diff options
Diffstat (limited to 'arch/x86/kvm/mmu/tdp_mmu.c')
| -rw-r--r-- | arch/x86/kvm/mmu/tdp_mmu.c | 1190 |
1 files changed, 674 insertions, 516 deletions
diff --git a/arch/x86/kvm/mmu/tdp_mmu.c b/arch/x86/kvm/mmu/tdp_mmu.c index 512163d52194..9c26038f6b77 100644 --- a/arch/x86/kvm/mmu/tdp_mmu.c +++ b/arch/x86/kvm/mmu/tdp_mmu.c @@ -12,18 +12,10 @@ #include <trace/events/kvm.h> /* Initializes the TDP MMU for the VM, if enabled. */ -int kvm_mmu_init_tdp_mmu(struct kvm *kvm) +void kvm_mmu_init_tdp_mmu(struct kvm *kvm) { - struct workqueue_struct *wq; - - wq = alloc_workqueue("kvm", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 0); - if (!wq) - return -ENOMEM; - INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots); spin_lock_init(&kvm->arch.tdp_mmu_pages_lock); - kvm->arch.tdp_mmu_zap_wq = wq; - return 1; } /* Arbitrarily returns true so that this may be used in if statements. */ @@ -45,27 +37,25 @@ void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm) * for zapping and thus puts the TDP MMU's reference to each root, i.e. * ultimately frees all roots. */ - kvm_tdp_mmu_invalidate_all_roots(kvm); - - /* - * Destroying a workqueue also first flushes the workqueue, i.e. no - * need to invoke kvm_tdp_mmu_zap_invalidated_roots(). - */ - destroy_workqueue(kvm->arch.tdp_mmu_zap_wq); + kvm_tdp_mmu_invalidate_roots(kvm, KVM_VALID_ROOTS); + kvm_tdp_mmu_zap_invalidated_roots(kvm, false); - WARN_ON(atomic64_read(&kvm->arch.tdp_mmu_pages)); +#ifdef CONFIG_KVM_PROVE_MMU + KVM_MMU_WARN_ON(atomic64_read(&kvm->arch.tdp_mmu_pages)); +#endif WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots)); /* * Ensure that all the outstanding RCU callbacks to free shadow pages - * can run before the VM is torn down. Work items on tdp_mmu_zap_wq - * can call kvm_tdp_mmu_put_root and create new callbacks. + * can run before the VM is torn down. Putting the last reference to + * zapped roots will create new callbacks. */ rcu_barrier(); } static void tdp_mmu_free_sp(struct kvm_mmu_page *sp) { + free_page((unsigned long)sp->external_spt); free_page((unsigned long)sp->spt); kmem_cache_free(mmu_page_header_cache, sp); } @@ -86,51 +76,8 @@ static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head) tdp_mmu_free_sp(sp); } -static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, - bool shared); - -static void tdp_mmu_zap_root_work(struct work_struct *work) -{ - struct kvm_mmu_page *root = container_of(work, struct kvm_mmu_page, - tdp_mmu_async_work); - struct kvm *kvm = root->tdp_mmu_async_data; - - read_lock(&kvm->mmu_lock); - - /* - * A TLB flush is not necessary as KVM performs a local TLB flush when - * allocating a new root (see kvm_mmu_load()), and when migrating vCPU - * to a different pCPU. Note, the local TLB flush on reuse also - * invalidates any paging-structure-cache entries, i.e. TLB entries for - * intermediate paging structures, that may be zapped, as such entries - * are associated with the ASID on both VMX and SVM. - */ - tdp_mmu_zap_root(kvm, root, true); - - /* - * Drop the refcount using kvm_tdp_mmu_put_root() to test its logic for - * avoiding an infinite loop. By design, the root is reachable while - * it's being asynchronously zapped, thus a different task can put its - * last reference, i.e. flowing through kvm_tdp_mmu_put_root() for an - * asynchronously zapped root is unavoidable. - */ - kvm_tdp_mmu_put_root(kvm, root, true); - - read_unlock(&kvm->mmu_lock); -} - -static void tdp_mmu_schedule_zap_root(struct kvm *kvm, struct kvm_mmu_page *root) -{ - root->tdp_mmu_async_data = kvm; - INIT_WORK(&root->tdp_mmu_async_work, tdp_mmu_zap_root_work); - queue_work(kvm->arch.tdp_mmu_zap_wq, &root->tdp_mmu_async_work); -} - -void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root, - bool shared) +void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root) { - kvm_lockdep_assert_mmu_lock_held(kvm, shared); - if (!refcount_dec_and_test(&root->tdp_mmu_root_count)) return; @@ -147,22 +94,42 @@ void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root, call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback); } +static bool tdp_mmu_root_match(struct kvm_mmu_page *root, + enum kvm_tdp_mmu_root_types types) +{ + if (WARN_ON_ONCE(!(types & KVM_VALID_ROOTS))) + return false; + + if (root->role.invalid && !(types & KVM_INVALID_ROOTS)) + return false; + + if (likely(!is_mirror_sp(root))) + return types & KVM_DIRECT_ROOTS; + return types & KVM_MIRROR_ROOTS; +} + /* * Returns the next root after @prev_root (or the first root if @prev_root is - * NULL). A reference to the returned root is acquired, and the reference to - * @prev_root is released (the caller obviously must hold a reference to - * @prev_root if it's non-NULL). + * NULL) that matches with @types. A reference to the returned root is + * acquired, and the reference to @prev_root is released (the caller obviously + * must hold a reference to @prev_root if it's non-NULL). * - * If @only_valid is true, invalid roots are skipped. + * Roots that doesn't match with @types are skipped. * * Returns NULL if the end of tdp_mmu_roots was reached. */ static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm, struct kvm_mmu_page *prev_root, - bool shared, bool only_valid) + enum kvm_tdp_mmu_root_types types) { struct kvm_mmu_page *next_root; + /* + * While the roots themselves are RCU-protected, fields such as + * role.invalid are protected by mmu_lock. + */ + lockdep_assert_held(&kvm->mmu_lock); + rcu_read_lock(); if (prev_root) @@ -174,7 +141,7 @@ static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm, typeof(*next_root), link); while (next_root) { - if ((!only_valid || !next_root->role.invalid) && + if (tdp_mmu_root_match(next_root, types) && kvm_tdp_mmu_get_root(next_root)) break; @@ -185,7 +152,7 @@ static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm, rcu_read_unlock(); if (prev_root) - kvm_tdp_mmu_put_root(kvm, prev_root, shared); + kvm_tdp_mmu_put_root(kvm, prev_root); return next_root; } @@ -197,22 +164,22 @@ static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm, * recent root. (Unless keeping a live reference is desirable.) * * If shared is set, this function is operating under the MMU lock in read - * mode. In the unlikely event that this thread must free a root, the lock - * will be temporarily dropped and reacquired in write mode. + * mode. */ -#define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, _only_valid)\ - for (_root = tdp_mmu_next_root(_kvm, NULL, _shared, _only_valid); \ - _root; \ - _root = tdp_mmu_next_root(_kvm, _root, _shared, _only_valid)) \ - if (kvm_lockdep_assert_mmu_lock_held(_kvm, _shared) && \ - kvm_mmu_page_as_id(_root) != _as_id) { \ +#define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _types) \ + for (_root = tdp_mmu_next_root(_kvm, NULL, _types); \ + ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root; \ + _root = tdp_mmu_next_root(_kvm, _root, _types)) \ + if (_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) { \ } else -#define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared) \ - __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, true) +#define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id) \ + __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, KVM_VALID_ROOTS) -#define for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id) \ - __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, false, false) +#define for_each_tdp_mmu_root_yield_safe(_kvm, _root) \ + for (_root = tdp_mmu_next_root(_kvm, NULL, KVM_ALL_ROOTS); \ + ({ lockdep_assert_held(&(_kvm)->mmu_lock); }), _root; \ + _root = tdp_mmu_next_root(_kvm, _root, KVM_ALL_ROOTS)) /* * Iterate over all TDP MMU roots. Requires that mmu_lock be held for write, @@ -221,12 +188,29 @@ static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm, * Holding mmu_lock for write obviates the need for RCU protection as the list * is guaranteed to be stable. */ -#define for_each_tdp_mmu_root(_kvm, _root, _as_id) \ - list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link) \ - if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) && \ - kvm_mmu_page_as_id(_root) != _as_id) { \ +#define __for_each_tdp_mmu_root(_kvm, _root, _as_id, _types) \ + list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link) \ + if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) && \ + ((_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) || \ + !tdp_mmu_root_match((_root), (_types)))) { \ + } else + +/* + * Iterate over all TDP MMU roots in an RCU read-side critical section. + * It is safe to iterate over the SPTEs under the root, but their values will + * be unstable, so all writes must be atomic. As this routine is meant to be + * used without holding the mmu_lock at all, any bits that are flipped must + * be reflected in kvm_tdp_mmu_spte_need_atomic_write(). + */ +#define for_each_tdp_mmu_root_rcu(_kvm, _root, _as_id, _types) \ + list_for_each_entry_rcu(_root, &_kvm->arch.tdp_mmu_roots, link) \ + if ((_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) || \ + !tdp_mmu_root_match((_root), (_types))) { \ } else +#define for_each_valid_tdp_mmu_root(_kvm, _root, _as_id) \ + __for_each_tdp_mmu_root(_kvm, _root, _as_id, KVM_VALID_ROOTS) + static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu) { struct kvm_mmu_page *sp; @@ -266,22 +250,44 @@ static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp, tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role); } -hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu) +void kvm_tdp_mmu_alloc_root(struct kvm_vcpu *vcpu, bool mirror) { - union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; + struct kvm_mmu *mmu = vcpu->arch.mmu; + union kvm_mmu_page_role role = mmu->root_role; + int as_id = kvm_mmu_role_as_id(role); struct kvm *kvm = vcpu->kvm; struct kvm_mmu_page *root; - lockdep_assert_held_write(&kvm->mmu_lock); + if (mirror) + role.is_mirror = true; + + /* + * Check for an existing root before acquiring the pages lock to avoid + * unnecessary serialization if multiple vCPUs are loading a new root. + * E.g. when bringing up secondary vCPUs, KVM will already have created + * a valid root on behalf of the primary vCPU. + */ + read_lock(&kvm->mmu_lock); + + for_each_valid_tdp_mmu_root_yield_safe(kvm, root, as_id) { + if (root->role.word == role.word) + goto out_read_unlock; + } + + spin_lock(&kvm->arch.tdp_mmu_pages_lock); /* - * Check for an existing root before allocating a new one. Note, the - * role check prevents consuming an invalid root. + * Recheck for an existing root after acquiring the pages lock, another + * vCPU may have raced ahead and created a new usable root. Manually + * walk the list of roots as the standard macros assume that the pages + * lock is *not* held. WARN if grabbing a reference to a usable root + * fails, as the last reference to a root can only be put *after* the + * root has been invalidated, which requires holding mmu_lock for write. */ - for_each_tdp_mmu_root(kvm, root, kvm_mmu_role_as_id(role)) { + list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) { if (root->role.word == role.word && - kvm_tdp_mmu_get_root(root)) - goto out; + !WARN_ON_ONCE(!kvm_tdp_mmu_get_root(root))) + goto out_spin_unlock; } root = tdp_mmu_alloc_sp(vcpu); @@ -292,16 +298,26 @@ hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu) * by a memslot update or by the destruction of the VM. Initialize the * refcount to two; one reference for the vCPU, and one reference for * the TDP MMU itself, which is held until the root is invalidated and - * is ultimately put by tdp_mmu_zap_root_work(). + * is ultimately put by kvm_tdp_mmu_zap_invalidated_roots(). */ refcount_set(&root->tdp_mmu_root_count, 2); - - spin_lock(&kvm->arch.tdp_mmu_pages_lock); list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots); - spin_unlock(&kvm->arch.tdp_mmu_pages_lock); -out: - return __pa(root->spt); +out_spin_unlock: + spin_unlock(&kvm->arch.tdp_mmu_pages_lock); +out_read_unlock: + read_unlock(&kvm->mmu_lock); + /* + * Note, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS will prevent entering the guest + * and actually consuming the root if it's invalidated after dropping + * mmu_lock, and the root can't be freed as this vCPU holds a reference. + */ + if (mirror) { + mmu->mirror_root_hpa = __pa(root->spt); + } else { + mmu->root.hpa = __pa(root->spt); + mmu->root.pgd = 0; + } } static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, @@ -311,13 +327,17 @@ static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, static void tdp_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) { kvm_account_pgtable_pages((void *)sp->spt, +1); +#ifdef CONFIG_KVM_PROVE_MMU atomic64_inc(&kvm->arch.tdp_mmu_pages); +#endif } static void tdp_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) { kvm_account_pgtable_pages((void *)sp->spt, -1); +#ifdef CONFIG_KVM_PROVE_MMU atomic64_dec(&kvm->arch.tdp_mmu_pages); +#endif } /** @@ -325,28 +345,37 @@ static void tdp_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) * * @kvm: kvm instance * @sp: the page to be removed - * @shared: This operation may not be running under the exclusive use of - * the MMU lock and the operation must synchronize with other - * threads that might be adding or removing pages. */ -static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp, - bool shared) +static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp) { tdp_unaccount_mmu_page(kvm, sp); if (!sp->nx_huge_page_disallowed) return; - if (shared) - spin_lock(&kvm->arch.tdp_mmu_pages_lock); - else - lockdep_assert_held_write(&kvm->mmu_lock); - + spin_lock(&kvm->arch.tdp_mmu_pages_lock); sp->nx_huge_page_disallowed = false; - untrack_possible_nx_huge_page(kvm, sp); + untrack_possible_nx_huge_page(kvm, sp, KVM_TDP_MMU); + spin_unlock(&kvm->arch.tdp_mmu_pages_lock); +} - if (shared) - spin_unlock(&kvm->arch.tdp_mmu_pages_lock); +static void remove_external_spte(struct kvm *kvm, gfn_t gfn, u64 old_spte, + int level) +{ + /* + * External (TDX) SPTEs are limited to PG_LEVEL_4K, and external + * PTs are removed in a special order, involving free_external_spt(). + * But remove_external_spte() will be called on non-leaf PTEs via + * __tdp_mmu_zap_root(), so avoid the error the former would return + * in this case. + */ + if (!is_last_spte(old_spte, level)) + return; + + /* Zapping leaf spte is allowed only when write lock is held. */ + lockdep_assert_held_write(&kvm->mmu_lock); + + kvm_x86_call(remove_external_spte)(kvm, gfn, level, old_spte); } /** @@ -375,7 +404,7 @@ static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared) trace_kvm_mmu_prepare_zap_page(sp); - tdp_mmu_unlink_sp(kvm, sp, shared); + tdp_mmu_unlink_sp(kvm, sp); for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { tdp_ptep_t sptep = pt + i; @@ -386,14 +415,14 @@ static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared) /* * Set the SPTE to a nonpresent value that other * threads will not overwrite. If the SPTE was - * already marked as removed then another thread + * already marked as frozen then another thread * handling a page fault could overwrite it, so * set the SPTE until it is set from some other - * value to the removed SPTE value. + * value to the frozen SPTE value. */ for (;;) { - old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, REMOVED_SPTE); - if (!is_removed_spte(old_spte)) + old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, FROZEN_SPTE); + if (!is_frozen_spte(old_spte)) break; cpu_relax(); } @@ -424,11 +453,11 @@ static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared) * No retry is needed in the atomic update path as the * sole concern is dropping a Dirty bit, i.e. no other * task can zap/remove the SPTE as mmu_lock is held for - * write. Marking the SPTE as a removed SPTE is not + * write. Marking the SPTE as a frozen SPTE is not * strictly necessary for the same reason, but using - * the remove SPTE value keeps the shared/exclusive + * the frozen SPTE value keeps the shared/exclusive * paths consistent and allows the handle_changed_spte() - * call below to hardcode the new value to REMOVED_SPTE. + * call