(FPU),
+ ALIASED_1_EDX_F(VME),
+ ALIASED_1_EDX_F(DE),
+ ALIASED_1_EDX_F(PSE),
+ ALIASED_1_EDX_F(TSC),
+ ALIASED_1_EDX_F(MSR),
+ ALIASED_1_EDX_F(PAE),
+ ALIASED_1_EDX_F(MCE),
+ ALIASED_1_EDX_F(CX8),
+ ALIASED_1_EDX_F(APIC),
+ /* Reserved */
+ F(SYSCALL),
+ ALIASED_1_EDX_F(MTRR),
+ ALIASED_1_EDX_F(PGE),
+ ALIASED_1_EDX_F(MCA),
+ ALIASED_1_EDX_F(CMOV),
+ ALIASED_1_EDX_F(PAT),
+ ALIASED_1_EDX_F(PSE36),
+ /* Reserved */
+ F(NX),
+ /* Reserved */
+ F(MMXEXT),
+ ALIASED_1_EDX_F(MMX),
+ ALIASED_1_EDX_F(FXSR),
+ F(FXSR_OPT),
+ X86_64_F(GBPAGES),
+ F(RDTSCP),
+ /* Reserved */
+ X86_64_F(LM),
+ F(3DNOWEXT),
+ F(3DNOW),
+ );
+
+ if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
+ kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
+
+ kvm_cpu_cap_init(CPUID_8000_0007_EDX,
+ SCATTERED_F(CONSTANT_TSC),
+ );
+
+ kvm_cpu_cap_init(CPUID_8000_0008_EBX,
+ F(CLZERO),
+ F(XSAVEERPTR),
+ F(WBNOINVD),
+ F(AMD_IBPB),
+ F(AMD_IBRS),
+ F(AMD_SSBD),
+ F(VIRT_SSBD),
+ F(AMD_SSB_NO),
+ F(AMD_STIBP),
+ F(AMD_STIBP_ALWAYS_ON),
+ F(AMD_IBRS_SAME_MODE),
+ PASSTHROUGH_F(EFER_LMSLE_MBZ),
+ F(AMD_PSFD),
+ F(AMD_IBPB_RET),
+ );
+
+ /*
+ * AMD has separate bits for each SPEC_CTRL bit.
+ * arch/x86/kernel/cpu/bugs.c is kind enough to
+ * record that in cpufeatures so use them.
+ */
+ if (boot_cpu_has(X86_FEATURE_IBPB)) {
+ kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
+ if (boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
+ !boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB))
+ kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB_RET);
+ }
+ if (boot_cpu_has(X86_FEATURE_IBRS))
+ kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
+ if (boot_cpu_has(X86_FEATURE_STIBP))
+ kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
+ if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
+ kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
+ if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
+ kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
+ /*
+ * The preference is to use SPEC CTRL MSR instead of the
+ * VIRT_SPEC MSR.
+ */
+ if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
+ !boot_cpu_has(X86_FEATURE_AMD_SSBD))
+ kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
+
+ /* All SVM features required additional vendor module enabling. */
+ kvm_cpu_cap_init(CPUID_8000_000A_EDX,
+ VENDOR_F(NPT),
+ VENDOR_F(VMCBCLEAN),
+ VENDOR_F(FLUSHBYASID),
+ VENDOR_F(NRIPS),
+ VENDOR_F(TSCRATEMSR),
+ VENDOR_F(V_VMSAVE_VMLOAD),
+ VENDOR_F(LBRV),
+ VENDOR_F(PAUSEFILTER),
+ VENDOR_F(PFTHRESHOLD),
+ VENDOR_F(VGIF),
+ VENDOR_F(VNMI),
+ VENDOR_F(SVME_ADDR_CHK),
+ );
+
+ kvm_cpu_cap_init(CPUID_8000_001F_EAX,
+ VENDOR_F(SME),
+ VENDOR_F(SEV),
+ /* VM_PAGE_FLUSH */
+ VENDOR_F(SEV_ES),
+ F(SME_COHERENT),
+ );
+
+ kvm_cpu_cap_init(CPUID_8000_0021_EAX,
+ F(NO_NESTED_DATA_BP),
+ F(WRMSR_XX_BASE_NS),
+ /*
+ * Synthesize "LFENCE is serializing" into the AMD-defined entry
+ * in KVM's supported CPUID, i.e. if the feature is reported as
+ * supported by the kernel. LFENCE_RDTSC was a Linux-defined
+ * synthetic feature long before AMD joined the bandwagon, e.g.
+ * LFENCE is serializing on most CPUs that support SSE2. On
+ * CPUs that don't support AMD's leaf, ANDing with the raw host
+ * CPUID will drop the flags, and reporting support in AMD's
+ * leaf can make it easier for userspace to detect the feature.
