diff options
Diffstat (limited to 'arch/x86/kvm/mmu/mmu_internal.h')
| -rw-r--r-- | arch/x86/kvm/mmu/mmu_internal.h | 414 |
1 files changed, 414 insertions, 0 deletions
diff --git a/arch/x86/kvm/mmu/mmu_internal.h b/arch/x86/kvm/mmu/mmu_internal.h new file mode 100644 index 000000000000..73cdcbccc89e --- /dev/null +++ b/arch/x86/kvm/mmu/mmu_internal.h @@ -0,0 +1,414 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __KVM_X86_MMU_INTERNAL_H +#define __KVM_X86_MMU_INTERNAL_H + +#include <linux/types.h> +#include <linux/kvm_host.h> +#include <asm/kvm_host.h> + +#include "mmu.h" + +#ifdef CONFIG_KVM_PROVE_MMU +#define KVM_MMU_WARN_ON(x) WARN_ON_ONCE(x) +#else +#define KVM_MMU_WARN_ON(x) BUILD_BUG_ON_INVALID(x) +#endif + +/* Page table builder macros common to shadow (host) PTEs and guest PTEs. */ +#define __PT_BASE_ADDR_MASK GENMASK_ULL(51, 12) +#define __PT_LEVEL_SHIFT(level, bits_per_level) \ + (PAGE_SHIFT + ((level) - 1) * (bits_per_level)) +#define __PT_INDEX(address, level, bits_per_level) \ + (((address) >> __PT_LEVEL_SHIFT(level, bits_per_level)) & ((1 << (bits_per_level)) - 1)) + +#define __PT_LVL_ADDR_MASK(base_addr_mask, level, bits_per_level) \ + ((base_addr_mask) & ~((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1)) + +#define __PT_LVL_OFFSET_MASK(base_addr_mask, level, bits_per_level) \ + ((base_addr_mask) & ((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1)) + +#define __PT_ENT_PER_PAGE(bits_per_level) (1 << (bits_per_level)) + +/* + * Unlike regular MMU roots, PAE "roots", a.k.a. PDPTEs/PDPTRs, have a PRESENT + * bit, and thus are guaranteed to be non-zero when valid. And, when a guest + * PDPTR is !PRESENT, its corresponding PAE root cannot be set to INVALID_PAGE, + * as the CPU would treat that as PRESENT PDPTR with reserved bits set. Use + * '0' instead of INVALID_PAGE to indicate an invalid PAE root. + */ +#define INVALID_PAE_ROOT 0 +#define IS_VALID_PAE_ROOT(x) (!!(x)) + +typedef u64 __rcu *tdp_ptep_t; + +struct kvm_mmu_page { + /* + * Note, "link" through "spt" fit in a single 64 byte cache line on + * 64-bit kernels, keep it that way unless there's a reason not to. + */ + struct list_head link; + struct hlist_node hash_link; + + bool tdp_mmu_page; + bool unsync; + union { + u8 mmu_valid_gen; + + /* Only accessed under slots_lock. */ + bool tdp_mmu_scheduled_root_to_zap; + }; + + /* + * The shadow page can't be replaced by an equivalent huge page + * because it is being used to map an executable page in the guest + * and the NX huge page mitigation is enabled. + */ + bool nx_huge_page_disallowed; + + /* + * The following two entries are used to key the shadow page in the + * hash table. + */ + union kvm_mmu_page_role role; + gfn_t gfn; + + u64 *spt; + + /* + * Stores the result of the guest translation being shadowed by each + * SPTE. KVM shadows two types of guest translations: nGPA -> GPA + * (shadow EPT/NPT) and GVA -> GPA (traditional shadow paging). In both + * cases the result of the translation is a GPA and a set of access + * constraints. + * + * The GFN is stored in the upper bits (PAGE_SHIFT) and the shadowed + * access permissions are stored in the lower bits. Note, for + * convenience and uniformity across guests, the access permissions are + * stored in KVM format (e.g. ACC_EXEC_MASK) not the raw guest format. + */ + u64 *shadowed_translation; + + /* Currently serving as active root */ + union { + int root_count; + refcount_t tdp_mmu_root_count; + }; + + bool has_mapped_host_mmio; + + union { + /* These two members aren't used for TDP MMU */ + struct { + unsigned int unsync_children; + /* + * Number of writes since the last time traversal + * visited this page. + */ + atomic_t write_flooding_count; + }; + /* + * Page table page of external PT. + * Passed to TDX module, not accessed by KVM. + */ + void *external_spt; + }; + union { + struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */ + tdp_ptep_t ptep; + }; + DECLARE_BITMAP(unsync_child_bitmap, 512); + + /* + * Tracks shadow pages that, if zapped, would allow KVM to create an NX + * huge page. A shadow page will have nx_huge_page_disallowed set but + * not be on the list if a huge page is disallowed for other reasons, + * e.g. because KVM is shadowing a PTE at the same gfn, the memslot + * isn't properly aligned, etc... + */ + struct list_head possible_nx_huge_page_link; +#ifdef CONFIG_X86_32 + /* + * Used out of the mmu-lock to avoid reading spte values while an + * update is in progress; see the comments in __get_spte_lockless(). + */ + int clear_spte_count; +#endif + +#ifdef CONFIG_X86_64 + /* Used for freeing the page asynchronously if it is a TDP MMU page. */ + struct rcu_head rcu_head; +#endif +}; + +extern struct kmem_cache *mmu_page_header_cache; + +static inline int kvm_mmu_role_as_id(union kvm_mmu_page_role role) +{ + return role.smm ? 