below to hardcode the new value to FROZEN_SPTE. * * Note, even though dropping a Dirty bit is the only * scenario where a non-atomic update could result in a @@ -440,15 +469,84 @@ static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared) * it here. */ old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, - REMOVED_SPTE, level); + FROZEN_SPTE, level); } handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn, - old_spte, REMOVED_SPTE, level, shared); + old_spte, FROZEN_SPTE, level, shared); + + if (is_mirror_sp(sp)) { + KVM_BUG_ON(shared, kvm); + remove_external_spte(kvm, gfn, old_spte, level); + } + } + + if (is_mirror_sp(sp) && + WARN_ON(kvm_x86_call(free_external_spt)(kvm, base_gfn, sp->role.level, + sp->external_spt))) { + /* + * Failed to free page table page in mirror page table and + * there is nothing to do further. + * Intentionally leak the page to prevent the kernel from + * accessing the encrypted page. + */ + sp->external_spt = NULL; } call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback); } +static void *get_external_spt(gfn_t gfn, u64 new_spte, int level) +{ + if (is_shadow_present_pte(new_spte) && !is_last_spte(new_spte, level)) { + struct kvm_mmu_page *sp = spte_to_child_sp(new_spte); + + WARN_ON_ONCE(sp->role.level + 1 != level); + WARN_ON_ONCE(sp->gfn != gfn); + return sp->external_spt; + } + + return NULL; +} + +static int __must_check set_external_spte_present(struct kvm *kvm, tdp_ptep_t sptep, + gfn_t gfn, u64 old_spte, + u64 new_spte, int level) +{ + bool was_present = is_shadow_present_pte(old_spte); + bool is_present = is_shadow_present_pte(new_spte); + bool is_leaf = is_present && is_last_spte(new_spte, level); + int ret = 0; + + KVM_BUG_ON(was_present, kvm); + + lockdep_assert_held(&kvm->mmu_lock); + /* + * We need to lock out other updates to the SPTE until the external + * page table has been modified. Use FROZEN_SPTE similar to + * the zapping case. + */ + if (!try_cmpxchg64(rcu_dereference(sptep), &old_spte, FROZEN_SPTE)) + return -EBUSY; + + /* + * Use different call to either set up middle level + * external page table, or leaf. + */ + if (is_leaf) { + ret = kvm_x86_call(set_external_spte)(kvm, gfn, level, new_spte); + } else { + void *external_spt = get_external_spt(gfn, new_spte, level); + + KVM_BUG_ON(!external_spt, kvm); + ret = kvm_x86_call(link_external_spt)(kvm, gfn, level, external_spt); + } + if (ret) + __kvm_tdp_mmu_write_spte(sptep, old_spte); + else + __kvm_tdp_mmu_write_spte(sptep, new_spte); + return ret; +} + /** * handle_changed_spte - handle bookkeeping associated with an SPTE change * @kvm: kvm instance @@ -475,9 +573,9 @@ static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, bool is_leaf = is_present && is_last_spte(new_spte, level); bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); - WARN_ON(level > PT64_ROOT_MAX_LEVEL); - WARN_ON(level < PG_LEVEL_4K); - WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1)); + WARN_ON_ONCE(level > PT64_ROOT_MAX_LEVEL); + WARN_ON_ONCE(level < PG_LEVEL_4K); + WARN_ON_ONCE(gfn & (KVM_PAGES_PER_HPAGE(level) - 1)); /* * If this warning were to trigger it would indicate that there was a @@ -517,19 +615,19 @@ static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, */ if (!was_present && !is_present) { /* - * If this change does not involve a MMIO SPTE or removed SPTE, + * If this change does not involve a MMIO SPTE or frozen SPTE, * it is unexpected. Log the change, though it should not * impact the guest since both the former and current SPTEs * are nonpresent. */ - if (WARN_ON(!is_mmio_spte(old_spte) && - !is_mmio_spte(new_spte) && - !is_removed_spte(new_spte))) + if (WARN_ON_ONCE(!is_mmio_spte(kvm, old_spte) && + !is_mmio_spte(kvm, new_spte) && + !is_frozen_spte(new_spte))) pr_err("Unexpected SPTE change! Nonpresent SPTEs\n" "should not be replaced with another,\n" "different nonpresent SPTE, unless one or both\n" "are MMIO SPTEs, or the new SPTE is\n" - "a temporary removed SPTE.\n" + "a temporary frozen SPTE.\n" "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", as_id, gfn, old_spte, new_spte, level); return; @@ -538,10 +636,6 @@ static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, if (is_leaf != was_leaf) kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1); - if (was_leaf && is_dirty_spte(old_spte) && - (!is_present || !is_dirty_spte(new_spte) || pfn_changed)) - kvm_set_pfn_dirty(spte_to_pfn(old_spte)); - /* * Recursively handle child PTs if the change removed a subtree from * the paging structure. Note the WARN on the PFN changing without the @@ -551,10 +645,50 @@ static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, if (was_present && !was_leaf && (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed))) handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared); +} + +static inline int __must_check __tdp_mmu_set_spte_atomic(struct kvm *kvm, + struct tdp_iter *iter, + u64 new_spte) +{ + /* + * The caller is responsible for ensuring the old SPTE is not a FROZEN + * SPTE. KVM should never attempt to zap or manipulate a FROZEN SPTE, + * and pre-checking before inserting a new SPTE is advantageous as it + * avoids unnecessary work. + */ + WARN_ON_ONCE(iter->yielded || is_frozen_spte(iter->old_spte)); + + if (is_mirror_sptep(iter->sptep) && !is_frozen_spte(new_spte)) { + int ret; + + /* + * Users of atomic zapping don't operate on mirror roots, + * so don't handle it and bug the VM if it's seen. + */ + if (KVM_BUG_ON(!is_shadow_present_pte(new_spte), kvm)) + return -EBUSY; + + ret = set_external_spte_present(kvm, iter->sptep, iter->gfn, + iter->old_spte, new_spte, iter->level); + if (ret) + return ret; + } else { + u64 *sptep = rcu_dereference(iter->sptep); - if (was_leaf && is_accessed_spte(old_spte) && - (!is_present || !is_accessed_spte(new_spte) || pfn_changed)) - kvm_set_pfn_accessed(spte_to_pfn(old_spte)); + /* + * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs + * and does not hold the mmu_lock. On failure, i.e. if a + * different logical CPU modified the SPTE, try_cmpxchg64() + * updates iter->old_spte with the current value, so the caller + * operates on fresh data, e.g. if it retries + * tdp_mmu_set_spte_atomic() + */ + if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte)) + return -EBUSY; + } + + return 0; } /* @@ -574,68 +708,24 @@ static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, * no side-effects other than setting iter->old_spte to the last * known value of the spte. */ -static inline int tdp_mmu_set_spte_atomic(struct kvm *kvm, - struct tdp_iter *iter, - u64 new_spte) +static inline int __must_check tdp_mmu_set_spte_atomic(struct kvm *kvm, + struct tdp_iter *iter, + u64 new_spte) { - u64 *sptep = rcu_dereference(iter->sptep); - - /* - * The caller is responsible for ensuring the old SPTE is not a REMOVED - * SPTE. KVM should never attempt to zap or manipulate a REMOVED SPTE, - * and pre-checking before inserting a new SPTE is advantageous as it - * avoids unnecessary work. - */ - WARN_ON_ONCE(iter->yielded || is_removed_spte(iter->old_spte)); + int ret; lockdep_assert_held_read(&kvm->mmu_lock); - /* - * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and - * does not hold the mmu_lock. On failure, i.e. if a different logical - * CPU modified the SPTE, try_cmpxchg64() updates iter->old_spte with - * the current value, so the caller operates on fresh data, e.g. if it - * retries tdp_mmu_set_spte_atomic() - */ - if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte)) - return -EBUSY; - - handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte, - new_spte, iter->level, true); - - return 0; -} - -static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm, - struct tdp_iter *iter) -{ - int ret; - - /* - * Freeze the SPTE by setting it to a special, - * non-present value. This will stop other threads from - * immediately installing a present entry in its place - * before the TLBs are flushed. - */ - ret = tdp_mmu_set_spte_atomic(kvm, iter, REMOVED_SPTE); + ret = __tdp_mmu_set_spte_atomic(kvm, iter, new_spte); if (ret) return ret; - kvm_flush_remote_tlbs_gfn(kvm, iter->gfn, iter->level); - - /* - * No other thread can overwrite the removed SPTE as they must either - * wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not - * overwrite the special removed SPTE value. No bookkeeping is needed - * here since the SPTE is going from non-present to non-present. Use - * the raw write helper to avoid an unnecessary check on volatile bits. - */ - __kvm_tdp_mmu_write_spte(iter->sptep, 0); + handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte, + new_spte, iter->level, true); return 0; } - /* * tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping * @kvm: KVM instance @@ -656,16 +746,26 @@ static u64 tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep, /* * No thread should be using this function to set SPTEs to or from the - * temporary removed SPTE value. + * temporary frozen SPTE value. * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic * should be used. If operating under the MMU lock in write mode, the - * use of the removed SPTE should not be necessary. + * use of the frozen SPTE should not be necessary. */ - WARN_ON(is_removed_spte(old_spte) || is_removed_spte(new_spte)); + WARN_ON_ONCE(is_frozen_spte(old_spte) || is_frozen_spte(new_spte)); old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level); handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false); + + /* + * Users that do non-atomic setting of PTEs don't operate on mirror + * roots, so don't handle it and bug the VM if it's seen. + */ + if (is_mirror_sptep(sptep)) { + KVM_BUG_ON(is_shadow_present_pte(new_spte), kvm); + remove_external_spte(kvm, gfn, old_spte, level); + } + return old_spte; } @@ -678,18 +778,25 @@ static inline void tdp_mmu_iter_set_spte(struct kvm *kvm, struct tdp_iter *iter, iter->gfn, iter->level); } -#define tdp_root_for_each_pte(_iter, _root, _start, _end) \ - for_each_tdp_pte(_iter, _root, _start, _end) +#define tdp_root_for_each_pte(_iter, _kvm, _root, _start, _end) \ + for_each_tdp_pte(_iter, _kvm, _root, _start, _end) -#define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \ - tdp_root_for_each_pte(_iter, _root, _start, _end) \ +#define tdp_root_for_each_leaf_pte(_iter, _kvm, _root, _start, _end) \ + tdp_root_for_each_pte(_iter, _kvm, _root, _start, _end) \ if (!is_shadow_present_pte(_iter.old_spte) || \ !is_last_spte(_iter.old_spte, _iter.level)) \ continue; \ else -#define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \ - for_each_tdp_pte(_iter, to_shadow_page(_mmu->root.hpa), _start, _end) +static inline bool __must_check tdp_mmu_iter_need_resched(struct kvm *kvm, + struct tdp_iter *iter) +{ + if (!need_resched() && !rwlock_needbreak(&kvm->mmu_lock)) + return false; + + /* Ensure forward progress has been made before yielding. */ + return iter->next_last_level_gfn != iter->yielded_gfn; +} /* * Yield if the MMU lock is contended or this thread needs to return control @@ -709,31 +816,27 @@ static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm, struct tdp_iter *iter, bool flush, bool shared) { - WARN_ON(iter->yielded); + KVM_MMU_WARN_ON(iter->yielded); - /* Ensure forward progress has been made before yielding. */ - if (iter->next_last_level_gfn == iter->yielded_gfn) + if (!tdp_mmu_iter_need_resched(kvm, iter)) return false; - if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { - if (flush) - kvm_flush_remote_tlbs(kvm); + if (flush) + kvm_flush_remote_tlbs(kvm); - rcu_read_unlock(); - - if (shared) - cond_resched_rwlock_read(&kvm->mmu_lock); - else - cond_resched_rwlock_write(&kvm->mmu_lock); + rcu_read_unlock(); - rcu_read_lock(); + if (shared) + cond_resched_rwlock_read(&kvm->mmu_lock); + else + cond_resched_rwlock_write(&kvm->mmu_lock); - WARN_ON(iter->gfn > iter->next_last_level_gfn); + rcu_read_lock(); - iter->yielded = true; - } + WARN_ON_ONCE(iter->gfn > iter->next_last_level_gfn); - return iter->yielded; + iter->yielded = true; + return true; } static inline gfn_t tdp_mmu_max_gfn_exclusive(void) @@ -752,10 +855,7 @@ static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, { struct tdp_iter iter; - gfn_t end = tdp_mmu_max_gfn_exclusive(); - gfn_t start = 0; - - for_each_tdp_pte_min_level(iter, root, zap_level, start, end) { + for_each_tdp_pte_min_level_all(iter, root, zap_level) { retry: if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) continue; @@ -767,8 +867,8 @@ retry: continue; if (!shared) - tdp_mmu_iter_set_spte(kvm, &iter, 0); - else if (tdp_mmu_set_spte_atomic(kvm, &iter, 0)) + tdp_mmu_iter_set_spte(kvm, &iter, SHADOW_NONPRESENT_VALUE); + else if (tdp_mmu_set_spte_atomic(kvm, &iter, SHADOW_NONPRESENT_VALUE)) goto retry; } } @@ -794,38 +894,78 @@ static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, rcu_read_lock(); /* - * To avoid RCU stalls due to recursively removing huge swaths of SPs, - * split the zap into two passes. On the first pass, zap at the 1gb - * level, and then zap top-level SPs on the second pass. "1gb" is not - * arbitrary, as KVM must be able to zap a 1gb shadow page without - * inducing a stall to allow in-place replacement with a 1gb hugepage. + * Zap roots in multiple passes of decreasing granularity, i.e. zap at + * 4KiB=>2MiB=>1GiB=>root, in order to better honor need_resched() (all + * preempt models) or mmu_lock contention (full or real-time models). + * Zapping at finer granularity marginally increases the total time of + * the zap, but in most cases the zap itself isn't latency sensitive. * - * Because zapping a SP recurses on its children, stepping down to - * PG_LEVEL_4K in the iterator itself is unnecessary. + * If KVM is configured to prove the MMU, skip the 4KiB and 2MiB zaps + * in order to mimic the page fault path, which can replace a 1GiB page + * table with an equivalent 1GiB hugepage, i.e. can get saddled with + * zapping a 1GiB region that's fully populated with 4KiB SPTEs. This + * allows verifying that KVM can safely zap 1GiB regions, e.g. without + * inducing RCU stalls, without relying on a relatively rare event + * (zapping roots is orders of magnitude more common). Note, because + * zapping a SP recurses on its children, stepping down to PG_LEVEL_4K + * in the iterator itself is unnecessary. */ + if (!IS_ENABLED(CONFIG_KVM_PROVE_MMU)) { + __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_4K); + __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_2M); + } __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G); __tdp_mmu_zap_root(kvm, root, shared, root->role.level); rcu_read_unlock(); } -bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp) +bool kvm_tdp_mmu_zap_possible_nx_huge_page(struct kvm *kvm, + struct kvm_mmu_page *sp) { - u64 old_spte; + struct tdp_iter iter = { + .old_spte = sp->ptep ? kvm_tdp_mmu_read_spte(sp->ptep) : 0, + .sptep = sp->ptep, + .level = sp->role.level + 1, + .gfn = sp->gfn, + .as_id = kvm_mmu_page_as_id(sp), + }; + + lockdep_assert_held_read(&kvm->mmu_lock); + + if (WARN_ON_ONCE(!is_tdp_mmu_page(sp))) + return false; /* - * This helper intentionally doesn't allow zapping a root shadow page, - * which doesn't have a parent page table and thus no associated entry. + * Root shadow pages don't have a parent page table and thus no + * associated entry, but they can never be possible NX huge pages. */ if (WARN_ON_ONCE(!sp->ptep)) return false; - old_spte = kvm_tdp_mmu_read_spte(sp->ptep); - if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte))) + /* + * Since mmu_lock is held in read mode, it's possible another task has + * already modified the SPTE. Zap the SPTE if and only if the SPTE + * points at the SP's page table, as checking shadow-present isn't + * sufficient, e.g. the SPTE could be replaced by a leaf SPTE, or even + * another SP. Note, spte_to_child_pt() also checks that the SPTE is + * shadow-present, i.e. guards against zapping a frozen SPTE. + */ + if ((tdp_ptep_t)sp->spt != spte_to_child_pt(iter.old_spte, iter.level)) return false; - tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte, 0, - sp->gfn, sp->role.level + 1); + /* + * If a