+ */
+ SYNTHESIZED_F(LFENCE_RDTSC),
+ /* SmmPgCfgLock */
+ /* 4: Resv */
+ SYNTHESIZED_F(VERW_CLEAR),
+ F(NULL_SEL_CLR_BASE),
+ /* UpperAddressIgnore */
+ F(AUTOIBRS),
+ F(PREFETCHI),
+ EMULATED_F(NO_SMM_CTL_MSR),
+ /* PrefetchCtlMsr */
+ /* GpOnUserCpuid */
+ /* EPSF */
+ SYNTHESIZED_F(SBPB),
+ SYNTHESIZED_F(IBPB_BRTYPE),
+ SYNTHESIZED_F(SRSO_NO),
+ F(SRSO_USER_KERNEL_NO),
+ );
+
+ kvm_cpu_cap_init(CPUID_8000_0021_ECX,
+ SYNTHESIZED_F(TSA_SQ_NO),
+ SYNTHESIZED_F(TSA_L1_NO),
+ );
+
+ kvm_cpu_cap_init(CPUID_8000_0022_EAX,
+ F(PERFMON_V2),
+ );
+
+ if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
+ kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
+
+ kvm_cpu_cap_init(CPUID_C000_0001_EDX,
+ F(XSTORE),
+ F(XSTORE_EN),
+ F(XCRYPT),
+ F(XCRYPT_EN),
+ F(ACE2),
+ F(ACE2_EN),
+ F(PHE),
+ F(PHE_EN),
+ F(PMM),
+ F(PMM_EN),
+ );
+
+ /*
+ * Hide RDTSCP and RDPID if either feature is reported as supported but
+ * probing MSR_TSC_AUX failed. This is purely a sanity check and
+ * should never happen, but the guest will likely crash if RDTSCP or
+ * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
+ * the past. For example, the sanity check may fire if this instance of
+ * KVM is running as L1 on top of an older, broken KVM.
+ */
+ if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
+ kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
+ !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
+ kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
+ kvm_cpu_cap_clear(X86_FEATURE_RDPID);
+ }
+}
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cpu_caps);
+
+#undef F
+#undef SCATTERED_F
+#undef X86_64_F
+#undef EMULATED_F
+#undef SYNTHESIZED_F
+#undef PASSTHROUGH_F
+#undef ALIASED_1_EDX_F
+#undef VENDOR_F
+#undef RUNTIME_F
+
+struct kvm_cpuid_array {
+ struct kvm_cpuid_entry2 *entries;
+ int maxnent;
+ int nent;
+};
+
+static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
{
+ if (array->nent >= array->maxnent)
+ return NULL;
+
+ return &array->entries[array->nent++];
+}
+
+static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
+ u32 function, u32 index)
+{
+ struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
+
+ if (!entry)
+ return NULL;
+
+ memset(entry, 0, sizeof(*entry));
entry->function = function;
entry->index = index;
+ switch (function & 0xC0000000) {
+ case 0x40000000:
+ /* Hypervisor leaves are always synthesized by __do_cpuid_func. */
+ return entry;
+
+ case 0x80000000:
+ /*
+ * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
+ * would result in out-of-bounds calls to do_host_cpuid.
+ */
+ {
+ static int max_cpuid_80000000;
+ if (!READ_ONCE(max_cpuid_80000000))
+ WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
+ if (function > READ_ONCE(max_cpuid_80000000))
+ return entry;
+ }
+ break;
+
+ default:
+ break;
+ }
+
cpuid_count(entry->function, entry->index,
&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
- entry->flags = 0;
+
+ if (cpuid_function_is_indexed(function))
+ entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
+
+ return entry;
}
-static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
- u32 func, u32 index, int *nent, int maxnent)
+static int cpuid_func_emulated(struct kvm_cpuid_entry2 *entry, u32 func,
+ bool include_partially_emulated)
{
+ memset(entry, 0, sizeof(*entry));
+
+ entry->function = func;
+ entry->index = 0;
+ entry->flags = 0;
+
switch (func) {
case 0:
- entry->eax = 1; /* only one leaf currently */
- ++*nent;
- break;
+ entry->eax = 7;
+ return 1;
case 1:
- entry->ecx = F(MOVBE);
- ++*nent;
- break;
+ entry->ecx = feature_bit(MOVBE);
+ /*
+ * KVM allows userspace to enumerate MONITOR+MWAIT support to
+ * the guest, but the MWAIT feature flag is never advertised
+ * to userspace because MONITOR+MWAIT aren't virtualized by
+ * hardware, can't be faithfully emulated in software (KVM
+ * emulates them as NOPs), and allowing the guest to execute
+ * them natively requires enabling a per-VM capability.
