diff options
Diffstat (limited to 'arch/x86/kvm/mmu/mmu.c')
| -rw-r--r-- | arch/x86/kvm/mmu/mmu.c | 1101 |
1 files changed, 794 insertions, 307 deletions
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c index 22e7ad235123..02c450686b4a 100644 --- a/arch/x86/kvm/mmu/mmu.c +++ b/arch/x86/kvm/mmu/mmu.c @@ -110,6 +110,7 @@ static bool __ro_after_init tdp_mmu_allowed; #ifdef CONFIG_X86_64 bool __read_mostly tdp_mmu_enabled = true; module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(tdp_mmu_enabled); #endif static int max_huge_page_level __read_mostly; @@ -501,7 +502,7 @@ static bool mmu_spte_update(u64 *sptep, u64 new_spte) return false; } - if (!spte_has_volatile_bits(old_spte)) + if (!spte_needs_atomic_update(old_spte)) __update_clear_spte_fast(sptep, new_spte); else old_spte = __update_clear_spte_slow(sptep, new_spte); @@ -524,7 +525,7 @@ static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) int level = sptep_to_sp(sptep)->role.level; if (!is_shadow_present_pte(old_spte) || - !spte_has_volatile_bits(old_spte)) + !spte_needs_atomic_update(old_spte)) __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); else old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE); @@ -599,6 +600,12 @@ static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); if (r) return r; + if (kvm_has_mirrored_tdp(vcpu->kvm)) { + r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_external_spt_cache, + PT64_ROOT_MAX_LEVEL); + if (r) + return r; + } r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, PT64_ROOT_MAX_LEVEL); if (r) @@ -618,6 +625,7 @@ static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); + kvm_mmu_free_memory_cache(&vcpu->arch.mmu_external_spt_cache); kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); } @@ -768,7 +776,8 @@ static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); } -void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) +void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, + enum kvm_mmu_type mmu_type) { /* * If it's possible to replace the shadow page with an NX huge page, @@ -782,8 +791,9 @@ void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) return; ++kvm->stat.nx_lpage_splits; + ++kvm->arch.possible_nx_huge_pages[mmu_type].nr_pages; list_add_tail(&sp->possible_nx_huge_page_link, - &kvm->arch.possible_nx_huge_pages); + &kvm->arch.possible_nx_huge_pages[mmu_type].pages); } static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, @@ -792,7 +802,7 @@ static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, sp->nx_huge_page_disallowed = true; if (nx_huge_page_possible) - track_possible_nx_huge_page(kvm, sp); + track_possible_nx_huge_page(kvm, sp, KVM_SHADOW_MMU); } static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) @@ -811,12 +821,14 @@ static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) kvm_mmu_gfn_allow_lpage(slot, gfn); } -void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) +void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, + enum kvm_mmu_type mmu_type) { if (list_empty(&sp->possible_nx_huge_page_link)) return; --kvm->stat.nx_lpage_splits; + --kvm->arch.possible_nx_huge_pages[mmu_type].nr_pages; list_del_init(&sp->possible_nx_huge_page_link); } @@ -824,7 +836,7 @@ static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) { sp->nx_huge_page_disallowed = false; - untrack_possible_nx_huge_page(kvm, sp); + untrack_possible_nx_huge_page(kvm, sp, KVM_SHADOW_MMU); } static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, @@ -846,32 +858,173 @@ static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu * About rmap_head encoding: * * If the bit zero of rmap_head->val is clear, then it points to the only spte - * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct + * in this rmap chain. Otherwise, (rmap_head->val & ~3) points to a struct * pte_list_desc containing more mappings. */ #define KVM_RMAP_MANY BIT(0) /* + * rmaps and PTE lists are mostly protected by mmu_lock (the shadow MMU always + * operates with mmu_lock held for write), but rmaps can be walked without + * holding mmu_lock so long as the caller can tolerate SPTEs in the rmap chain + * being zapped/dropped _while the rmap is locked_. + * + * Other than the KVM_RMAP_LOCKED flag, modifications to rmap entries must be + * done while holding mmu_lock for write. This allows a task walking rmaps + * without holding mmu_lock to concurrently walk the same entries as a task + * that is holding mmu_lock but _not_ the rmap lock. Neither task will modify + * the rmaps, thus the walks are stable. + * + * As alluded to above, SPTEs in rmaps are _not_ protected by KVM_RMAP_LOCKED, + * only the rmap chains themselves are protected. E.g. holding an rmap's lock + * ensures all "struct pte_list_desc" fields are stable. + */ +#define KVM_RMAP_LOCKED BIT(1) + +static unsigned long __kvm_rmap_lock(struct kvm_rmap_head *rmap_head) +{ + unsigned long old_val, new_val; + + lockdep_assert_preemption_disabled(); + + /* + * Elide the lock if the rmap is empty, as lockless walkers (read-only + * mode) don't need to (and can't) walk an empty rmap, nor can they add + * entries to the rmap. I.e. the only paths that process empty rmaps + * do so while holding mmu_lock for write, and are mutually exclusive. + */ + old_val = atomic_long_read(&rmap_head->val); + if (!old_val) + return 0; + + do { + /* + * If the rmap is locked, wait for it to be unlocked before + * trying acquire the lock, e.g. to avoid bouncing the cache + * line. + */ + while (old_val & KVM_RMAP_LOCKED) { + cpu_relax(); + old_val = atomic_long_read(&rmap_head->val); + } + + /* + * Recheck for an empty rmap, it may have been purged by the + * task that held the lock. + */ + if (!old_val) + return 0; + + new_val = old_val | KVM_RMAP_LOCKED; + /* + * Use try_cmpxchg_acquire() to prevent reads and writes to the rmap + * from being reordered outside of the critical section created by + * __kvm_rmap_lock(). + * + * Pairs with the atomic_long_set_release() in kvm_rmap_unlock(). + * + * For the !old_val case, no ordering is needed, as there is no rmap + * to walk. + */ + } while (!atomic_long_try_cmpxchg_acquire(&rmap_head->val, &old_val, new_val)); + + /* + * Return the old value, i.e. _without_ the LOCKED bit set. It's + * impossible for the return value to be 0 (see above), i.e. the read- + * only unlock flow can't get a false positive and fail to unlock. + */ + return old_val; +} + +static unsigned long kvm_rmap_lock(struct kvm *kvm, + struct kvm_rmap_head *rmap_head) +{ + lockdep_assert_held_write(&kvm->mmu_lock); + + return __kvm_rmap_lock(rmap_head); +} + +static void __kvm_rmap_unlock(struct kvm_rmap_head *rmap_head, + unsigned long val) +{ + KVM_MMU_WARN_ON(val & KVM_RMAP_LOCKED); + /* + * Ensure that all accesses to the rmap have completed before unlocking + * the rmap. + * + * Pairs with the atomic_long_try_cmpxchg_acquire() in __kvm_rmap_lock(). + */ + atomic_long_set_release(&rmap_head->val, val); +} + +static void kvm_rmap_unlock(struct kvm *kvm, + struct kvm_rmap_head *rmap_head, + unsigned long new_val) +{ + lockdep_assert_held_write(&kvm->mmu_lock); + + __kvm_rmap_unlock(rmap_head, new_val); +} + +static unsigned long kvm_rmap_get(struct kvm_rmap_head *rmap_head) +{ + return atomic_long_read(&rmap_head->val) & ~KVM_RMAP_LOCKED; +} + +/* + * If mmu_lock isn't held, rmaps can only be locked in read-only mode. The + * actual locking is the same, but the caller is disallowed from modifying the + * rmap, and so the unlock flow is a nop if the rmap is/was empty. + */ +static unsigned long kvm_rmap_lock_readonly(struct kvm_rmap_head *rmap_head) +{ + unsigned long rmap_val; + + preempt_disable(); + rmap_val = __kvm_rmap_lock(rmap_head); + + if (!rmap_val) + preempt_enable(); + + return rmap_val; +} + +static void kvm_rmap_unlock_readonly(struct kvm_rmap_head *rmap_head, + unsigned long old_val) +{ + if (!old_val) + return; + + KVM_MMU_WARN_ON(old_val != kvm_rmap_get(rmap_head)); + + __kvm_rmap_unlock(rmap_head, old_val); + preempt_enable(); +} + +/* * Returns the number of pointers in the rmap chain, not counting the new one. */ -static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, - struct kvm_rmap_head *rmap_head) +static int pte_list_add(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, + u64 *spte, struct kvm_rmap_head *rmap_head) { + unsigned long old_val, new_val; struct pte_list_desc *desc; int count = 0; - if (!rmap_head->val) { - rmap_head->val = (unsigned long)spte; - } else if (!