different task modified the SPTE, then it should be impossible + * for the SPTE to still be used for the to-be-zapped SP. Non-leaf + * SPTEs don't have Dirty bits, KVM always sets the Accessed bit when + * creating non-leaf SPTEs, and all other bits are immutable for non- + * leaf SPTEs, i.e. the only legal operations for non-leaf SPTEs are + * zapping and replacement. + */ + if (tdp_mmu_set_spte_atomic(kvm, &iter, SHADOW_NONPRESENT_VALUE)) { + WARN_ON_ONCE((tdp_ptep_t)sp->spt == spte_to_child_pt(iter.old_spte, iter.level)); + return false; + } return true; } @@ -848,7 +988,7 @@ static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root, rcu_read_lock(); - for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) { + for_each_tdp_pte_min_level(iter, kvm, root, PG_LEVEL_4K, start, end) { if (can_yield && tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) { flush = false; @@ -859,8 +999,14 @@ static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root, !is_last_spte(iter.old_spte, iter.level)) continue; - tdp_mmu_iter_set_spte(kvm, &iter, 0); - flush = true; + tdp_mmu_iter_set_spte(kvm, &iter, SHADOW_NONPRESENT_VALUE); + + /* + * Zappings SPTEs in invalid roots doesn't require a TLB flush, + * see kvm_tdp_mmu_zap_invalidated_roots() for details. + */ + if (!root->role.invalid) + flush = true; } rcu_read_unlock(); @@ -873,17 +1019,17 @@ static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root, } /* - * Zap leaf SPTEs for the range of gfns, [start, end), for all roots. Returns - * true if a TLB flush is needed before releasing the MMU lock, i.e. if one or - * more SPTEs were zapped since the MMU lock was last acquired. + * Zap leaf SPTEs for the range of gfns, [start, end), for all *VALID** roots. + * Returns true if a TLB flush is needed before releasing the MMU lock, i.e. if + * one or more SPTEs were zapped since the MMU lock was last acquired. */ -bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, int as_id, gfn_t start, gfn_t end, - bool can_yield, bool flush) +bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, gfn_t start, gfn_t end, bool flush) { struct kvm_mmu_page *root; - for_each_tdp_mmu_root_yield_safe(kvm, root, as_id) - flush = tdp_mmu_zap_leafs(kvm, root, start, end, can_yield, flush); + lockdep_assert_held_write(&kvm->mmu_lock); + for_each_valid_tdp_mmu_root_yield_safe(kvm, root, -1) + flush = tdp_mmu_zap_leafs(kvm, root, start, end, true, flush); return flush; } @@ -891,51 +1037,94 @@ bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, int as_id, gfn_t start, gfn_t end, void kvm_tdp_mmu_zap_all(struct kvm *kvm) { struct kvm_mmu_page *root; - int i; /* - * Zap all roots, including invalid roots, as all SPTEs must be dropped - * before returning to the caller. Zap directly even if the root is - * also being zapped by a worker. Walking zapped top-level SPTEs isn't - * all that expensive and mmu_lock is already held, which means the - * worker has yielded, i.e. flushing the work instead of zapping here - * isn't guaranteed to be any faster. + * Zap all direct roots, including invalid direct roots, as all direct + * SPTEs must be dropped before returning to the caller. For TDX, mirror + * roots don't need handling in response to the mmu notifier (the caller). + * + * Zap directly even if the root is also being zapped by a concurrent + * "fast zap". Walking zapped top-level SPTEs isn't all that expensive + * and mmu_lock is already held, which means the other thread has yielded. * * A TLB flush is unnecessary, KVM zaps everything if and only the VM * is being destroyed or the userspace VMM has exited. In both cases, * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request. */ - for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { - for_each_tdp_mmu_root_yield_safe(kvm, root, i) - tdp_mmu_zap_root(kvm, root, false); - } + lockdep_assert_held_write(&kvm->mmu_lock); + __for_each_tdp_mmu_root_yield_safe(kvm, root, -1, + KVM_DIRECT_ROOTS | KVM_INVALID_ROOTS) + tdp_mmu_zap_root(kvm, root, false); } /* * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast * zap" completes. */ -void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm) +void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm, bool shared) { - flush_workqueue(kvm->arch.tdp_mmu_zap_wq); + struct kvm_mmu_page *root; + + if (shared) + read_lock(&kvm->mmu_lock); + else + write_lock(&kvm->mmu_lock); + + for_each_tdp_mmu_root_yield_safe(kvm, root) { + if (!root->tdp_mmu_scheduled_root_to_zap) + continue; + + root->tdp_mmu_scheduled_root_to_zap = false; + KVM_BUG_ON(!root->role.invalid, kvm); + + /* + * A TLB flush is not necessary as KVM performs a local TLB + * flush when allocating a new root (see kvm_mmu_load()), and + * when migrating a vCPU to a different pCPU. Note, the local + * TLB flush on reuse also invalidates paging-structure-cache + * entries, i.e. TLB entries for intermediate paging structures, + * that may be zapped, as such entries are associated with the + * ASID on both VMX and SVM. + */ + tdp_mmu_zap_root(kvm, root, shared); + + /* + * The referenced needs to be put *after* zapping the root, as + * the root must be reachable by mmu_notifiers while it's being + * zapped + */ + kvm_tdp_mmu_put_root(kvm, root); + } + + if (shared) + read_unlock(&kvm->mmu_lock); + else + write_unlock(&kvm->mmu_lock); } /* * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that * is about to be zapped, e.g. in response to a memslots update. The actual - * zapping is performed asynchronously. Using a separate workqueue makes it - * easy to ensure that the destruction is performed before the "fast zap" - * completes, without keeping a separate list of invalidated roots; the list is - * effectively the list of work items in the workqueue. + * zapping is done separately so that it happens with mmu_lock with read, + * whereas invalidating roots must be done with mmu_lock held for write (unless + * the VM is being destroyed). * - * Note, the asynchronous worker is gifted the TDP MMU's reference. - * See kvm_tdp_mmu_get_vcpu_root_hpa(). + * Note, kvm_tdp_mmu_zap_invalidated_roots() is gifted the TDP MMU's reference. + * See kvm_tdp_mmu_alloc_root(). */ -void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm) +void kvm_tdp_mmu_invalidate_roots(struct kvm *kvm, + enum kvm_tdp_mmu_root_types root_types) { struct kvm_mmu_page *root; /* + * Invalidating invalid roots doesn't make sense, prevent developers from + * having to think about it. + */ + if (WARN_ON_ONCE(root_types & KVM_INVALID_ROOTS)) + root_types &= ~KVM_INVALID_ROOTS; + + /* * mmu_lock must be held for write to ensure that a root doesn't become * invalid while there are active readers (invalidating a root while * there are active readers may or may not be problematic in practice, @@ -953,19 +1142,23 @@ void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm) /* * As above, mmu_lock isn't held when destroying the VM! There can't * be other references to @kvm, i.e. nothing else can invalidate roots - * or be consuming roots, but walking the list of roots does need to be - * guarded against roots being deleted by the asynchronous zap worker. + * or get/put references to roots. */ - rcu_read_lock(); + list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) { + if (!tdp_mmu_root_match(root, root_types)) + continue; - list_for_each_entry_rcu(root, &kvm->arch.tdp_mmu_roots, link) { + /* + * Note, invalid roots can outlive a memslot update! Invalid + * roots must be *zapped* before the memslot update completes, + * but a different task can acquire a reference and keep the + * root alive after its been zapped. + */ if (!root->role.invalid) { + root->tdp_mmu_scheduled_root_to_zap = true; root->role.invalid = true; - tdp_mmu_schedule_zap_root(kvm, root); } } - - rcu_read_unlock(); } /* @@ -984,19 +1177,27 @@ static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, if (WARN_ON_ONCE(sp->role.level != fault->goal_level)) return RET_PF_RETRY; + if (is_shadow_present_pte(iter->old_spte) && + (fault->prefetch || is_access_allowed(fault, iter->old_spte)) && + is_last_spte(iter->old_spte, iter->level)) { + WARN_ON_ONCE(fault->pfn != spte_to_pfn(iter->old_spte)); + return RET_PF_SPURIOUS; + } + if (unlikely(!fault->slot)) new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL); else wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn, - fault->pfn, iter->old_spte, fault->prefetch, true, - fault->map_writable, &new_spte); + fault->pfn, iter->old_spte, fault->prefetch, + false, fault->map_writable, &new_spte); if (new_spte == iter->old_spte) ret = RET_PF_SPURIOUS; else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte)) return RET_PF_RETRY; else if (is_shadow_present_pte(iter->old_spte) && - !is_last_spte(iter->old_spte, iter->level)) + (!is_last_spte(iter->old_spte, iter->level) || + WARN_ON_ONCE(leaf_spte_change_needs_tlb_flush(iter->old_spte, new_spte)))) kvm_flush_remote_tlbs_gfn(vcpu->kvm, iter->gfn, iter->level); /* @@ -1004,13 +1205,11 @@ static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, * protected, emulation is needed. If the emulation was skipped, * the vCPU would have the same fault again. */ - if (wrprot) { - if (fault->write) - ret = RET_PF_EMULATE; - } + if (wrprot && fault->write) + ret = RET_PF_WRITE_PROTECTED; /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */ - if (unlikely(is_mmio_spte(new_spte))) { + if (unlikely(is_mmio_spte(vcpu->kvm, new_spte))) { vcpu->stat.pf_mmio_spte_created++; trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn, new_spte); @@ -1038,7 +1237,7 @@ static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter, struct kvm_mmu_page *sp, bool shared) { - u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled()); + u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled); int ret = 0; if (shared) { @@ -1063,19 +1262,21 @@ static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter, */ int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) { - struct kvm_mmu *mmu = vcpu->arch.mmu; + struct kvm_mmu_page *root = tdp_mmu_get_root_for_fault(vcpu, fault); struct kvm *kvm = vcpu->kvm; struct tdp_iter iter; struct kvm_mmu_page *sp; int ret = RET_PF_RETRY; + KVM_MMU_WARN_ON(!root || root->role.invalid); + kvm_mmu_hugepage_adjust(vcpu, fault); trace_kvm_mmu_spte_requested(fault); rcu_read_lock(); - tdp_mmu_for_each_pte(iter, mmu, fault->gfn, fault->gfn + 1) { + for_each_tdp_pte(iter, kvm, root, fault->gfn, fault->gfn + 1) { int r; if (fault->nx_huge_page_workaround_enabled) @@ -1085,7 +1286,7 @@ int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) * If SPTE has been frozen by another thread, just give up and * retry, avoiding unnecessary page table allocation and free. */ - if (is_removed_spte(iter.old_spte)) + if (is_frozen_spte(iter.old_spte)) goto retry; if (iter.level == fault->goal_level) @@ -1102,13 +1303,18 @@ int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) */ sp = tdp_mmu_alloc_sp(vcpu); tdp_mmu_init_child_sp(sp, &iter); + if (is_mirror_sp(sp)) + kvm_mmu_alloc_external_spt(vcpu, sp); sp->nx_huge_page_disallowed = fault->huge_page_disallowed; - if (is_shadow_present_pte(iter.old_spte)) + if (is_shadow_present_pte(iter.old_spte)) { + /* Don't support large page for mirrored roots (TDX) */ + KVM_BUG_ON(is_mirror_sptep(iter.sptep), vcpu->kvm); r = tdp_mmu_split_huge_page(kvm, &iter, sp, true); - else + } else { r = tdp_mmu_link_sp(kvm, &iter, sp, true); + } /* * Force the guest to retry if installing an upper level SPTE @@ -1123,7 +1329,7 @@ int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) fault->req_level >= iter.level) { spin_lock(&kvm->arch.tdp_mmu_pages_lock); if (sp->nx_huge_page_disallowed) - track_possible_nx_huge_page(kvm, sp); + track_possible_nx_huge_page(kvm, sp, KVM_TDP_MMU); spin_unlock(&kvm->arch.tdp_mmu_pages_lock); } } @@ -1143,38 +1349,20 @@ retry: return ret; } +/* Used by mmu notifier via kvm_unmap_gfn_range() */ bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range, bool flush) { - return kvm_tdp_mmu_zap_leafs(kvm, range->slot->as_id, range->start, - range->end, range->may_block, flush); -} - -typedef bool (*tdp_handler_t)(struct kvm *kvm, struct tdp_iter *iter, - struct kvm_gfn_range *range); - -static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm, - struct kvm_gfn_range *range, - tdp_handler_t handler) -{ + enum kvm_tdp_mmu_root_types types; struct kvm_mmu_page *root; - struct tdp_iter iter; - bool ret = false; - /* - * Don't support rescheduling, none of the MMU notifiers that funnel - * into this helper allow blocking; it'd be dead, wasteful code. - */ - for_each_tdp_mmu_root(kvm, root, range->slot->as_id) { - rcu_read_lock(); + types = kvm_gfn_range_filter_to_root_types(kvm, range->attr_filter) | KVM_INVALID_ROOTS; - tdp_root_for_each_leaf_pte(iter, root, range->start, range->end) - ret |= handler(kvm, &iter, range); + __for_each_tdp_mmu_root_yield_safe(kvm, root, range->slot->as_id, types) + flush = tdp_mmu_zap_leafs(kvm, root, range->start, range->end, + range->may_block, flush); - rcu_read_unlock(); - } - - return ret; + return flush; } /* @@ -1185,100 +1373,72 @@ static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm, * from the clear_young() or clear_flush_young() notifier, which uses the * return value to determine if the page has been accessed. */ -static bool age_gfn_range(struct kvm *kvm, struct tdp_iter *iter, - struct kvm_gfn_range *range) +static void kvm_tdp_mmu_age_spte(struct kvm *kvm, struct tdp_iter *iter) { u64 new_spte; - /* If we have a non-accessed entry we don't need to change the pte. */ - if (!is_accessed_spte(iter->old_spte)) - return false; - if (spte_ad_enabled(iter->old_spte)) { - iter->old_spte = tdp_mmu_clear_spte_bits(iter->sptep, - iter->old_spte, - shadow_accessed_mask, - iter->level); + iter->old_spte = tdp_mmu_clear_spte_bits_atomic(iter->sptep, + shadow_accessed_mask); new_spte = iter->old_spte & ~shadow_accessed_mask; } else { + new_spte = mark_spte_for_access_track(iter->old_spte); /* - * Capture the dirty status of the page, so that it doesn't get - * lost when the SPTE is marked for access tracking. + * It is safe for the following cmpxchg to fail. Leave the + * Accessed bit set, as the spte is most likely young anyway. */ - if (is_writable_pte(iter->old_spte)) - kvm_set_pfn_dirty(spte_to_pfn(iter->old_spte)); - - new_spte = mark_spte_for_access_track(iter->old_spte); - iter->old_spte = kvm_tdp_mmu_write_spte(iter->sptep, - iter->old_spte, new_spte, - iter->level); + if (__tdp_mmu_set_spte_atomic(kvm, iter, new_spte)) + return; } trace_kvm_tdp_mmu_spte_changed(iter->as_id, iter->gfn, iter->level, iter->old_spte, new_spte); - return true; -} - -bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) -{ - return kvm_tdp_mmu_handle_gfn(kvm, range, age_gfn_range); -} - -static bool test_age_gfn(struct kvm *kvm, struct tdp_iter *iter, - struct kvm_gfn_range *range) -{ - return is_accessed_spte(iter->old_spte); -} - -bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) -{ - return kvm_tdp_mmu_handle_gfn(kvm, range, test_age_gfn); } -static bool set_spte_gfn(struct kvm *kvm, struct tdp_iter *iter, - struct kvm_gfn_range *range) +static bool __kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, + struct kvm_gfn_range *range, + bool test_only) { - u64 new_spte; - - /* Huge pages aren't expected to be modified without first being zapped. */ - WARN_ON(pte_huge(range->pte) || range->start + 1 != range->end); + enum kvm_tdp_mmu_root_types types; + struct kvm_mmu_page *root; + struct tdp_iter iter; + bool ret = false; - if (iter->level != PG_LEVEL_4K || - !is_shadow_present_pte(iter->old_spte)) - return false; + types = kvm_gfn_range_filter_to_root_types(kvm, range->attr_filter); /* - * Note, when changing a read-only SPTE, it's not strictly necessary to - * zero the SPTE before setting the new PFN, but doing so preserves the - * invariant that the PFN of a present * leaf SPTE can never change. - * See handle_changed_spte(). + * Don't support rescheduling, none of the MMU notifiers that funnel + * into this helper allow blocking; it'd be dead, wasteful code. Note, + * this helper must NOT be used to