+ */
+ if (include_partially_emulated)
+ entry->ecx |= feature_bit(MWAIT);
+ return 1;
+ case 7:
+ entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
+ entry->eax = 0;
+ if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
+ entry->ecx = feature_bit(RDPID);
+ return 1;
default:
- break;
+ return 0;
}
+}
- entry->function = func;
- entry->index = index;
+static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
+{
+ if (array->nent >= array->maxnent)
+ return -E2BIG;
+ array->nent += cpuid_func_emulated(&array->entries[array->nent], func, false);
return 0;
}
-static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
- u32 index, int *nent, int maxnent)
+static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
{
- int r;
- unsigned f_nx = is_efer_nx() ? F(NX) : 0;
-#ifdef CONFIG_X86_64
- unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
- ? F(GBPAGES) : 0;
- unsigned f_lm = F(LM);
-#else
- unsigned f_gbpages = 0;
- unsigned f_lm = 0;
-#endif
- unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
- unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
- unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
- unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
-
- /* cpuid 1.edx */
- const u32 kvm_cpuid_1_edx_x86_features =
- F(FPU) | F(VME) | F(DE) | F(PSE) |
- F(TSC) | F(MSR) | F(PAE) | F(MCE) |
- F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
- F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
- F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
- 0 /* Reserved, DS, ACPI */ | F(MMX) |
- F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
- 0 /* HTT, TM, Reserved, PBE */;
- /* cpuid 0x80000001.edx */
- const u32 kvm_cpuid_8000_0001_edx_x86_features =
- F(FPU) | F(VME) | F(DE) | F(PSE) |
- F(TSC) | F(MSR) | F(PAE) | F(MCE) |
- F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
- F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
- F(PAT) | F(PSE36) | 0 /* Reserved */ |
- f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
- F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
- 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
- /* cpuid 1.ecx */
- const u32 kvm_cpuid_1_ecx_x86_features =
- /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
- * but *not* advertised to guests via CPUID ! */
- F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
- 0 /* DS-CPL, VMX, SMX, EST */ |
- 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
- F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
- F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
- F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
- 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
- F(F16C) | F(RDRAND);
- /* cpuid 0x80000001.ecx */
- const u32 kvm_cpuid_8000_0001_ecx_x86_features =
- F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
- F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
- F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
- 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
-
- /* cpuid 0xC0000001.edx */
- const u32 kvm_cpuid_C000_0001_edx_x86_features =
- F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
- F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
- F(PMM) | F(PMM_EN);
-
- /* cpuid 7.0.ebx */
- const u32 kvm_cpuid_7_0_ebx_x86_features =
- F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
- F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
- F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
- F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
- F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
-
- /* cpuid 0xD.1.eax */
- const u32 kvm_cpuid_D_1_eax_x86_features =
- F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
-
- /* cpuid 7.0.ecx*/
- const u32 kvm_cpuid_7_0_ecx_x86_features =
- F(AVX512VBMI) | F(PKU) | 0 /*OSPKE*/ | F(AVX512_VPOPCNTDQ);
-
- /* cpuid 7.0.edx*/
- const u32 kvm_cpuid_7_0_edx_x86_features =
- KF(AVX512_4VNNIW) | KF(AVX512_4FMAPS);
+ struct kvm_cpuid_entry2 *entry;
+ int r, i, max_idx;
/* all calls to cpuid_count() should be made on the same cpu */
get_cpu();
r = -E2BIG;
- if (*nent >= maxnent)
+ entry = do_host_cpuid(array, function, 0);
+ if (!entry)
goto out;
- do_cpuid_1_ent(entry, function, index);
- ++*nent;
-
switch (function) {
case 0:
- entry->eax = min(entry->eax, (u32)0xd);
+ /* Limited to the highest leaf implemented in KVM. */
+ entry->eax = min(entry->eax, 0x24U);
break;
case 1:
- entry->edx &= kvm_cpuid_1_edx_x86_features;
- cpuid_mask(&entry->edx, CPUID_1_EDX);
- entry->ecx &= kvm_cpuid_1_ecx_x86_features;
- cpuid_mask(&entry->ecx, CPUID_1_ECX);
- /* we support x2apic emulation even if host does not support
- * it since we emulate x2apic in software */
- entry->ecx |= F(X2APIC);
- break;
- /* function 2 entries are STATEFUL. That is, repeated cpuid commands
- * may return different values. This forces us to get_cpu() before
- * issuing the first command, and also to emulate this annoying behavior
- * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
- case 2: {
- int t, times = entry->eax & 0xff;
-
- entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
- entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
- for (t = 1; t < times; ++t) {
- if (*nent >= maxnent)
- goto out;
-
- do_cpuid_1_ent(&entry[t], function, 0);
- entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
- ++*nent;
- }
+ cpuid_entry_override(entry, CPUID_1_EDX);
+ cpuid_entry_override(entry, CPUID_1_ECX);
break;
- }
- /* function 4 has additional index. */
- case 4: {
- int i, cache_type;
-
- entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
- /* read more entries until cache_type is zero */
- for (i = 1; ; ++i) {
- if (*nent >= maxnent)
+ case 2:
+ /*
+ * On ancient CPUs, function 2 entries are STATEFUL. That is,
+ * CPUID(function=2, index=0) may return different results each
+ * time, with the least-significant byte in EAX enumerating the
+ * number of times software should do CPUID(2, 0).
+ *
+ * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
+ * idiotic. Intel's SDM states that EAX & 0xff "will always
+ * return 01H. Software should ignore this value and not
+ * interpret it as an informational descriptor", while AMD's
+ * APM states that CPUID(2) is reserved.
+ *
+ * WARN if a frankenstein CPU that supports virtualization and
+ * a stateful CPUID.0x2 is encountered.
+ */
+ WARN_ON_ONCE((entry->eax & 0xff) > 1);
+ break;
+ /* functions 4 and 0x8000001d have additional index. */
+ case 4:
+ case 0x8000001d:
+ /*
+ * Read entries until the cache type in the previous entry is
+ * zero, i.e. indicates an invalid entry.