(rmap_head->val & KVM_RMAP_MANY)) { + old_val = kvm_rmap_lock(kvm, rmap_head); + + if (!old_val) { + new_val = (unsigned long)spte; + } else if (!(old_val & KVM_RMAP_MANY)) { desc = kvm_mmu_memory_cache_alloc(cache); - desc->sptes[0] = (u64 *)rmap_head->val; + desc->sptes[0] = (u64 *)old_val; desc->sptes[1] = spte; desc->spte_count = 2; desc->tail_count = 0; - rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY; + new_val = (unsigned long)desc | KVM_RMAP_MANY; ++count; } else { - desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); + desc = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY); count = desc->tail_count + desc->spte_count; /* @@ -880,21 +1033,25 @@ static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, */ if (desc->spte_count == PTE_LIST_EXT) { desc = kvm_mmu_memory_cache_alloc(cache); - desc->more = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); + desc->more = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY); desc->spte_count = 0; desc->tail_count = count; - rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY; + new_val = (unsigned long)desc | KVM_RMAP_MANY; + } else { + new_val = old_val; } desc->sptes[desc->spte_count++] = spte; } + + kvm_rmap_unlock(kvm, rmap_head, new_val); + return count; } -static void pte_list_desc_remove_entry(struct kvm *kvm, - struct kvm_rmap_head *rmap_head, +static void pte_list_desc_remove_entry(struct kvm *kvm, unsigned long *rmap_val, struct pte_list_desc *desc, int i) { - struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); + struct pte_list_desc *head_desc = (struct pte_list_desc *)(*rmap_val & ~KVM_RMAP_MANY); int j = head_desc->spte_count - 1; /* @@ -921,9 +1078,9 @@ static void pte_list_desc_remove_entry(struct kvm *kvm, * head at the next descriptor, i.e. the new head. */ if (!head_desc->more) - rmap_head->val = 0; + *rmap_val = 0; else - rmap_head->val = (unsigned long)head_desc->more | KVM_RMAP_MANY; + *rmap_val = (unsigned long)head_desc->more | KVM_RMAP_MANY; mmu_free_pte_list_desc(head_desc); } @@ -931,24 +1088,26 @@ static void pte_list_remove(struct kvm *kvm, u64 *spte, struct kvm_rmap_head *rmap_head) { struct pte_list_desc *desc; + unsigned long rmap_val; int i; - if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm)) - return; + rmap_val = kvm_rmap_lock(kvm, rmap_head); + if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_val, kvm)) + goto out; - if (!(rmap_head->val & KVM_RMAP_MANY)) { - if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm)) - return; + if (!(rmap_val & KVM_RMAP_MANY)) { + if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_val != spte, kvm)) + goto out; - rmap_head->val = 0; + rmap_val = 0; } else { - desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); + desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); while (desc) { for (i = 0; i < desc->spte_count; ++i) { if (desc->sptes[i] == spte) { - pte_list_desc_remove_entry(kvm, rmap_head, + pte_list_desc_remove_entry(kvm, &rmap_val, desc, i); - return; + goto out; } } desc = desc->more; @@ -956,6 +1115,9 @@ static void pte_list_remove(struct kvm *kvm, u64 *spte, KVM_BUG_ON_DATA_CORRUPTION(true, kvm); } + +out: + kvm_rmap_unlock(kvm, rmap_head, rmap_val); } static void kvm_zap_one_rmap_spte(struct kvm *kvm, @@ -970,17 +1132,19 @@ static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, struct kvm_rmap_head *rmap_head) { struct pte_list_desc *desc, *next; + unsigned long rmap_val; int i; - if (!rmap_head->val) + rmap_val = kvm_rmap_lock(kvm, rmap_head); + if (!rmap_val) return false; - if (!(rmap_head->val & KVM_RMAP_MANY)) { - mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); + if (!(rmap_val & KVM_RMAP_MANY)) { + mmu_spte_clear_track_bits(kvm, (u64 *)rmap_val); goto out; } - desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); + desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); for (; desc; desc = next) { for (i = 0; i < desc->spte_count; i++) @@ -990,20 +1154,21 @@ static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, } out: /* rmap_head is meaningless now, remember to reset it */ - rmap_head->val = 0; + kvm_rmap_unlock(kvm, rmap_head, 0); return true; } unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) { + unsigned long rmap_val = kvm_rmap_get(rmap_head); struct pte_list_desc *desc; - if (!rmap_head->val) + if (!rmap_val) return 0; - else if (!(rmap_head->val & KVM_RMAP_MANY)) + else if (!(rmap_val & KVM_RMAP_MANY)) return 1; - desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); + desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); return desc->tail_count + desc->spte_count; } @@ -1046,6 +1211,7 @@ static void rmap_remove(struct kvm *kvm, u64 *spte) */ struct rmap_iterator { /* private fields */ + struct rmap_head *head; struct pte_list_desc *desc; /* holds the sptep if not NULL */ int pos; /* index of the sptep */ }; @@ -1060,23 +1226,19 @@ struct rmap_iterator { static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, struct rmap_iterator *iter) { - u64 *sptep; + unsigned long rmap_val = kvm_rmap_get(rmap_head); - if (!rmap_head->val) + if (!rmap_val) return NULL; - if (!(rmap_head->val & KVM_RMAP_MANY)) { + if (!(rmap_val & KVM_RMAP_MANY)) { iter->desc = NULL; - sptep = (u64 *)rmap_head->val; - goto out; + return (u64 *)rmap_val; } - iter->desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); + iter->desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); iter->pos = 0; - sptep = iter->desc->sptes[iter->pos]; -out: - BUG_ON(!is_shadow_present_pte(*sptep)); - return sptep; + return iter->desc->sptes[iter->pos]; } /* @@ -1086,14 +1248,11 @@ out: */ static u64 *rmap_get_next(struct rmap_iterator *iter) { - u64 *sptep; - if (iter->desc) { if (iter->pos < PTE_LIST_EXT - 1) { ++iter->pos; - sptep = iter->desc->sptes[iter->pos]; - if (sptep) - goto out; + if (iter->desc->sptes[iter->pos]) + return iter->desc->sptes[iter->pos]; } iter->desc = iter->desc->more; @@ -1101,20 +1260,24 @@ static u64 *rmap_get_next(struct rmap_iterator *iter) if (iter->desc) { iter->pos = 0; /* desc->sptes[0] cannot be NULL */ - sptep = iter->desc->sptes[iter->pos]; - goto out; + return iter->desc->sptes[iter->pos]; } } return NULL; -out: - BUG_ON(!is_shadow_present_pte(*sptep)); - return sptep; } -#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ - for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ - _spte_; _spte_ = rmap_get_next(_iter_)) +#define __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ + for (_sptep_ = rmap_get_first(_rmap_head_, _iter_); \ + _sptep_; _sptep_ = rmap_get_next(_iter_)) + +#define for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ + __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ + if (!WARN_ON_ONCE(!is_shadow_present_pte(*(_sptep_)))) \ + +#define for_each_rmap_spte_lockless(_rmap_head_, _iter_, _sptep_, _spte_) \ + __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ + if (is_shadow_present_pte(_spte_ = mmu_spte_get_lockless(sptep))) static void drop_spte(struct kvm *kvm, u64 *sptep) { @@ -1200,12 +1363,13 @@ static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, struct rmap_iterator iter; bool flush = false; - for_each_rmap_spte(rmap_head, &iter, sptep) + for_each_rmap_spte(rmap_head, &iter, sptep) { if (spte_ad_need_write_protect(*sptep)) flush |= test_and_clear_bit(PT_WRITABLE_SHIFT, (unsigned long *)sptep); else flush |= spte_clear_dirty(sptep); + } return flush; } @@ -1297,15 +1461,15 @@ void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, * enabled but it chooses between clearing the Dirty bit and Writeable * bit based on the context. */ - if (kvm_x86_ops.cpu_dirty_log_size) + if (kvm->arch.cpu_dirty_log_size) kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); else kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); } -int kvm_cpu_dirty_log_size(void) +int kvm_cpu_dirty_log_size(struct kvm *kvm) { - return kvm_x86_ops.cpu_dirty_log_size; + return kvm->arch.cpu_dirty_log_size; } bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, @@ -1394,7 +1558,7 @@ static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) while (++iterator->rmap <= iterator->end_rmap) { iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level); - if (iterator->rmap->val) + if (atomic_long_read(&iterator->rmap->val)) return; } @@ -1526,7 +1690,7 @@ static void __rmap_add(struct kvm *kvm, kvm_update_page_stats(kvm, sp->role.level, 1); rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); - rmap_count = pte_list_add(cache, spte, rmap_head); + rmap_count = pte_list_add(kvm, cache, spte, rmap_head); if (rmap_count > kvm->stat.max_mmu_rmap_size) kvm->stat.max_mmu_rmap_size = rmap_count; @@ -1545,51 +1709,67 @@ static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, } static bool kvm_rmap_age_gfn_range(struct kvm *kvm, - struct kvm_gfn_range *range, bool test_only) + struct kvm_gfn_range *range, + bool test_only) { - struct slot_rmap_walk_iterator iterator; + struct kvm_rmap_head *rmap_head; struct rmap_iterator iter; + unsigned long rmap_val; bool young = false; u64 *sptep; + gfn_t gfn; + int level; + u64 spte; - for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, - range->start, range->end - 1, &iterator) { - for_each_rmap_spte(iterator.rmap, &iter, sptep) { - u64 spte = *sptep; + for (level = PG_LEVEL_4K; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { + for (gfn = range->start; gfn < range->end; + gfn += KVM_PAGES_PER_HPAGE(level)) { + rmap_head = gfn_to_rmap(gfn, level, range->slot); + rmap_val = kvm_rmap_lock_readonly(rmap_head); - if (!is_accessed_spte(spte)) - continue; + for_each_rmap_spte_lockless(rmap_head, &iter, sptep, spte) { + if (!is_accessed_spte(spte)) + continue; - if (test_only) - return true; - - if (spte_ad_enabled(spte)) { - clear_bit((ffs(shadow_accessed_mask) - 1), - (unsigned long *)sptep); - } else { - /* - * WARN if mmu_spte_update() signals the need - * for a TLB flush, as Access tracking a SPTE - * should never trigger an _immediate_ flush. - */ - spte = mark_spte_for_access_track(spte); - WARN_ON_ONCE(mmu_spte_update(sptep, spte)); + if (test_only) { + kvm_rmap_unlock_readonly(rmap_head, rmap_val); + return true; + } + + if (spte_ad_enabled(spte)) + clear_bit((ffs(shadow_accessed_mask) - 1), + (unsigned long *)sptep); + else + /* + * If the following cmpxchg fails, the + * spte is being concurrently modified + * and should most likely stay young. + */ + cmpxchg64(sptep, spte, + mark_spte_for_access_track(spte)); + young = true; } - young = true; + + kvm_rmap_unlock_readonly(rmap_head, rmap_val); } } return young; } +static bool kvm_may_have_shadow_mmu_sptes(struct kvm *kvm) +{ + return !tdp_mmu_enabled || READ_ONCE(kvm->arch.indirect_shadow_pages); +} + bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) { bool young = false; - if (kvm_memslots_have_rmaps(kvm)) - young = kvm_rmap_age_gfn_range(kvm, range, false); - if (tdp_mmu_enabled) - young |= kvm_tdp_mmu_age_gfn_range(kvm, range); + young = kvm_tdp_mmu_age_gfn_range(kvm, range); + + if (kvm_may_have_shadow_mmu_sptes(kvm)) + young |= kvm_rmap_age_gfn_range(kvm, range, false); return young; } @@ -1598,11 +1778,14 @@ bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) { bool young = false; - if (kvm_memslots_have_rmaps(kvm)) - young = kvm_rmap_age_gfn_range(kvm, range, true); - if (tdp_mmu_enabled) - young |= kvm_tdp_mmu_test_age_gfn(kvm, range); + young = kvm_tdp_mmu_test_age_gfn(kvm, range); + + if (young) + return young; + + if (kvm_may_have_shadow_mmu_sptes(kvm)) + young |= kvm_rmap_age_gfn_range(kvm, range, true); return young; } @@ -1649,13 +1832,14 @@ static unsigned kvm_page_table_hashfn(gfn_t gfn) return hash_64(gfn, KVM_MMU_HASH_SHIFT); } -static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, +static void mmu_page_add_parent_pte(struct kvm *kvm, + struct kvm_mmu_memory_cache *cache, struct kvm_mmu_page *sp, u64 *parent_pte) { if (!parent_pte) return; - pte_list_add(cache, parent_pte, &sp->parent_ptes); + pte_list_add(kvm, cache, parent_pte, &sp->parent_ptes); } static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, @@ -1803,14 +1987,35 @@ static bool sp_has_gptes(struct kvm_mmu_page *sp) return true; } +static __ro_after_init HLIST_HEAD(empty_page_hash); + +static struct hlist_head *kvm_get_mmu_page_hash(struct kvm *kvm, gfn_t gfn) +{ + /* + * Ensure the load of the hash table pointer itself is ordered before + * loads to walk the table. The pointer is set at runtime outside of + * mmu_lock when the TDP MMU is enabled, i.e. when the hash table of + * shadow pages becomes necessary only when KVM needs to shadow L1's + * TDP for an L2 guest. Pairs with the smp_store_release() in + * kvm_mmu_alloc_page_hash(). + */ + struct hlist_head *page_hash = smp_load_acquire(&kvm->arch.mmu_page_hash); + + lockdep_assert_held(&kvm->mmu_lock); + + if (!page_hash) + return &empty_page_hash; + + return &page_hash[kvm_page_table_hashfn(gfn)]; +} + #define for_each_valid_sp(_kvm, _sp, _list) \ hlist_for_each_entry(_sp, _list, hash_link) \ if (is_obsolete_sp((_kvm), (_sp))) { \ } else #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ - for_each_valid_sp(_kvm, _sp, \ - &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ + for_each_valid_sp(_kvm, _sp, kvm_get_mmu_page_hash(_kvm, _gfn)) \ if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) @@ -2178,6 +2383,12 @@ static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, struct kvm_mmu_page *sp; bool created = false; + /* + * No need for memory barriers, unlike in kvm_get_mmu_page_hash(), as + * mmu_page_hash must be set prior to creating the first shadow root, + * i.e. reaching this point is fully serialized by slots_arch_lock. + */ + BUG_ON(!kvm->arch.mmu_page_hash); sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); @@ -2345,7 +2556,7 @@ static void __link_shadow_page(struct kvm *kvm, mmu_spte_set(sptep, spte); - mmu_page_add_parent_pte(cache, sp, sptep); + mmu_page_add_parent_pte(kvm, cache, sp, sptep); /* * The non-direct sub-pagetable must be updated before linking. For @@ -2409,7 +2620,8 @@ static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, * avoids retaining a large number of stale nested SPs. */ if (tdp_enabled && invalid_list && - child->role.guest_mode && !child->parent_ptes.val) + child->role.guest_mode && + !atomic_long_read(&child->parent_ptes.val)) return kvm_mmu_prepare_zap_page(kvm, child, invalid_list); } @@ -2839,7 +3051,8 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, } if (is_shadow_present_pte(*sptep)) { - if (prefetch) + if (prefetch && is_last_spte(*sptep, level) && + pfn == spte_to_pfn(*sptep)) return RET_PF_SPURIOUS; /* @@ -2853,7 +3066,7 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, child = spte_to_child_sp(pte); drop_parent_pte(vcpu->kvm, child, sptep); flush = true; - } else if (pfn != spte_to_pfn(*sptep)) { + } else if (WARN_ON_ONCE(pfn != spte_to_pfn(*sptep))) { drop_spte(vcpu->kvm, sptep); flush = true; } else @@ -3076,12 +3289,72 @@ out: return level; } -static int __kvm_mmu_max_mapping_level(struct kvm *kvm, - const struct kvm_memory_slot *slot, - gfn_t gfn, int max_level, bool is_private) +static u8 kvm_max_level_for_order(int order) +{ + BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G); + + KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) && + order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) && + order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K)); + + if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G)) + return PG_LEVEL_1G; + + if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) + return PG_LEVEL_2M; + + return PG_LEVEL_4K; +} + +static u8 kvm_gmem_max_mapping_level(struct kvm *kvm, struct kvm_page_fault *fault, + const struct kvm_memory_slot *slot, gfn_t gfn, + bool is_private) +{ + u8 max_level, coco_level; + kvm_pfn_t pfn; + + /* For faults, use the gmem information that was resolved earlier. */ + if (fault) { + pfn = fault->pfn; + max_level = fault->max_level; + } else { + /* TODO: Call into guest_memfd once hugepages are supported. */ + WARN_ONCE(1, "Get pfn+order from guest_memfd"); + pfn = KVM_PFN_ERR_FAULT; + max_level = PG_LEVEL_4K; + } + + if (max_level == PG_LEVEL_4K) + return max_level; + + /* + * CoCo may influence the max mapping level, e.g. due to RMP or S-EPT + * restrictions. A return of '0' means "no additional restrictions", to + * allow for using an optional "ret0" static call. + */ + coco_level = kvm_x86_call(gmem_max_mapping_level)(kvm, pfn, is_private); + if (coco_level) + max_level = min(max_level, coco_level); + + return max_level; +} + +int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_page_fault *fault, + const struct kvm_memory_slot *slot, gfn_t gfn) { struct kvm_lpage_info *linfo; - int host_level; + int host_level, max_level; + bool is_private; + + lockdep_assert_held(&kvm->mmu_lock); + + if (fault) { + max_level = fault->max_level; + is_private = fault->is_private; + } else { + max_level = PG_LEVEL_NUM; + is_private = kvm_mem_is_private(kvm, gfn); + } max_level = min(max_level, max_huge_page_level); for ( ; max_level > PG_LEVEL_4K; max_level--) { @@ -3090,25 +3363,17 @@ static int __kvm_mmu_max_mapping_level(struct kvm *kvm, break; } - if (is_private) - return max_level; - if (max_level == PG_LEVEL_4K) return PG_LEVEL_4K; - host_level = host_pfn_mapping_level(kvm, gfn, slot); + if (is_private || kvm_memslot_is_gmem_only(slot)) + host_level = kvm_gmem_max_mapping_level(kvm, fault, slot, gfn, + is_private); + else + host_level = host_pfn_mapping_level(kvm, gfn, slot); return min(host_level, max_level); } -int kvm_mmu_max_mapping_level(struct kvm *kvm, - const struct kvm_memory_slot *slot, gfn_t gfn) -{ - bool is_private = kvm_slot_can_be_private(slot) && - kvm_mem_is_private(kvm, gfn); - - return __kvm_mmu_max_mapping_level(kvm, slot, gfn, PG_LEVEL_NUM, is_private); -} - void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) { struct kvm_memory_slot *slot = fault->slot; @@ -3129,9 +3394,8 @@ void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault * Enforce the iTLB multihit workaround after capturing the requested * level, which will be used to do precise, accurate accounting. */ - fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot, - fault->gfn, fault->max_level, - fault->is_private); + fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, fault, + fault->slot, fault->gfn); if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) return; @@ -3364,18 +3628,6 @@ static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, return true; } -static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) -{ - if (fault->exec) - return is_executable_pte(spte); - - if (fault->write) - return is_writable_pte(spte); - - /* Fault was on Read access */ - return spte & PT_PRESENT_MASK; -} - /* * Returns the last level spte pointer of the shadow page walk for the given * gpa, and sets *spte to the spte value. This spte may be non-preset. If no @@ -3613,7 +3865,7 @@ void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, write_unlock(&kvm->mmu_lock); } } -EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_free_roots); void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) { @@ -3640,7 +3892,7 @@ void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) kvm_mmu_free_roots(kvm, mmu, roots_to_free); } -EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_free_guest_mode_roots); static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, u8 level) @@ -3668,8 +3920,13 @@ static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) unsigned i; int r; - if (tdp_mmu_enabled) - return kvm_tdp_mmu_alloc_root(vcpu); + if (tdp_mmu_enabled) { + if (kvm_has_mirrored_tdp(vcpu->kvm) && + !VALID_PAGE(mmu->mirror_root_hpa)) + kvm_tdp_mmu_alloc_root(vcpu, true); + kvm_tdp_mmu_alloc_root(vcpu, false); + return 0; + } write_lock(&vcpu->kvm->mmu_lock); r = make_mmu_pages_available(vcpu); @@ -3707,6 +3964,28 @@ out_unlock: return r; } +static int kvm_mmu_alloc_page_hash(struct kvm *kvm) +{ + struct hlist_head *h; + + if (kvm->arch.mmu_page_hash) + return 0; + + h = kvcalloc(KVM_NUM_MMU_PAGES, sizeof(*h), GFP_KERNEL_ACCOUNT); + if (!h) + return -ENOMEM; + + /* + * Ensure the hash table pointer is set only after all stores to zero + * the memory are retired. Pairs with the smp_load_acquire() in + * kvm_get_mmu_page_hash(). Note, mmu_lock must be held for write to + * add (or remove) shadow pages, and so readers are guaranteed to see + * an empty list for their current mmu_lock critical section. + */ + smp_store_release(&kvm->arch.mmu_page_hash, h); + return 0; +} + static int mmu_first_shadow_root_alloc(struct kvm *kvm) { struct kvm_memslots *slots; @@ -3726,9 +4005,13 @@ static int mmu_first_shadow_root_alloc(struct kvm *kvm) if (kvm_shadow_root_allocated(kvm)) goto out_unlock; + r = kvm_mmu_alloc_page_hash(kvm); + if (r) + goto out_unlock; + /* - * Check if anything actually needs to be allocated, e.g. all metadata - * will be allocated upfront if TDP is disabled. + * Check if memslot metadata actually needs to be allocated, e.g. all + * metadata will be allocated upfront if TDP is disabled. */ if (kvm_memslots_have_rmaps(kvm) && kvm_page_track_write_tracking_enabled(kvm)) @@ -4275,42 +4558,6 @@ void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) vcpu->stat.pf_fixed++; } -static