unmap GFNs, as it processes only + * valid roots! */ - tdp_mmu_iter_set_spte(kvm, iter, 0); + WARN_ON(types & ~KVM_VALID_ROOTS); + + guard(rcu)(); + for_each_tdp_mmu_root_rcu(kvm, root, range->slot->as_id, types) { + tdp_root_for_each_leaf_pte(iter, kvm, root, range->start, range->end) { + if (!is_accessed_spte(iter.old_spte)) + continue; - if (!pte_write(range->pte)) { - new_spte = kvm_mmu_changed_pte_notifier_make_spte(iter->old_spte, - pte_pfn(range->pte)); + if (test_only) + return true; - tdp_mmu_iter_set_spte(kvm, iter, new_spte); + ret = true; + kvm_tdp_mmu_age_spte(kvm, &iter); + } } - return true; + return ret; } -/* - * Handle the changed_pte MMU notifier for the TDP MMU. - * data is a pointer to the new pte_t mapping the HVA specified by the MMU - * notifier. - * Returns non-zero if a flush is needed before releasing the MMU lock. - */ -bool kvm_tdp_mmu_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) +bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) { - /* - * No need to handle the remote TLB flush under RCU protection, the - * target SPTE _must_ be a leaf SPTE, i.e. cannot result in freeing a - * shadow page. See the WARN on pfn_changed in handle_changed_spte(). - */ - return kvm_tdp_mmu_handle_gfn(kvm, range, set_spte_gfn); + return __kvm_tdp_mmu_age_gfn_range(kvm, range, false); +} + +bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) +{ + return __kvm_tdp_mmu_age_gfn_range(kvm, range, true); } /* @@ -1297,7 +1457,7 @@ static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); - for_each_tdp_pte_min_level(iter, root, min_level, start, end) { + for_each_tdp_pte_min_level(iter, kvm, root, min_level, start, end) { retry: if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) continue; @@ -1332,24 +1492,22 @@ bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, lockdep_assert_held_read(&kvm->mmu_lock); - for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true) + for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn, slot->base_gfn + slot->npages, min_level); return spte_set; } -static struct kvm_mmu_page *__tdp_mmu_alloc_sp_for_split(gfp_t gfp) +static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(void) { struct kvm_mmu_page *sp; - gfp |= __GFP_ZERO; - - sp = kmem_cache_alloc(mmu_page_header_cache, gfp); + sp = kmem_cache_zalloc(mmu_page_header_cache, GFP_KERNEL_ACCOUNT); if (!sp) return NULL; - sp->spt = (void *)__get_free_page(gfp); + sp->spt = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); if (!sp->spt) { kmem_cache_free(mmu_page_header_cache, sp); return NULL; @@ -1358,45 +1516,6 @@ static struct kvm_mmu_page *__tdp_mmu_alloc_sp_for_split(gfp_t gfp) return sp; } -static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(struct kvm *kvm, - struct tdp_iter *iter, - bool shared) -{ - struct kvm_mmu_page *sp; - - /* - * Since we are allocating while under the MMU lock we have to be - * careful about GFP flags. Use GFP_NOWAIT to avoid blocking on direct - * reclaim and to avoid making any filesystem callbacks (which can end - * up invoking KVM MMU notifiers, resulting in a deadlock). - * - * If this allocation fails we drop the lock and retry with reclaim - * allowed. - */ - sp = __tdp_mmu_alloc_sp_for_split(GFP_NOWAIT | __GFP_ACCOUNT); - if (sp) - return sp; - - rcu_read_unlock(); - - if (shared) - read_unlock(&kvm->mmu_lock); - else - write_unlock(&kvm->mmu_lock); - - iter->yielded = true; - sp = __tdp_mmu_alloc_sp_for_split(GFP_KERNEL_ACCOUNT); - - if (shared) - read_lock(&kvm->mmu_lock); - else - write_lock(&kvm->mmu_lock); - - rcu_read_lock(); - - return sp; -} - /* Note, the caller is responsible for initializing @sp. */ static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter, struct kvm_mmu_page *sp, bool shared) @@ -1410,7 +1529,7 @@ static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter, * not been linked in yet and thus is not reachable from any other CPU. */ for (i = 0; i < SPTE_ENT_PER_PAGE; i++) - sp->spt[i] = make_huge_page_split_spte(kvm, huge_spte, sp->role, i); + sp->spt[i] = make_small_spte(kvm, huge_spte, sp->role, i); /* * Replace the huge spte with a pointer to the populated lower level @@ -1443,7 +1562,6 @@ static int tdp_mmu_split_huge_pages_root(struct kvm *kvm, { struct kvm_mmu_page *sp = NULL; struct tdp_iter iter; - int ret = 0; rcu_read_lock(); @@ -1458,7 +1576,7 @@ static int tdp_mmu_split_huge_pages_root(struct kvm *kvm, * level above the target level (e.g. splitting a 1GB to 512 2MB pages, * and then splitting each of those to 512 4KB pages). */ - for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) { + for_each_tdp_pte_min_level(iter, kvm, root, target_level + 1, start, end) { retry: if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) continue; @@ -1467,17 +1585,31 @@ retry: continue; if (!sp) { - sp = tdp_mmu_alloc_sp_for_split(kvm, &iter, shared); + rcu_read_unlock(); + + if (shared) + read_unlock(&kvm->mmu_lock); + else + write_unlock(&kvm->mmu_lock); + + sp = tdp_mmu_alloc_sp_for_split(); + + if (shared) + read_lock(&kvm->mmu_lock); + else + write_lock(&kvm->mmu_lock); + if (!sp) { - ret = -ENOMEM; trace_kvm_mmu_split_huge_page(iter.gfn, iter.old_spte, - iter.level, ret); - break; + iter.level, -ENOMEM); + return -ENOMEM; } - if (iter.yielded) - continue; + rcu_read_lock(); + + iter.yielded = true; + continue; } tdp_mmu_init_child_sp(sp, &iter); @@ -1498,7 +1630,7 @@ retry: if (sp) tdp_mmu_free_sp(sp); - return ret; + return 0; } @@ -1514,101 +1646,89 @@ void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm, int r = 0; kvm_lockdep_assert_mmu_lock_held(kvm, shared); - - for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, shared) { + for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) { r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared); if (r) { - kvm_tdp_mmu_put_root(kvm, root, shared); + kvm_tdp_mmu_put_root(kvm, root); break; } } } -/* - * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If - * AD bits are enabled, this will involve clearing the dirty bit on each SPTE. - * If AD bits are not enabled, this will require clearing the writable bit on - * each SPTE. Returns true if an SPTE has been changed and the TLBs need to - * be flushed. - */ -static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, - gfn_t start, gfn_t end) +static bool tdp_mmu_need_write_protect(struct kvm *kvm, struct kvm_mmu_page *sp) { - u64 dbit = kvm_ad_enabled() ? shadow_dirty_mask : PT_WRITABLE_MASK; + /* + * All TDP MMU shadow pages share the same role as their root, aside + * from level, so it is valid to key off any shadow page to determine if + * write protection is needed for an entire tree. + */ + return kvm_mmu_page_ad_need_write_protect(kvm, sp) || !kvm_ad_enabled; +} + +static void clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, + gfn_t start, gfn_t end) +{ + const u64 dbit = tdp_mmu_need_write_protect(kvm, root) ? + PT_WRITABLE_MASK : shadow_dirty_mask; struct tdp_iter iter; - bool spte_set = false; rcu_read_lock(); - tdp_root_for_each_leaf_pte(iter, root, start, end) { + tdp_root_for_each_pte(iter, kvm, root, start, end) { retry: - if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) + if (!is_shadow_present_pte(iter.old_spte) || + !is_last_spte(iter.old_spte, iter.level)) continue; - if (!is_shadow_present_pte(iter.old_spte)) + if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) continue; - MMU_WARN_ON(kvm_ad_enabled() && - spte_ad_need_write_protect(iter.old_spte)); + KVM_MMU_WARN_ON(dbit == shadow_dirty_mask && + spte_ad_need_write_protect(iter.old_spte)); if (!