+ */
+ for (i = 1; entry->eax & 0x1f; ++i) {
+ entry = do_host_cpuid(array, function, i);
+ if (!entry)
goto out;
-
- cache_type = entry[i - 1].eax & 0x1f;
- if (!cache_type)
- break;
- do_cpuid_1_ent(&entry[i], function, i);
- entry[i].flags |=
- KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
- ++*nent;
}
break;
- }
case 6: /* Thermal management */
entry->eax = 0x4; /* allow ARAT */
entry->ebx = 0;
entry->ecx = 0;
entry->edx = 0;
break;
- case 7: {
- entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
- /* Mask ebx against host capability word 9 */
- if (index == 0) {
- entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
- cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
- // TSC_ADJUST is emulated
- entry->ebx |= F(TSC_ADJUST);
- entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
- cpuid_mask(&entry->ecx, CPUID_7_ECX);
- /* PKU is not yet implemented for shadow paging. */
- if (!tdp_enabled)
- entry->ecx &= ~F(PKU);
- entry->edx &= kvm_cpuid_7_0_edx_x86_features;
- entry->edx &= get_scattered_cpuid_leaf(7, 0, CPUID_EDX);
- } else {
+ /* function 7 has additional index. */
+ case 7:
+ max_idx = entry->eax = min(entry->eax, 2u);
+ cpuid_entry_override(entry, CPUID_7_0_EBX);
+ cpuid_entry_override(entry, CPUID_7_ECX);
+ cpuid_entry_override(entry, CPUID_7_EDX);
+
+ /* KVM only supports up to 0x7.2, capped above via min(). */
+ if (max_idx >= 1) {
+ entry = do_host_cpuid(array, function, 1);
+ if (!entry)
+ goto out;
+
+ cpuid_entry_override(entry, CPUID_7_1_EAX);
+ cpuid_entry_override(entry, CPUID_7_1_ECX);
+ cpuid_entry_override(entry, CPUID_7_1_EDX);
entry->ebx = 0;
+ }
+ if (max_idx >= 2) {
+ entry = do_host_cpuid(array, function, 2);
+ if (!entry)
+ goto out;
+
+ cpuid_entry_override(entry, CPUID_7_2_EDX);
entry->ecx = 0;
- entry->edx = 0;
+ entry->ebx = 0;
+ entry->eax = 0;
}
- entry->eax = 0;
- break;
- }
- case 9:
break;
case 0xa: { /* Architectural Performance Monitoring */
- struct x86_pmu_capability cap;
- union cpuid10_eax eax;
- union cpuid10_edx edx;
+ union cpuid10_eax eax = { };
+ union cpuid10_edx edx = { };
- perf_get_x86_pmu_capability(&cap);
-
- /*
- * Only support guest architectural pmu on a host
- * with architectural pmu.
- */
- if (!cap.version)
- memset(&cap, 0, sizeof(cap));
+ if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
+ entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
+ break;
+ }
- eax.split.version_id = min(cap.version, 2);
- eax.split.num_counters = cap.num_counters_gp;
- eax.split.bit_width = cap.bit_width_gp;
- eax.split.mask_length = cap.events_mask_len;
+ eax.split.version_id = kvm_pmu_cap.version;
+ eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
+ eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
+ eax.split.mask_length = kvm_pmu_cap.events_mask_len;
+ edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
+ edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
- edx.split.num_counters_fixed = cap.num_counters_fixed;
- edx.split.bit_width_fixed = cap.bit_width_fixed;
- edx.split.reserved = 0;
+ if (kvm_pmu_cap.version)
+ edx.split.anythread_deprecated = 1;
entry->eax = eax.full;
- entry->ebx = cap.events_mask;
+ entry->ebx = kvm_pmu_cap.events_mask;
entry->ecx = 0;
entry->edx = edx.full;
break;
}
- /* function 0xb has additional index. */
- case 0xb: {
- int i, level_type;
+ case 0x1f:
+ case 0xb:
+ /*
+ * No topology; a valid topology is indicated by the presence
+ * of subleaf 1.
+ */
+ entry->eax = entry->ebx = entry->ecx = 0;
+ break;
+ case 0xd: {
+ u64 permitted_xcr0 = kvm_get_filtered_xcr0();
+ u64 permitted_xss = kvm_caps.supported_xss;
- entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
- /* read more entries until level_type is zero */
- for (i = 1; ; ++i) {
- if (*nent >= maxnent)
+ entry->eax &= permitted_xcr0;
+ entry->ebx = xstate_required_size(permitted_xcr0, false);
+ entry->ecx = entry->ebx;
+ entry->edx &= permitted_xcr0 >> 32;
+ if (!permitted_xcr0)
+ break;
+
+ entry = do_host_cpuid(array, function, 1);
+ if (!entry)
+ goto out;
+
+ cpuid_entry_override(entry, CPUID_D_1_EAX);
+ if (entry->eax & (feature_bit(XSAVES) | feature_bit(XSAVEC)))
+ entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
+ true);
+ else {
+ WARN_ON_ONCE(permitted_xss != 0);
+ entry->ebx = 0;
+ }
+ entry->ecx &= permitted_xss;
+ entry->edx &= permitted_xss >> 32;
+
+ for (i = 2; i < 64; ++i) {
+ bool s_state;
+ if (permitted_xcr0 & BIT_ULL(i))
+ s_state = false;
+ else if (permitted_xss & BIT_ULL(i))
+ s_state = true;
+ else
+ continue;
+
+ entry = do_host_cpuid(array, function, i);
+ if (!entry)
goto out;
- level_type = entry[i - 1].ecx & 0xff00;
- if (!level_type)
- break;
- do_cpuid_1_ent(&entry[i], function, i);
- entry[i].flags |=
- KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
- ++*nent;
+ /*
+ * The supported check above should have filtered out
+ * invalid sub-leafs. Only valid sub-leafs should
+ * reach this point, and they should have a non-zero
+ * save state size. Furthermore, check whether the
+ * processor agrees with permitted_xcr0/permitted_xss
+ * on whether this is an XCR0- or IA32_XSS-managed area.