inline u8 kvm_max_level_for_order(int order) -{ - BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G); - - KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) && - order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) && - order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K)); - - if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G)) - return PG_LEVEL_1G; - - if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) - return PG_LEVEL_2M; - - return PG_LEVEL_4K; -} - -static u8 kvm_max_private_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, - u8 max_level, int gmem_order) -{ - u8 req_max_level; - - if (max_level == PG_LEVEL_4K) - return PG_LEVEL_4K; - - max_level = min(kvm_max_level_for_order(gmem_order), max_level); - if (max_level == PG_LEVEL_4K) - return PG_LEVEL_4K; - - req_max_level = kvm_x86_call(private_max_mapping_level)(kvm, pfn); - if (req_max_level) - max_level = min(max_level, req_max_level); - - return max_level; -} - static void kvm_mmu_finish_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int r) { @@ -4318,12 +4565,12 @@ static void kvm_mmu_finish_page_fault(struct kvm_vcpu *vcpu, r == RET_PF_RETRY, fault->map_writable); } -static int kvm_mmu_faultin_pfn_private(struct kvm_vcpu *vcpu, - struct kvm_page_fault *fault) +static int kvm_mmu_faultin_pfn_gmem(struct kvm_vcpu *vcpu, + struct kvm_page_fault *fault) { int max_order, r; - if (!kvm_slot_can_be_private(fault->slot)) { + if (!kvm_slot_has_gmem(fault->slot)) { kvm_mmu_prepare_memory_fault_exit(vcpu, fault); return -EFAULT; } @@ -4336,8 +4583,7 @@ static int kvm_mmu_faultin_pfn_private(struct kvm_vcpu *vcpu, } fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); - fault->max_level = kvm_max_private_mapping_level(vcpu->kvm, fault->pfn, - fault->max_level, max_order); + fault->max_level = kvm_max_level_for_order(max_order); return RET_PF_CONTINUE; } @@ -4347,8 +4593,8 @@ static int __kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, { unsigned int foll = fault->write ? FOLL_WRITE : 0; - if (fault->is_private) - return kvm_mmu_faultin_pfn_private(vcpu, fault); + if (fault->is_private || kvm_memslot_is_gmem_only(fault->slot)) + return kvm_mmu_faultin_pfn_gmem(vcpu, fault); foll |= FOLL_NOWAIT; fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, @@ -4391,8 +4637,12 @@ static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, unsigned int access) { struct kvm_memory_slot *slot = fault->slot; + struct kvm *kvm = vcpu->kvm; int ret; + if (KVM_BUG_ON(kvm_is_gfn_alias(kvm, fault->gfn), kvm)) + return -EFAULT; + /* * Note that the mmu_invalidate_seq also serves to detect a concurrent * change in attributes. is_page_fault_stale() will detect an @@ -4406,7 +4656,7 @@ static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, * Now that we have a snapshot of mmu_invalidate_seq we can check for a * private vs. shared mismatch. */ - if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) { + if (fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) { kvm_mmu_prepare_memory_fault_exit(vcpu, fault); return -EFAULT; } @@ -4417,10 +4667,16 @@ static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, /* * Retry the page fault if the gfn hit a memslot that is being deleted * or moved. This ensures any existing SPTEs for the old memslot will - * be zapped before KVM inserts a new MMIO SPTE for the gfn. + * be zapped before KVM inserts a new MMIO SPTE for the gfn. Punt the + * error to userspace if this is a prefault, as KVM's prefaulting ABI + * doesn't provide the same forward progress guarantees as KVM_RUN. */ - if (slot->flags & KVM_MEMSLOT_INVALID) + if (slot->flags & KVM_MEMSLOT_INVALID) { + if (fault->prefetch) + return -EAGAIN; + return RET_PF_RETRY; + } if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) { /* @@ -4468,7 +4724,7 @@ static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held * to detect retry guarantees the worst case latency for the vCPU. */ - if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) + if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) return RET_PF_RETRY; ret = __kvm_mmu_faultin_pfn(vcpu, fault); @@ -4488,7 +4744,7 @@ static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, * overall cost of failing to detect the invalidation until after * mmu_lock is acquired. */ - if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) { + if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) { kvm_mmu_finish_page_fault(vcpu, fault, RET_PF_RETRY); return RET_PF_RETRY; } @@ -4603,7 +4859,7 @@ int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, */ BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK)); - vcpu->arch.l1tf_flush_l1d = true; + kvm_request_l1tf_flush_l1d(); if (!flags) { trace_kvm_page_fault(vcpu, fault_address, error_code); @@ -4620,7 +4876,7 @@ int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, return r; } -EXPORT_SYMBOL_GPL(kvm_handle_page_fault); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_page_fault); #ifdef CONFIG_X86_64 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, @@ -4658,19 +4914,6 @@ out_unlock: } #endif -bool kvm_mmu_may_ignore_guest_pat(void) -{ - /* - * When EPT is enabled (shadow_memtype_mask is non-zero), and the VM - * has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is to - * honor the memtype from the guest's PAT so that guest accesses to - * memory that is DMA'd aren't cached against the guest's wishes. As a - * result, KVM _may_ ignore guest PAT, whereas without non-coherent DMA, - * KVM _always_ ignores guest PAT (when EPT is enabled). - */ - return shadow_memtype_mask; -} - int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) { #ifdef CONFIG_X86_64 @@ -4681,8 +4924,8 @@ int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) return direct_page_fault(vcpu, fault); } -static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, - u8 *level) +static int kvm_tdp_page_prefault(struct kvm_vcpu *vcpu, gpa_t gpa, + u64 error_code, u8 *level) { int r; @@ -4696,6 +4939,10 @@ static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, do { if (signal_pending(current)) return -EINTR; + + if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) + return -EIO; + cond_resched(); r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level); } while (r == RET_PF_RETRY); @@ -4726,12 +4973,16 @@ long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, { u64 error_code = PFERR_GUEST_FINAL_MASK; u8 level = PG_LEVEL_4K; + u64 direct_bits; u64 end; int r; if (!vcpu->kvm->arch.pre_fault_allowed) return -EOPNOTSUPP; + if (kvm_is_gfn_alias(vcpu->kvm, gpa_to_gfn(range->gpa))) + return -EINVAL; + /* * reload is efficient when called repeatedly, so we can do it on * every iteration. @@ -4740,15 +4991,18 @@ long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, if (r) return r; + direct_bits = 0; if (kvm_arch_has_private_mem(vcpu->kvm) && kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa))) error_code |= PFERR_PRIVATE_ACCESS; + else + direct_bits = gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm)); /* * Shadow paging uses GVA for kvm page fault, so restrict to * two-dimensional paging. */ - r = kvm_tdp_map_page(vcpu, range->gpa, error_code, &level); + r = kvm_tdp_page_prefault(vcpu, range->gpa | direct_bits, error_code, &level); if (r < 0) return r; @@ -4760,6 +5014,86 @@ long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, return min(range->size, end - range->gpa); } +#ifdef