(iter.old_spte & dbit)) continue; if (tdp_mmu_set_spte_atomic(kvm, &iter, iter.old_spte & ~dbit)) goto retry; - - spte_set = true; } rcu_read_unlock(); - return spte_set; } /* - * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If - * AD bits are enabled, this will involve clearing the dirty bit on each SPTE. - * If AD bits are not enabled, this will require clearing the writable bit on - * each SPTE. Returns true if an SPTE has been changed and the TLBs need to - * be flushed. + * Clear the dirty status (D-bit or W-bit) of all the SPTEs mapping GFNs in the + * memslot. */ -bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, +void kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, const struct kvm_memory_slot *slot) { struct kvm_mmu_page *root; - bool spte_set = false; lockdep_assert_held_read(&kvm->mmu_lock); - - for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true) - spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn, - slot->base_gfn + slot->npages); - - return spte_set; + for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) + clear_dirty_gfn_range(kvm, root, slot->base_gfn, + slot->base_gfn + slot->npages); } -/* - * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is - * set in mask, starting at gfn. The given memslot is expected to contain all - * the GFNs represented by set bits in the mask. If AD bits are enabled, - * clearing the dirty status will involve clearing the dirty bit on each SPTE - * or, if AD bits are not enabled, clearing the writable bit on each SPTE. - */ static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root, gfn_t gfn, unsigned long mask, bool wrprot) { - u64 dbit = (wrprot || !kvm_ad_enabled()) ? PT_WRITABLE_MASK : - shadow_dirty_mask; + const u64 dbit = (wrprot || tdp_mmu_need_write_protect(kvm, root)) ? + PT_WRITABLE_MASK : shadow_dirty_mask; struct tdp_iter iter; + lockdep_assert_held_write(&kvm->mmu_lock); + rcu_read_lock(); - tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask), + tdp_root_for_each_leaf_pte(iter, kvm, root, gfn + __ffs(mask), gfn + BITS_PER_LONG) { if (!mask) break; - MMU_WARN_ON(kvm_ad_enabled() && - spte_ad_need_write_protect(iter.old_spte)); + KVM_MMU_WARN_ON(dbit == shadow_dirty_mask && + spte_ad_need_write_protect(iter.old_spte)); if (iter.level > PG_LEVEL_4K || !(mask & (1UL << (iter.gfn - gfn)))) @@ -1626,18 +1746,15 @@ static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root, trace_kvm_tdp_mmu_spte_changed(iter.as_id, iter.gfn, iter.level, iter.old_spte, iter.old_spte & ~dbit); - kvm_set_pfn_dirty(spte_to_pfn(iter.old_spte)); } rcu_read_unlock(); } /* - * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is - * set in mask, starting at gfn. The given memslot is expected to contain all - * the GFNs represented by set bits in the mask. If AD bits are enabled, - * clearing the dirty status will involve clearing the dirty bit on each SPTE - * or, if AD bits are not enabled, clearing the writable bit on each SPTE. + * Clear the dirty status (D-bit or W-bit) of all the 4k SPTEs mapping GFNs for + * which a bit is set in mask, starting at gfn. The given memslot is expected to + * contain all the GFNs represented by set bits in the mask. */ void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm, struct kvm_memory_slot *slot, @@ -1646,26 +1763,59 @@ void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm, { struct kvm_mmu_page *root; - lockdep_assert_held_write(&kvm->mmu_lock); - for_each_tdp_mmu_root(kvm, root, slot->as_id) + for_each_valid_tdp_mmu_root(kvm, root, slot->as_id) clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot); } -static void zap_collapsible_spte_range(struct kvm *kvm, - struct kvm_mmu_page *root, - const struct kvm_memory_slot *slot) +static int tdp_mmu_make_huge_spte(struct kvm *kvm, + struct tdp_iter *parent, + u64 *huge_spte) +{ + struct kvm_mmu_page *root = spte_to_child_sp(parent->old_spte); + gfn_t start = parent->gfn; + gfn_t end = start + KVM_PAGES_PER_HPAGE(parent->level); + struct tdp_iter iter; + + tdp_root_for_each_leaf_pte(iter, kvm, root, start, end) { + /* + * Use the parent iterator when checking for forward progress so + * that KVM doesn't get stuck continuously trying to yield (i.e. + * returning -EAGAIN here and then failing the forward progress + * check in the caller ad nauseam). + */ + if (tdp_mmu_iter_need_resched(kvm, parent)) + return -EAGAIN; + + *huge_spte = make_huge_spte(kvm, iter.old_spte, parent->level); + return 0; + } + + return -ENOENT; +} + +static void recover_huge_pages_range(struct kvm *kvm, + struct kvm_mmu_page *root, + const struct kvm_memory_slot *slot) { gfn_t start = slot->base_gfn; gfn_t end = start + slot->npages; struct tdp_iter iter; int max_mapping_level; + bool flush = false; + u64 huge_spte; + int r; + + if (WARN_ON_ONCE(kvm_slot_dirty_track_enabled(slot))) + return; rcu_read_lock(); - for_each_tdp_pte_min_level(iter, root, PG_LEVEL_2M, start, end) { + for_each_tdp_pte_min_level(iter, kvm, root, PG_LEVEL_2M, start, end) { retry: - if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) + if (tdp_mmu_iter_cond_resched(kvm, &iter, flush, true)) { + flush = false; continue; + } if (iter.level > KVM_MAX_HUGEPAGE_LEVEL || !is_shadow_present_pte(iter.old_spte)) @@ -1689,32 +1839,40 @@ retry: if (iter.gfn < start || iter.gfn >= end) continue; - max_mapping_level = kvm_mmu_max_mapping_level(kvm, slot, - iter.gfn, PG_LEVEL_NUM); + max_mapping_level = kvm_mmu_max_mapping_level(kvm, NULL, slot, iter.gfn); if (max_mapping_level < iter.level) continue; - /* Note, a successful atomic zap also does a remote TLB flush. */ - if (tdp_mmu_zap_spte_atomic(kvm, &iter)) + r = tdp_mmu_make_huge_spte(kvm, &iter, &huge_spte); + if (r == -EAGAIN) + goto retry; + else if (r) + continue; + + if (tdp_mmu_set_spte_atomic(kvm, &iter, huge_spte)) goto retry; + + flush = true; } + if (flush) + kvm_flush_remote_tlbs_memslot(kvm, slot); + rcu_read_unlock(); } /* - * Zap non-leaf SPTEs (and free their associated page tables) which could - * be replaced by huge pages, for GFNs within the slot. + * Recover huge page mappings within the slot by replacing non-leaf SPTEs with + * huge SPTEs where possible. */ -void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm, - const struct kvm_memory_slot *slot) +void kvm_tdp_mmu_recover_huge_pages(struct kvm *kvm, + const struct kvm_memory_slot *slot) { struct kvm_mmu_page *root; lockdep_assert_held_read(&kvm->mmu_lock); - - for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true) - zap_collapsible_spte_range(kvm, root, slot); + for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id) + recover_huge_pages_range(kvm, root, slot); } /* @@ -1733,7 +1891,7 @@ static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root, rcu_read_lock(); - for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) { + for_each_tdp_pte_min_level(iter, kvm, root, min_level, gfn, gfn + 1) { if (!is_shadow_present_pte(iter.old_spte) || !is_last_spte(iter.old_spte, iter.level)) continue; @@ -1766,7 +1924,7 @@ bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm, bool spte_set = false; lockdep_assert_held_write(&kvm->mmu_lock); - for_each_tdp_mmu_root(kvm, root, slot->as_id) + for_each_valid_tdp_mmu_root(kvm, root, slot->as_id) spte_set |= write_protect_gfn(kvm, root, gfn, min_level); return spte_set; @@ -1781,14 +1939,14 @@ bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm, int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) { + struct kvm_mmu_page *root = root_to_sp(vcpu->arch.mmu->root.hpa); struct tdp_iter iter; - struct kvm_mmu *mmu = vcpu->arch.mmu; gfn_t gfn = addr >> PAGE_SHIFT; int leaf = -1; *root_level = vcpu->arch.mmu->root_role.level; - tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { + for_each_tdp_pte(iter, vcpu->kvm, root, gfn, gfn + 1) { leaf = iter.level; sptes[leaf] = iter.old_spte; } @@ -1807,15 +1965,15 @@ int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, * * WARNING: This function is only intended to be called during fast_page_fault. */ -u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, u64 addr, +u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gfn_t gfn, u64 *spte) { + /* Fast pf is not supported for mirrored roots */ + struct kvm_mmu_page *root = tdp_mmu_get_root(vcpu, KVM_DIRECT_ROOTS); struct tdp_iter iter; - struct kvm_mmu *mmu = vcpu->arch.mmu; - gfn_t gfn = addr >> PAGE_SHIFT; tdp_ptep_t sptep = NULL; - tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { + for_each_tdp_pte(iter, vcpu->kvm, root, gfn, gfn + 1) { *spte = iter.old_spte; sptep = iter.sptep; } |