+ */
+ if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
+ --array->nent;
+ continue;
+ }
+
+ if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
+ entry->ecx &= ~BIT_ULL(2);
+ entry->edx = 0;
}
break;
}
- case 0xd: {
- int idx, i;
- u64 supported = kvm_supported_xcr0();
+ case 0x12:
+ /* Intel SGX */
+ if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
+ entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
+ break;
+ }
- entry->eax &= supported;
- entry->ebx = xstate_required_size(supported, false);
- entry->ecx = entry->ebx;
- entry->edx &= supported >> 32;
- entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
- if (!supported)
+ /*
+ * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
+ * and max enclave sizes. The SGX sub-features and MISCSELECT
+ * are restricted by kernel and KVM capabilities (like most
+ * feature flags), while enclave size is unrestricted.
+ */
+ cpuid_entry_override(entry, CPUID_12_EAX);
+ entry->ebx &= SGX_MISC_EXINFO;
+
+ entry = do_host_cpuid(array, function, 1);
+ if (!entry)
+ goto out;
+
+ /*
+ * Index 1: SECS.ATTRIBUTES. ATTRIBUTES are restricted a la
+ * feature flags. Advertise all supported flags, including
+ * privileged attributes that require explicit opt-in from
+ * userspace. ATTRIBUTES.XFRM is not adjusted as userspace is
+ * expected to derive it from supported XCR0.
+ */
+ entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
+ entry->ebx &= 0;
+ break;
+ /* Intel PT */
+ case 0x14:
+ if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
+ entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
break;
+ }
- for (idx = 1, i = 1; idx < 64; ++idx) {
- u64 mask = ((u64)1 << idx);
- if (*nent >= maxnent)
+ for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
+ if (!do_host_cpuid(array, function, i))
goto out;
+ }
+ break;
+ /* Intel AMX TILE */
+ case 0x1d:
+ if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
+ entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
+ break;
+ }
- do_cpuid_1_ent(&entry[i], function, idx);
- if (idx == 1) {
- entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
- cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
- entry[i].ebx = 0;
- if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
- entry[i].ebx =
- xstate_required_size(supported,
- true);
- } else {
- if (entry[i].eax == 0 || !(supported & mask))
- continue;
- if (WARN_ON_ONCE(entry[i].ecx & 1))
- continue;
- }
- entry[i].ecx = 0;
- entry[i].edx = 0;
- entry[i].flags |=
- KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
- ++*nent;
- ++i;
+ for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
+ if (!do_host_cpuid(array, function, i))
+ goto out;
}
break;
+ case 0x1e: /* TMUL information */
+ if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
+ entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
+ break;
+ }
+ break;
+ case 0x24: {
+ u8 avx10_version;
+
+ if (!kvm_cpu_cap_has(X86_FEATURE_AVX10)) {
+ entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
+ break;
+ }
+
+ /*
+ * The AVX10 version is encoded in EBX[7:0]. Note, the version
+ * is guaranteed to be >=1 if AVX10 is supported. Note #2, the
+ * version needs to be captured before overriding EBX features!
+ */
+ avx10_version = min_t(u8, entry->ebx & 0xff, 1);
+ cpuid_entry_override(entry, CPUID_24_0_EBX);
+ entry->ebx |= avx10_version;
+
+ entry->eax = 0;
+ entry->ecx = 0;
+ entry->edx = 0;
+ break;
}
case KVM_CPUID_SIGNATURE: {
- static const char signature[12] = "KVMKVMKVM\0\0";
- const u32 *sigptr = (const u32 *)signature;
+ const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
entry->eax = KVM_CPUID_FEATURES;
entry->ebx = sigptr[0];
entry->ecx = sigptr[1];
@@ -589,7 +1654,13 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
(1 << KVM_FEATURE_ASYNC_PF) |
(1 << KVM_FEATURE_PV_EOI) |
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
- (1 << KVM_FEATURE_PV_UNHALT);
+ (1 << KVM_FEATURE_PV_UNHALT) |
+ (1 << KVM_FEATURE_PV_TLB_FLUSH) |
+ (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
+ (1 << KVM_FEATURE_PV_SEND_IPI) |
+ (1 << KVM_FEATURE_POLL_CONTROL) |
+ (1 << KVM_FEATURE_PV_SCHED_YIELD) |
+ (1 << KVM_FEATURE_ASYNC_PF_INT);
if (sched_info_on())
entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
@@ -599,47 +1670,159 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
entry->edx = 0;
break;
case 0x80000000:
- entry->eax = min(entry->eax, 0x8000001a);
+ entry->eax = min(entry->eax, 0x80000022);
+ /*
+ * Serializing LFENCE is reported in a multitude of ways, and
+ * NullSegClearsBase is not reported in CPUID on Zen2; help
+ * userspace by providing the CPUID leaf ourselves.
+ *
+ * However, only do it if the host has CPUID leaf 0x8000001d.
+ * QEMU thinks that it can query the host blindly for that
+ * CPUID leaf if KVM reports that it supports 0x8000001d or
+ * above. The processor merrily returns values from the
+ * highest Intel leaf which QEMU tries to use as the guest's
+ * 0x8000001d. Even worse, this can result in an infinite
+ * loop if said highest leaf has no subleaves indexed by ECX.