CONFIG_KVM_GUEST_MEMFD +static void kvm_assert_gmem_invalidate_lock_held(struct kvm_memory_slot *slot) +{ +#ifdef CONFIG_PROVE_LOCKING + if (WARN_ON_ONCE(!kvm_slot_has_gmem(slot)) || + WARN_ON_ONCE(!slot->gmem.file) || + WARN_ON_ONCE(!file_count(slot->gmem.file))) + return; + + lockdep_assert_held(&file_inode(slot->gmem.file)->i_mapping->invalidate_lock); +#endif +} + +int kvm_tdp_mmu_map_private_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) +{ + struct kvm_page_fault fault = { + .addr = gfn_to_gpa(gfn), + .error_code = PFERR_GUEST_FINAL_MASK | PFERR_PRIVATE_ACCESS, + .prefetch = true, + .is_tdp = true, + .nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(vcpu->kvm), + + .max_level = PG_LEVEL_4K, + .req_level = PG_LEVEL_4K, + .goal_level = PG_LEVEL_4K, + .is_private = true, + + .gfn = gfn, + .slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn), + .pfn = pfn, + .map_writable = true, + }; + struct kvm *kvm = vcpu->kvm; + int r; + + lockdep_assert_held(&kvm->slots_lock); + + /* + * Mapping a pre-determined private pfn is intended only for use when + * populating a guest_memfd instance. Assert that the slot is backed + * by guest_memfd and that the gmem instance's invalidate_lock is held. + */ + kvm_assert_gmem_invalidate_lock_held(fault.slot); + + if (KVM_BUG_ON(!tdp_mmu_enabled, kvm)) + return -EIO; + + if (kvm_gfn_is_write_tracked(kvm, fault.slot, fault.gfn)) + return -EPERM; + + r = kvm_mmu_reload(vcpu); + if (r) + return r; + + r = mmu_topup_memory_caches(vcpu, false); + if (r) + return r; + + do { + if (signal_pending(current)) + return -EINTR; + + if (kvm_test_request(KVM_REQ_VM_DEAD, vcpu)) + return -EIO; + + cond_resched(); + + guard(read_lock)(&kvm->mmu_lock); + + r = kvm_tdp_mmu_map(vcpu, &fault); + } while (r == RET_PF_RETRY); + + if (r != RET_PF_FIXED) + return -EIO; + + return 0; +} +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_tdp_mmu_map_private_pfn); +#endif + static void nonpaging_init_context(struct kvm_mmu *context) { context->page_fault = nonpaging_page_fault; @@ -4908,7 +5242,7 @@ void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) __clear_sp_write_flooding_count(sp); } } -EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_new_pgd); static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, unsigned int access) @@ -5034,7 +5368,7 @@ static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, __reset_rsvds_bits_mask(&context->guest_rsvd_check, vcpu->arch.reserved_gpa_bits, context->cpu_role.base.level, is_efer_nx(context), - guest_can_use(vcpu, X86_FEATURE_GBPAGES), + guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES), is_cr4_pse(context), guest_cpuid_is_amd_compatible(vcpu)); } @@ -5111,7 +5445,7 @@ static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), context->root_role.level, context->root_role.efer_nx, - guest_can_use(vcpu, X86_FEATURE_GBPAGES), + guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES), is_pse, is_amd); if (!shadow_me_mask) @@ -5412,12 +5746,19 @@ void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) { + int maxpa; + + if (vcpu->kvm->arch.vm_type == KVM_X86_TDX_VM) + maxpa = cpuid_query_maxguestphyaddr(vcpu); + else + maxpa = cpuid_maxphyaddr(vcpu); + /* tdp_root_level is architecture forced level, use it if nonzero */ if (tdp_root_level) return tdp_root_level; /* Use 5-level TDP if and only if it's useful/necessary. */ - if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) + if (max_tdp_level == 5 && maxpa <= 48) return 4; return max_tdp_level; @@ -5536,7 +5877,7 @@ void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, union kvm_mmu_page_role root_role; /* NPT requires CR0.PG=1. */ - WARN_ON_ONCE(cpu_role.base.direct); + WARN_ON_ONCE(cpu_role.base.direct || !cpu_role.base.guest_mode); root_role = cpu_role.base; root_role.level = kvm_mmu_get_tdp_level(vcpu); @@ -5547,7 +5888,7 @@ void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, shadow_mmu_init_context(vcpu, context, cpu_role, root_role); kvm_mmu_new_pgd(vcpu, nested_cr3); } -EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init_shadow_npt_mmu); static union kvm_cpu_role kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, @@ -5601,7 +5942,7 @@ void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, kvm_mmu_new_pgd(vcpu, new_eptp); } -EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init_shadow_ept_mmu); static void init_kvm_softmmu(struct kvm_vcpu *vcpu, union kvm_cpu_role cpu_role) @@ -5666,7 +6007,7 @@ void kvm_init_mmu(struct kvm_vcpu *vcpu) else init_kvm_softmmu(vcpu, cpu_role); } -EXPORT_SYMBOL_GPL(kvm_init_mmu); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init_mmu); void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) { @@ -5702,7 +6043,7 @@ void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) kvm_mmu_unload(vcpu); kvm_init_mmu(vcpu); } -EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_reset_context); int kvm_mmu_load(struct kvm_vcpu *vcpu) { @@ -5797,6 +6138,7 @@ void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); } +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_free_obsolete_roots); static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, int *bytes) @@ -6107,14 +6449,22 @@ int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 err else if (r == RET_PF_SPURIOUS) vcpu->stat.pf_spurious++; + /* + * None of handle_mmio_page_fault(), kvm_mmu_do_page_fault(), or + * kvm_mmu_write_protect_fault() return RET_PF_CONTINUE. + * kvm_mmu_do_page_fault() only uses RET_PF_CONTINUE internally to + * indicate continuing the page fault handling until to the final + * page table mapping phase. + */ + WARN_ON_ONCE(r == RET_PF_CONTINUE); if (r != RET_PF_EMULATE) - return 1; + return r; emulate: return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, insn_len); } -EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_page_fault); void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg) { @@ -6130,7 +6480,7 @@ void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg) pr_cont(", spte[%d] = 0x%llx", level, sptes[level]); pr_cont("\n"); } -EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_print_sptes); static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, u64 addr, hpa_t root_hpa) @@ -6196,7 +6546,7 @@ void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); } } -EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_invalidate_addr); void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) { @@ -6213,7 +6563,7 @@ void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); ++vcpu->stat.invlpg; } -EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_invlpg); void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) @@ -6266,7 +6616,7 @@ void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, else max_huge_page_level = PG_LEVEL_2M; } -EXPORT_SYMBOL_GPL(kvm_configure_mmu); +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_configure_mmu); static void free_mmu_pages(struct kvm_mmu *mmu) { @@ -6284,6 +6634,7 @@ static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) mmu->root.hpa = INVALID_PAGE; mmu->root.pgd = 0; + mmu->mirror_root_hpa = INVALID_PAGE; for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; @@ -6453,8 +6804,13 @@ static void kvm_mmu_zap_all_fast(struct kvm *kvm) * write and in the same critical section as making the reload request, * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. */ - if (tdp_mmu_enabled) - kvm_tdp_mmu_invalidate_all_roots(kvm); + if (tdp_mmu_enabled) { + /* + * External page tables don't support fast zapping, therefore + * their mirrors must be invalidated separately by the caller. + */ + kvm_tdp_mmu_invalidate_roots(kvm, KVM_DIRECT_ROOTS); + } /* * Notify all vcpus to reload its shadow page table and flush TLB. @@ -6479,18 +6835,26 @@ static void kvm_mmu_zap_all_fast(struct kvm *kvm) * lead to use-after-free. */ if (tdp_mmu_enabled) - kvm_tdp_mmu_zap_invalidated_roots(kvm); + kvm_tdp_mmu_zap_invalidated_roots(kvm, true); } -void kvm_mmu_init_vm(struct kvm *kvm) +int kvm_mmu_init_vm(struct kvm *kvm) { + int r, i; + kvm->arch.shadow_mmio_value = shadow_mmio_value; INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); - INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); + for (i = 0; i < KVM_NR_MMU_TYPES; ++i) + INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages[i].pages); spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); - if (tdp_mmu_enabled) + if (tdp_mmu_enabled) { kvm_mmu_init_tdp_mmu(kvm); + } else { + r = kvm_mmu_alloc_page_hash(kvm); + if (r) + return r; + } kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; @@ -6499,6 +6863,7 @@ void kvm_mmu_init_vm(struct kvm *kvm) kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; + return 0; } static void mmu_free_vm_memory_caches(struct kvm *kvm) @@ -6510,6 +6875,8 @@ static void mmu_free_vm_memory_caches(struct kvm *kvm) void kvm_mmu_uninit_vm(struct kvm *kvm) { + kvfree(kvm->arch.mmu_page_hash); + if (tdp_mmu_enabled) kvm_mmu_uninit_tdp_mmu(kvm); @@ -6575,6 +6942,7 @@ void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) write_unlock(&kvm->mmu_lock); } +EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_zap_gfn_range); static bool slot_rmap_write_protect(struct kvm *kvm, struct kvm_rmap_head *rmap_head, @@ -6902,7 +7270,7 @@ restart: * mapping if the indirect sp has level = 1. */ if (sp->role.direct && - sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn)) { + sp->role.level < kvm_mmu_max_mapping_level(kvm, NULL, slot, sp->gfn)) { kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); if (kvm_available_flush_remote_tlbs_range()) @@ -6916,7 +7284,6 @@ restart: return need_tlb_flush; } -EXPORT_SYMBOL_GPL(kvm_zap_gfn_range); static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, const struct kvm_memory_slot *slot) @@ -7047,6 +7414,7 @@ static void kvm_mmu_zap_memslot(struct kvm *kvm, .start = slot->base_gfn, .end = slot->base_gfn + slot->npages, .may_block = true, + .attr_filter = KVM_FILTER_PRIVATE | KVM_FILTER_SHARED, }; bool flush; @@ -7075,6 +7443,9 @@ void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) { WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); + if (!enable_mmio_caching) + return; + gen &= MMIO_SPTE_GEN_MASK; /* @@ -7102,6 +7473,19 @@ static void mmu_destroy_caches(void) kmem_cache_destroy(mmu_page_header_cache); } +static void kvm_wake_nx_recovery_thread(struct kvm *kvm) +{ + /* + * The NX recovery thread is spawned on-demand at the first KVM_RUN and + * may not be valid even though the VM is globally visible. Do nothing, + * as such a VM can't have any possible NX huge pages. + */ + struct vhost_task *nx_thread = READ_ONCE(kvm->arch.nx_huge_page_recovery_thread); + + if (nx_thread) + vhost_task_wake(nx_thread); +} + static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) { if (nx_hugepage_mitigation_hard_disabled) @@ -7162,7 +7546,7 @@ static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) kvm_mmu_zap_all_fast(kvm); mutex_unlock(&kvm->slots_lock); - vhost_task_wake(kvm->arch.nx_huge_page_recovery_thread); + kvm_wake_nx_recovery_thread(kvm); } mutex_unlock(&kvm_lock); } @@ -7232,6 +7616,12 @@ out: void kvm_mmu_destroy(struct kvm_vcpu *vcpu) { kvm_mmu_unload(vcpu); + if (tdp_mmu_enabled) { + read_lock(&vcpu->kvm->mmu_lock); + mmu_free_root_page(vcpu->kvm, &vcpu->arch.mmu->mirror_root_hpa, + NULL); + read_unlock(&vcpu->kvm->mmu_lock); + } free_mmu_pages(&vcpu->arch.root_mmu); free_mmu_pages(&vcpu->arch.guest_mmu); mmu_free_memory_caches(vcpu); @@ -7291,7 +7681,7 @@ static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel mutex_lock(&kvm_lock); list_for_each_entry(kvm, &vm_list, vm_list) - vhost_task_wake(kvm->arch.nx_huge_page_recovery_thread); + kvm_wake_nx_recovery_thread(kvm); mutex_unlock(&kvm_lock); } @@ -7299,19 +7689,64 @@ static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel return err; } -static void kvm_recover_nx_huge_pages(struct kvm *kvm) +static unsigned long nx_huge_pages_to_zap(struct kvm *kvm, + enum kvm_mmu_type mmu_type) +{ + unsigned long pages = READ_ONCE(kvm->arch.possible_nx_huge_pages[mmu_type].nr_pages); + unsigned int ratio = READ_ONCE(nx_huge_pages_recovery_ratio); + + return ratio ? DIV_ROUND_UP(pages, ratio) : 0; +} + +static bool kvm_mmu_sp_dirty_logging_enabled(struct kvm *kvm, + struct kvm_mmu_page *sp) { - unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; struct kvm_memory_slot *slot; - int rcu_idx; + + /* + * Skip the memslot lookup if dirty tracking can't possibly be enabled, + * as memslot lookups are relatively expensive. + * + * If a memslot update is in progress, reading an incorrect value of + * kvm->nr_memslots_dirty_logging is not a problem: if it is becoming + * zero, KVM will do an unnecessary memslot lookup; if it is becoming + * nonzero, the page will be zapped unnecessarily. Either way, this + * only affects efficiency in racy situations, and not correctness. + */ + if (!atomic_read(&kvm->nr_memslots_dirty_logging)) + return false; + + slot = __gfn_to_memslot(kvm_memslots_for_spte_role(kvm, sp->role), sp->gfn); + if (WARN_ON_ONCE(!slot)) + return false; + + return kvm_slot_dirty_track_enabled(slot); +} + +static void kvm_recover_nx_huge_pages(struct kvm *kvm, + const enum kvm_mmu_type mmu_type) +{ +#ifdef CONFIG_X86_64 + const bool is_tdp_mmu = mmu_type == KVM_TDP_MMU; + spinlock_t *tdp_mmu_pages_lock = &kvm->arch.tdp_mmu_pages_lock; +#else + const bool is_tdp_mmu = false; + spinlock_t *tdp_mmu_pages_lock = NULL; +#endif + unsigned long to_zap = nx_huge_pages_to_zap(kvm, mmu_type); + struct list_head *nx_huge_pages; struct kvm_mmu_page *sp; - unsigned int ratio; LIST_HEAD(invalid_list); bool flush = false; - ulong to_zap; + int rcu_idx; + + nx_huge_pages = &kvm->arch.possible_nx_huge_pages[mmu_type].pages; rcu_idx = srcu_read_lock(&kvm->srcu); - write_lock(&kvm->mmu_lock); + if (is_tdp_mmu) + read_lock(&kvm->mmu_lock); + else + write_lock(&kvm->mmu_lock); /* * Zapping TDP MMU shadow pages, including the remote TLB flush, must @@ -7320,11 +7755,15 @@ static void kvm_recover_nx_huge_pages(struct kvm *kvm) */ rcu_read_lock(); - ratio = READ_ONCE(nx_huge_pages_recovery_ratio); - to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; for ( ; to_zap; --to_zap) { - if (list_empty(&kvm->arch.possible_nx_huge_pages)) + if (is_tdp_mmu) + spin_lock(tdp_mmu_pages_lock); + + if (list_empty(nx_huge_pages)) { + if (is_tdp_mmu) + spin_unlock(tdp_mmu_pages_lock); break; + } /* * We use a separate list instead of just using active_mmu_pages @@ -7333,56 +7772,44 @@ static void kvm_recover_nx_huge_pages(struct kvm *kvm) * the total number of shadow pages. And because the TDP MMU * doesn't use active_mmu_pages. */ - sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, + sp = list_first_entry(nx_huge_pages, struct kvm_mmu_page, possible_nx_huge_page_link); WARN_ON_ONCE(!sp->nx_huge_page_disallowed); WARN_ON_ONCE(!sp->role.direct); + unaccount_nx_huge_page(kvm, sp); + + if (is_tdp_mmu) + spin_unlock(tdp_mmu_pages_lock); + /* - * Unaccount and do not attempt to recover any NX Huge Pages - * that are being dirty tracked, as they would just be faulted - * back in as 4KiB pages. The NX Huge Pages in this slot will be - * recovered, along with all the other huge pages in the slot, - * when dirty logging is disabled. - * - * Since gfn_to_memslot() is relatively expensive, it helps to - * skip it if it the test cannot possibly return true. On the - * other hand, if any memslot has logging enabled, chances are - * good that all of them do, in which case unaccount_nx_huge_page() - * is much cheaper than zapping the page. - * - * If a memslot update is in progress, reading an incorrect value - * of kvm->nr_memslots_dirty_logging is not a problem: if it is - * becoming zero, gfn_to_memslot() will be done unnecessarily; if - * it is becoming nonzero, the page will be zapped unnecessarily. - * Either way, this only affects efficiency in racy situations, - * and not correctness. + * Do not attempt to recover any NX Huge Pages that are being + * dirty tracked, as they would just be faulted back in as 4KiB + * pages. The NX Huge Pages in this slot will be recovered, + * along with all the other huge pages in the slot, when dirty + * logging is disabled. */ - slot = NULL; - if (atomic_read(&kvm->nr_memslots_dirty_logging)) { - struct kvm_memslots *slots; + if (!kvm_mmu_sp_dirty_logging_enabled(kvm, sp)) { + if (is_tdp_mmu) + flush |= kvm_tdp_mmu_zap_possible_nx_huge_page(kvm, sp); + else + kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); - slots = kvm_memslots_for_spte_role(kvm, sp->role); - slot = __gfn_to_memslot(slots, sp->gfn); - WARN_ON_ONCE(!slot); } - if (slot && kvm_slot_dirty_track_enabled(slot)) - unaccount_nx_huge_page(kvm, sp); - else if (is_tdp_mmu_page(sp)) - flush |= kvm_tdp_mmu_zap_sp(kvm, sp); - else - kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); WARN_ON_ONCE(sp->nx_huge_page_disallowed); if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); rcu_read_unlock(); - cond_resched_rwlock_write(&kvm->mmu_lock); - flush = false; + if (is_tdp_mmu) + cond_resched_rwlock_read(&kvm->mmu_lock); + else + cond_resched_rwlock_write(&kvm->mmu_lock); + flush = false; rcu_read_lock(); } } @@ -7390,7 +7817,10 @@ static void kvm_recover_nx_huge_pages(struct kvm *kvm) rcu_read_unlock(); - write_unlock(&kvm->mmu_lock); + if (is_tdp_mmu) + read_unlock(&kvm->mmu_lock); + else + write_unlock(&kvm->mmu_lock); srcu_read_unlock(&kvm->srcu, rcu_idx); } @@ -7401,9 +7831,10 @@ static void kvm_nx_huge_page_recovery_worker_kill(void *data) static bool kvm_nx_huge_page_recovery_worker(void *data) { struct kvm *kvm = data; + long remaining_time; bool enabled; uint period; - long remaining_time; + int i; enabled = calc_nx_huge_pages_recovery_period(&period); if (!enabled) @@ -7418,28 +7849,41 @@ static bool kvm_nx_huge_page_recovery_worker(void *data) } __set_current_state(TASK_RUNNING); - kvm_recover_nx_huge_pages(kvm); + for (i = 0; i < KVM_NR_MMU_TYPES; ++i) + kvm_recover_nx_huge_pages(kvm, i); kvm->arch.nx_huge_page_last = get_jiffies_64(); return true; } -int kvm_mmu_post_init_vm(struct kvm *kvm) +static int kvm_mmu_start_lpage_recovery(struct once *once) { - if (nx_hugepage_mitigation_hard_disabled) - return 0; + struct kvm_arch *ka = container_of(once, struct kvm_arch, nx_once); + struct kvm *kvm = container_of(ka, struct kvm, arch); + struct vhost_task *nx_thread; kvm->arch.nx_huge_page_last = get_jiffies_64(); - kvm->arch.nx_huge_page_recovery_thread = vhost_task_create( - kvm_nx_huge_page_recovery_worker, kvm_nx_huge_page_recovery_worker_kill, - kvm, "kvm-nx-lpage-recovery"); + nx_thread = vhost_task_create(kvm_nx_huge_page_recovery_worker, + kvm_nx_huge_page_recovery_worker_kill, + kvm, "kvm-nx-lpage-recovery"); - if (!kvm->arch.nx_huge_page_recovery_thread) - return -ENOMEM; + if (IS_ERR(nx_thread)) + return PTR_ERR(nx_thread); - vhost_task_start(kvm->arch.nx_huge_page_recovery_thread); + vhost_task_start(nx_thread); + + /* Make the task visible only once it is fully started. */ + WRITE_ONCE(kvm->arch.nx_huge_page_recovery_thread, nx_thread); return 0; } +int kvm_mmu_post_init_vm(struct kvm *kvm) +{ + if (nx_hugepage_mitigation_hard_disabled) + return 0; + + return call_once(&kvm->arch.nx_once, kvm_mmu_start_lpage_recovery); +} + void kvm_mmu_pre_destroy_vm(struct kvm *kvm) { if (kvm->arch.nx_huge_page_recovery_thread) @@ -7447,9 +7891,30 @@ void kvm_mmu_pre_destroy_vm(struct kvm *kvm) } #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES +static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, + int level) +{ + return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; +} + +static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, + int level) +{ + lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; +} + +static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, + int level) +{ + lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; +} + bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, struct kvm_gfn_range *range) { + struct kvm_memory_slot *slot = range->slot; + int level; + /* * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM @@ -7464,27 +7929,49 @@ bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) return false; - return kvm_unmap_gfn_range(kvm, range); -} + if (WARN_ON_ONCE(range->end <= range->start)) + return false; -static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, - int level) -{ - return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; -} + /* + * If the head and tail pages of the range currently allow a hugepage, + * i.e. reside fully in the slot and don't have mixed attributes, then + * add each corresponding hugepage range to the ongoing invalidation, + * e.g. to prevent KVM from creating a hugepage in response to a fault + * for a gfn whose attributes aren't changing. Note, only the range + * of gfns whose attributes are being modified needs to be explicitly + * unmapped, as that will unmap any existing hugepages. + */ + for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { + gfn_t start = gfn_round_for_level(range->start, level); + gfn_t end = gfn_round_for_level(range->end - 1, level); + gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); -static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, - int level) -{ - lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; -} + if ((start != range->start || start + nr_pages > range->end) && + start >= slot->base_gfn && + start + nr_pages <= slot->base_gfn + slot->npages && + !hugepage_test_mixed(slot, start, level)) + kvm_mmu_invalidate_range_add(kvm, start, start + nr_pages); -static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, - int level) -{ - lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; + if (end == start) + continue; + + if ((end + nr_pages) > range->end && + (end + nr_pages) <= (slot->base_gfn + slot->npages) && + !hugepage_test_mixed(slot, end, level)) + kvm_mmu_invalidate_range_add(kvm, end, end + nr_pages); + } + + /* Unmap the old attribute page. */ + if (range->arg.attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE) + range->attr_filter = KVM_FILTER_SHARED; + else + range->attr_filter = KVM_FILTER_PRIVATE; + + return kvm_unmap_gfn_range(kvm, range); } + + static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t gfn, int level, unsigned long attrs) { |