1 : 0; +} + +static inline int kvm_mmu_page_as_id(struct kvm_mmu_page *sp) +{ + return kvm_mmu_role_as_id(sp->role); +} + +static inline bool is_mirror_sp(const struct kvm_mmu_page *sp) +{ + return sp->role.is_mirror; +} + +static inline void kvm_mmu_alloc_external_spt(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) +{ + /* + * external_spt is allocated for TDX module to hold private EPT mappings, + * TDX module will initialize the page by itself. + * Therefore, KVM does not need to initialize or access external_spt. + * KVM only interacts with sp->spt for private EPT operations. + */ + sp->external_spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_external_spt_cache); +} + +static inline gfn_t kvm_gfn_root_bits(const struct kvm *kvm, const struct kvm_mmu_page *root) +{ + /* + * Since mirror SPs are used only for TDX, which maps private memory + * at its "natural" GFN, no mask needs to be applied to them - and, dually, + * we expect that the bits is only used for the shared PT. + */ + if (is_mirror_sp(root)) + return 0; + return kvm_gfn_direct_bits(kvm); +} + +static inline bool kvm_mmu_page_ad_need_write_protect(struct kvm *kvm, + struct kvm_mmu_page *sp) +{ + /* + * When using the EPT page-modification log, the GPAs in the CPU dirty + * log would come from L2 rather than L1. Therefore, we need to rely + * on write protection to record dirty pages, which bypasses PML, since + * writes now result in a vmexit. Note, the check on CPU dirty logging + * being enabled is mandatory as the bits used to denote WP-only SPTEs + * are reserved for PAE paging (32-bit KVM). + */ + return kvm->arch.cpu_dirty_log_size && sp->role.guest_mode; +} + +static inline gfn_t gfn_round_for_level(gfn_t gfn, int level) +{ + return gfn & -KVM_PAGES_PER_HPAGE(level); +} + +int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, + gfn_t gfn, bool synchronizing, bool prefetch); + +void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn); +void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn); +bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, + struct kvm_memory_slot *slot, u64 gfn, + int min_level); + +/* Flush the given page (huge or not) of guest memory. */ +static inline void kvm_flush_remote_tlbs_gfn(struct kvm *kvm, gfn_t gfn, int level) +{ + kvm_flush_remote_tlbs_range(kvm, gfn_round_for_level(gfn, level), + KVM_PAGES_PER_HPAGE(level)); +} + +unsigned int pte_list_count(struct kvm_rmap_head *rmap_head); + +extern int nx_huge_pages; +static inline bool is_nx_huge_page_enabled(struct kvm *kvm) +{ + return READ_ONCE(nx_huge_pages) && !kvm->arch.disable_nx_huge_pages; +} + +struct kvm_page_fault { + /* arguments to kvm_mmu_do_page_fault. */ + const gpa_t addr; + const u64 error_code; + const bool prefetch; + + /* Derived from error_code. */ + const bool exec; + const bool write; + const bool present; + const bool rsvd; + const bool user; + + /* Derived from mmu and global state. */ + const bool is_tdp; + const bool is_private; + const bool nx_huge_page_workaround_enabled; + + /* + * Whether a >4KB mapping can be created or is forbidden due to NX + * hugepages. + */ + bool huge_page_disallowed; + + /* + * Maximum page size that can be created for this fault; input to + * FNAME(fetch), direct_map() and kvm_tdp_mmu_map(). + */ + u8 max_level; + + /* + * Page size that can be created based on the max_level and the + * page size used by the host mapping. + */ + u8 req_level; + + /* + * Page size that will be created based on the req_level and + * huge_page_disallowed. + */ + u8 goal_level; + + /* + * Shifted addr, or result of guest page table walk if addr is a gva. In + * the case of VM where memslot's can be mapped at multiple GPA aliases + * (i.e. TDX), the gfn field does not contain the bit that selects between + * the aliases (i.e. the shared bit for TDX). + */ + gfn_t gfn; + + /* The memslot containing gfn. May be NULL. */ + struct kvm_memory_slot *slot; + + /* Outputs of kvm_mmu_faultin_pfn(). */ + unsigned long