+ */
+ if (entry->eax >= 0x8000001d &&
+ (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
+ || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
+ entry->eax = max(entry->eax, 0x80000021);
break;
case 0x80000001:
- entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
- cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
- entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
- cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
+ entry->ebx &= ~GENMASK(27, 16);
+ cpuid_entry_override(entry, CPUID_8000_0001_EDX);
+ cpuid_entry_override(entry, CPUID_8000_0001_ECX);
+ break;
+ case 0x80000005:
+ /* Pass host L1 cache and TLB info. */
+ break;
+ case 0x80000006:
+ /* Drop reserved bits, pass host L2 cache and TLB info. */
+ entry->edx &= ~GENMASK(17, 16);
break;
case 0x80000007: /* Advanced power management */
- /* invariant TSC is CPUID.80000007H:EDX[8] */
- entry->edx &= (1 << 8);
+ cpuid_entry_override(entry, CPUID_8000_0007_EDX);
+
/* mask against host */
entry->edx &= boot_cpu_data.x86_power;
entry->eax = entry->ebx = entry->ecx = 0;
break;
case 0x80000008: {
- unsigned g_phys_as = (entry->eax >> 16) & 0xff;
- unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
- unsigned phys_as = entry->eax & 0xff;
+ /*
+ * GuestPhysAddrSize (EAX[23:16]) is intended for software
+ * use.
+ *
+ * KVM's ABI is to report the effective MAXPHYADDR for the
+ * guest in PhysAddrSize (phys_as), and the maximum
+ * *addressable* GPA in GuestPhysAddrSize (g_phys_as).
+ *
+ * GuestPhysAddrSize is valid if and only if TDP is enabled,
+ * in which case the max GPA that can be addressed by KVM may
+ * be less than the max GPA that can be legally generated by
+ * the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't
+ * support 5-level TDP.
+ */
+ unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
+ unsigned int phys_as, g_phys_as;
- if (!g_phys_as)
+ /*
+ * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
+ * the guest operates in the same PA space as the host, i.e.
+ * reductions in MAXPHYADDR for memory encryption affect shadow
+ * paging, too.
+ *
+ * If TDP is enabled, use the raw bare metal MAXPHYADDR as
+ * reductions to the HPAs do not affect GPAs. The max
+ * addressable GPA is the same as the max effective GPA, except
+ * that it's capped at 48 bits if 5-level TDP isn't supported
+ * (hardware processes bits 51:48 only when walking the fifth
+ * level page table).
+ */
+ if (!tdp_enabled) {
+ phys_as = boot_cpu_data.x86_phys_bits;
+ g_phys_as = 0;
+ } else {
+ phys_as = entry->eax & 0xff;
g_phys_as = phys_as;
- entry->eax = g_phys_as | (virt_as << 8);
- entry->ebx = entry->edx = 0;
+ if (kvm_mmu_get_max_tdp_level() < 5)
+ g_phys_as = min(g_phys_as, 48U);
+ }
+
+ entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16);
+ entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
+ entry->edx = 0;
+ cpuid_entry_override(entry, CPUID_8000_0008_EBX);
break;
}
+ case 0x8000000A:
+ if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
+ entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
+ break;
+ }
+ entry->eax = 1; /* SVM revision 1 */
+ entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
+ ASID emulation to nested SVM */
+ entry->ecx = 0; /* Reserved */
+ cpuid_entry_override(entry, CPUID_8000_000A_EDX);
+ break;
case 0x80000019:
entry->ecx = entry->edx = 0;
break;
case 0x8000001a:
+ entry->eax &= GENMASK(2, 0);
+ entry->ebx = entry->ecx = entry->edx = 0;
break;
- case 0x8000001d:
+ case 0x8000001e:
+ /* Do not return host topology information. */
+ entry->eax = entry->ebx = entry->ecx = 0;
+ entry->edx = 0; /* reserved */
+ break;
+ case 0x8000001F:
+ if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
+ entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
+ } else {
+ cpuid_entry_override(entry, CPUID_8000_001F_EAX);
+ /* Clear NumVMPL since KVM does not support VMPL. */
+ entry->ebx &= ~GENMASK(31, 12);
+ /*
+ * Enumerate '0' for "PA bits reduction", the adjusted
+ * MAXPHYADDR is enumerated directly (see 0x80000008).
+ */
+ entry->ebx &= ~GENMASK(11, 6);
+ }
+ break;
+ case 0x80000020:
+ entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
+ break;
+ case 0x80000021:
+ entry->ebx = entry->edx = 0;
+ cpuid_entry_override(entry, CPUID_8000_0021_EAX);
+ cpuid_entry_override(entry, CPUID_8000_0021_ECX);
break;
+ /* AMD Extended Performance Monitoring and Debug */
+ case 0x80000022: {
+ union cpuid_0x80000022_ebx ebx = { };
+
+ entry->ecx = entry->edx = 0;
+ if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
+ entry->eax = entry->ebx = 0;
+ break;
+ }
+
+ cpuid_entry_override(entry, CPUID_8000_0022_EAX);
+
+ ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
+ entry->ebx = ebx.full;
+ break;
+ }
/*Add support for Centaur's CPUID instruction*/
case 0xC0000000:
/*Just support up to 0xC0000004 now*/
entry->eax = min(entry->eax, 0xC0000004);
break;
case 0xC0000001:
- entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
- cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
+ cpuid_entry_override(entry, CPUID_C000_0001_EDX);
break;
case 3: /* Processor serial number */
case 5: /* MONITOR/MWAIT */
@@ -651,8 +1834,6 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
break;
}
- kvm_x86_ops->set_supported_cpuid(function, entry);
-
r = 0;
out:
@@ -661,27 +1842,40 @@ out:
return r;
}
-static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
- u32 idx, int *nent, int maxnent, unsigned int type)
+static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
+ unsigned int type)
{
if (type == KVM_GET_EMULATED_CPUID)
- return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
+ return __do_cpuid_func_emulated(array, func);
- return __do_cpuid_ent(entry, func, idx, nent, maxnent);
+ return __do_cpuid_func(array, func);
}
-#undef F
-
-struct kvm_cpuid_param {
- u32 func;
- u32 idx;
- bool has_leaf_count;
- bool (*qualifier)(const struct kvm_cpuid_param *param);
-};
+#define CENTAUR_CPUID_SIGNATURE 0xC0000000
-static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
+static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
+ unsigned int type)
{
- return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
+ u32 limit;
+ int r;
+
+ if (func == CENTAUR_CPUID_SIGNATURE &&
+ boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR &&
+ boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
+ return 0;
+
+ r = do_cpuid_func(array, func, type);
+ if (r)
+ return r;
+
+ limit = array->entries[array->nent - 1].eax;
+ for (func = func + 1; func <= limit; ++func) {
+ r = do_cpuid_func(array, func, type);
+ if (r)
+ break;
+ }
+
+ return r;
}
static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
@@ -715,164 +1909,184 @@ int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries,
unsigned int type)
{
- struct kvm_cpuid_entry2 *cpuid_entries;
- int limit, nent = 0, r = -E2BIG, i;
- u32 func;
- static const struct kvm_cpuid_param param[] = {
- { .func = 0, .has_leaf_count = true },
- { .func = 0x80000000, .has_leaf_count = true },
- { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
- { .func = KVM_CPUID_SIGNATURE },
- { .func = KVM_CPUID_FEATURES },
+ static const u32 funcs[] = {
+ 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
};
+ struct kvm_cpuid_array array = {
+ .nent = 0,
+ };
+ int r, i;
+
if (cpuid->nent < 1)
- goto out;
+ return -E2BIG;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
cpuid->nent = KVM_MAX_CPUID_ENTRIES;
if (sanity_check_entries(entries, cpuid->nent, type))
return -EINVAL;
- r = -ENOMEM;
- cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
- if (!cpuid_entries)
- goto out;
-
- r = 0;
- for (i = 0; i < ARRAY_SIZE(param); i++) {
- const struct kvm_cpuid_param *ent = &param[i];
-
- if (ent->qualifier && !ent->qualifier(ent))
- continue;
+ array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
+ if (!array.entries)
+ return -ENOMEM;
- r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
- &nent, cpuid->nent, type);
-
- if (r)
- goto out_free;
-
- if (!ent->has_leaf_count)
- continue;
-
- limit = cpuid_entries[nent - 1].eax;
- for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
- r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
- &nent, cpuid->nent, type);
+ array.maxnent = cpuid->nent;
+ for (i = 0; i < ARRAY_SIZE(funcs); i++) {
+ r = get_cpuid_func(&array, funcs[i], type);
if (r)
goto out_free;
}
+ cpuid->nent = array.nent;
- r = -EFAULT;
- if (copy_to_user(entries, cpuid_entries,
- nent * sizeof(struct kvm_cpuid_entry2)))
- goto out_free;
- cpuid->nent = nent;
- r = 0;
+ if (copy_to_user(entries, array.entries,
+ array.nent * sizeof(struct kvm_cpuid_entry2)))
+ r = -EFAULT;
out_free:
- vfree(cpuid_entries);
-out:
+ kvfree(array.entries);
return r;
}
-static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
+/*
+ * Intel CPUID semantics treats any query for an out-of-range leaf as if the
+ * highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics
+ * returns all zeroes for any undefined leaf, whether or not the leaf is in
+ * range. Centaur/VIA follows Intel semantics.
+ *
+ * A leaf is considered out-of-range if its function is higher than the maximum
+ * supported leaf of its associated class or if its associated class does not
+ * exist.
+ *
+ * There are three primary classes to be considered, with their respective
+ * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary
+ * class exists if a guest CPUID entry for its <base> leaf exists. For a given
+ * class, CPUID.<base>.EAX contains the max supported leaf for the class.
+ *
+ * - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
+ * - Hypervisor: 0x40000000 - 0x4fffffff
+ * - Extended: 0x80000000 - 0xbfffffff
+ * - Centaur: 0xc0000000 - 0xcfffffff
+ *
+ * The Hypervisor class is further subdivided into sub-classes that each act as
+ * their own independent class associated with a 0x100 byte range. E.g. if Qemu
+ * is advertising support for both HyperV and KVM, the resulting Hypervisor
+ * CPUID sub-classes are:
+ *
+ * - HyperV: 0x40000000 - 0x400000ff
+ * - KVM: 0x40000100 - 0x400001ff
+ */
+static struct kvm_cpuid_entry2 *
+get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
{
- struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
- struct kvm_cpuid_entry2 *ej;
- int j = i;
- int nent = vcpu->arch.cpuid_nent;
+ struct kvm_cpuid_entry2 *basic, *class;
+ u32 function = *fn_ptr;
- e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
- /* when no next entry is found, the current entry[i] is reselected */
- do {
- j = (j + 1) % nent;
- ej = &vcpu->arch.cpuid_entries[j];
- } while (ej->function != e->function);
+ basic = kvm_find_cpuid_entry(vcpu, 0);
+ if (!basic)
+ return NULL;
- ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
+ if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
+ is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
+ return NULL;
- return j;
-}
+ if (function >= 0x40000000 && function <= 0x4fffffff)
+ class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
+ else if (function >= 0xc0000000)
+ class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
+ else
+ class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
-/* find an entry with matching function, matching index (if needed), and that
- * should be read next (if it's stateful) */
-static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
- u32 function, u32 index)
-{
- if (e->function != function)
- return 0;
- if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
- return 0;
- if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
- !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
- return 0;
- return 1;
-}
-
-struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
- u32 function, u32 index)
-{
- int i;
- struct kvm_cpuid_entry2 *best = NULL;
+ if (class && function <= class->eax)
+ return NULL;
- for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
- struct kvm_cpuid_entry2 *e;
+ /*
+ * Leaf specific adjustments are also applied when redirecting to the
+ * max basic entry, e.g. if the max basic leaf is 0xb but there is no
+ * entry for CPUID.0xb.index (see below), then the output value for EDX
+ * needs to be pulled from CPUID.0xb.1.