mmu_seq; + kvm_pfn_t pfn; + struct page *refcounted_page; + bool map_writable; + + /* + * Indicates the guest is trying to write a gfn that contains one or + * more of the PTEs used to translate the write itself, i.e. the access + * is changing its own translation in the guest page tables. + */ + bool write_fault_to_shadow_pgtable; +}; + +int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); + +/* + * Return values of handle_mmio_page_fault(), mmu.page_fault(), fast_page_fault(), + * and of course kvm_mmu_do_page_fault(). + * + * RET_PF_CONTINUE: So far, so good, keep handling the page fault. + * RET_PF_RETRY: let CPU fault again on the address. + * RET_PF_EMULATE: mmio page fault, emulate the instruction directly. + * RET_PF_WRITE_PROTECTED: the gfn is write-protected, either unprotected the + * gfn and retry, or emulate the instruction directly. + * RET_PF_INVALID: the spte is invalid, let the real page fault path update it. + * RET_PF_FIXED: The faulting entry has been fixed. + * RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU. + * + * Any names added to this enum should be exported to userspace for use in + * tracepoints via TRACE_DEFINE_ENUM() in mmutrace.h + * + * Note, all values must be greater than or equal to zero so as not to encroach + * on -errno return values. + */ +enum { + RET_PF_CONTINUE = 0, + RET_PF_RETRY, + RET_PF_EMULATE, + RET_PF_WRITE_PROTECTED, + RET_PF_INVALID, + RET_PF_FIXED, + RET_PF_SPURIOUS, +}; + +/* + * Define RET_PF_CONTINUE as 0 to allow for + * - efficient machine code when checking for CONTINUE, e.g. + * "TEST %rax, %rax, JNZ", as all "stop!" values are non-zero, + * - kvm_mmu_do_page_fault() to return other RET_PF_* as a positive value. + */ +static_assert(RET_PF_CONTINUE == 0); + +static inline void kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, + struct kvm_page_fault *fault) +{ + kvm_prepare_memory_fault_exit(vcpu, fault->gfn << PAGE_SHIFT, + PAGE_SIZE, fault->write, fault->exec, + fault->is_private); +} + +static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, + u64 err, bool prefetch, + int *emulation_type, u8 *level) +{ + struct kvm_page_fault fault = { + .addr = cr2_or_gpa, + .error_code = err, + .exec = err & PFERR_FETCH_MASK, + .write = err & PFERR_WRITE_MASK, + .present = err & PFERR_PRESENT_MASK, + .rsvd = err & PFERR_RSVD_MASK, + .user = err & PFERR_USER_MASK, + .prefetch = prefetch, + .is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault), + .nx_huge_page_workaround_enabled = + is_nx_huge_page_enabled(vcpu->kvm), + + .max_level = KVM_MAX_HUGEPAGE_LEVEL, + .req_level = PG_LEVEL_4K, + .goal_level = PG_LEVEL_4K, + .is_private = err & PFERR_PRIVATE_ACCESS, + + .pfn = KVM_PFN_ERR_FAULT, + }; + int r; + + if (vcpu->arch.mmu->root_role.direct) { + /* + * Things like memslots don't understand the concept of a shared + * bit. Strip it so that the GFN can be used like normal, and the + * fault.addr can be used when the shared bit is needed. + */ + fault.gfn = gpa_to_gfn(fault.addr) & ~kvm_gfn_direct_bits(vcpu->kvm); + fault.slot = kvm_vcpu_gfn_to_memslot(vcpu, fault.gfn); + } + + /* + * With retpoline being active an indirect call is rather expensive, + * so do a direct call in the most common case. + */ + if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && fault.is_tdp) + r = kvm_tdp_page_fault(vcpu, &fault); + else + r = vcpu->arch.mmu->page_fault(vcpu, &fault); + + /* + * Not sure what's happening, but punt to userspace and hope that + * they can fix it by changing memory to shared, or they can + * provide a better error. + */ + if (r == RET_PF_EMULATE && fault.is_private) { + pr_warn_ratelimited("kvm: unexpected emulation request on private memory\n"); + kvm_mmu_prepare_memory_fault_exit(vcpu, &fault); + return -EFAULT; + } + + if (fault.write_fault_to_shadow_pgtable && emulation_type) + *emulation_type |= EMULTYPE_WRITE_PF_TO_SP; + if (level) + *level = fault.goal_level; + + return r; +} + +int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_page_fault *fault, + const struct kvm_memory_slot *slot, gfn_t gfn); +void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); +void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level); + +void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, + enum kvm_mmu_type mmu_type); +void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, + enum kvm_mmu_type mmu_type); + +#endif /* __KVM_X86_MMU_INTERNAL_H */ |