+ */
+ *fn_ptr = basic->eax;
- e = &vcpu->arch.cpuid_entries[i];
- if (is_matching_cpuid_entry(e, function, index)) {
- if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
- move_to_next_stateful_cpuid_entry(vcpu, i);
- best = e;
- break;
- }
- }
- return best;
+ /*
+ * The class does not exist or the requested function is out of range;
+ * the effective CPUID entry is the max basic leaf. Note, the index of
+ * the original requested leaf is observed!
+ */
+ return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
}
-EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
-/*
- * If no match is found, check whether we exceed the vCPU's limit
- * and return the content of the highest valid _standard_ leaf instead.
- * This is to satisfy the CPUID specification.
- */
-static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
- u32 function, u32 index)
+bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
+ u32 *ecx, u32 *edx, bool exact_only)
{
- struct kvm_cpuid_entry2 *maxlevel;
+ u32 orig_function = *eax, function = *eax, index = *ecx;
+ struct kvm_cpuid_entry2 *entry;
+ bool exact, used_max_basic = false;
- maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
- if (!maxlevel || maxlevel->eax >= function)
- return NULL;
- if (function & 0x80000000) {
- maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
- if (!maxlevel)
- return NULL;
- }
- return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
-}
+ if (vcpu->arch.cpuid_dynamic_bits_dirty)
+ kvm_update_cpuid_runtime(vcpu);
-void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
-{
- u32 function = *eax, index = *ecx;
- struct kvm_cpuid_entry2 *best;
+ entry = kvm_find_cpuid_entry_index(vcpu, function, index);
+ exact = !!entry;
- best = kvm_find_cpuid_entry(vcpu, function, index);
-
- if (!best)
- best = check_cpuid_limit(vcpu, function, index);
+ if (!entry && !exact_only) {
+ entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
+ used_max_basic = !!entry;
+ }
- if (best) {
- *eax = best->eax;
- *ebx = best->ebx;
- *ecx = best->ecx;
- *edx = best->edx;
- } else
+ if (entry) {
+ *eax = entry->eax;
+ *ebx = entry->ebx;
+ *ecx = entry->ecx;
+ *edx = entry->edx;
+ if (function == 7 && index == 0) {
+ u64 data;
+ if ((*ebx & (feature_bit(RTM) | feature_bit(HLE))) &&
+ !kvm_msr_read(vcpu, MSR_IA32_TSX_CTRL, &data) &&
+ (data & TSX_CTRL_CPUID_CLEAR))
+ *ebx &= ~(feature_bit(RTM) | feature_bit(HLE));
+ } else if (function == 0x80000007) {
+ if (kvm_hv_invtsc_suppressed(vcpu))
+ *edx &= ~feature_bit(CONSTANT_TSC);
+ } else if (IS_ENABLED(CONFIG_KVM_XEN) &&
+ kvm_xen_is_tsc_leaf(vcpu, function)) {
+ /*
+ * Update guest TSC frequency information if necessary.
+ * Ignore failures, there is no sane value that can be
+ * provided if KVM can't get the TSC frequency.
+ */
+ if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu))
+ kvm_guest_time_update(vcpu);
+
+ if (index == 1) {
+ *ecx = vcpu->arch.pvclock_tsc_mul;
+ *edx = vcpu->arch.pvclock_tsc_shift;
+ } else if (index == 2) {
+ *eax = vcpu->arch.hw_tsc_khz;
+ }
+ }
+ } else {
*eax = *ebx = *ecx = *edx = 0;
- trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
+ /*
+ * When leaf 0BH or 1FH is defined, CL is pass-through
+ * and EDX is always the x2APIC ID, even for undefined
+ * subleaves. Index 1 will exist iff the leaf is
+ * implemented, so we pass through CL iff leaf 1
+ * exists. EDX can be copied from any existing index.
+ */
+ if (function == 0xb || function == 0x1f) {
+ entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
+ if (entry) {
+ *ecx = index & 0xff;
+ *edx = entry->edx;
+ }
+ }
+ }
+ trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
+ used_max_basic);
+ return exact;
}
-EXPORT_SYMBOL_GPL(kvm_cpuid);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_cpuid);
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
@@ -881,13 +2095,13 @@ int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
return 1;
- eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
- ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
- kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
- kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
- kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
- kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
- kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
+ eax = kvm_rax_read(vcpu);
+ ecx = kvm_rcx_read(vcpu);
+ kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
+ kvm_rax_write(vcpu, eax);
+ kvm_rbx_write(vcpu, ebx);
+ kvm_rcx_write(vcpu, ecx);
+ kvm_rdx_write(vcpu, edx);
return kvm_skip_emulated_instruction(vcpu);
}
-EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
+EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_cpuid);