diff options
Diffstat (limited to 'arch/x86/kvm/mmu')
-rw-r--r-- | arch/x86/kvm/mmu/mmu.c | 488 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/mmu_internal.h | 5 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/page_track.c | 3 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/paging_tmpl.h | 3 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/spte.c | 60 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/spte.h | 3 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/tdp_iter.h | 34 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/tdp_mmu.c | 121 |
8 files changed, 487 insertions, 230 deletions
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c index 8160870398b9..4e06e2e89a8f 100644 --- a/arch/x86/kvm/mmu/mmu.c +++ b/arch/x86/kvm/mmu/mmu.c @@ -110,6 +110,7 @@ static bool __ro_after_init tdp_mmu_allowed; #ifdef CONFIG_X86_64 bool __read_mostly tdp_mmu_enabled = true; module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); +EXPORT_SYMBOL_GPL(tdp_mmu_enabled); #endif static int max_huge_page_level __read_mostly; @@ -501,7 +502,7 @@ static bool mmu_spte_update(u64 *sptep, u64 new_spte) return false; } - if (!spte_has_volatile_bits(old_spte)) + if (!spte_needs_atomic_update(old_spte)) __update_clear_spte_fast(sptep, new_spte); else old_spte = __update_clear_spte_slow(sptep, new_spte); @@ -524,7 +525,7 @@ static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) int level = sptep_to_sp(sptep)->role.level; if (!is_shadow_present_pte(old_spte) || - !spte_has_volatile_bits(old_spte)) + !spte_needs_atomic_update(old_spte)) __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); else old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE); @@ -853,32 +854,173 @@ static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu * About rmap_head encoding: * * If the bit zero of rmap_head->val is clear, then it points to the only spte - * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct + * in this rmap chain. Otherwise, (rmap_head->val & ~3) points to a struct * pte_list_desc containing more mappings. */ #define KVM_RMAP_MANY BIT(0) /* + * rmaps and PTE lists are mostly protected by mmu_lock (the shadow MMU always + * operates with mmu_lock held for write), but rmaps can be walked without + * holding mmu_lock so long as the caller can tolerate SPTEs in the rmap chain + * being zapped/dropped _while the rmap is locked_. + * + * Other than the KVM_RMAP_LOCKED flag, modifications to rmap entries must be + * done while holding mmu_lock for write. This allows a task walking rmaps + * without holding mmu_lock to concurrently walk the same entries as a task + * that is holding mmu_lock but _not_ the rmap lock. Neither task will modify + * the rmaps, thus the walks are stable. + * + * As alluded to above, SPTEs in rmaps are _not_ protected by KVM_RMAP_LOCKED, + * only the rmap chains themselves are protected. E.g. holding an rmap's lock + * ensures all "struct pte_list_desc" fields are stable. + */ +#define KVM_RMAP_LOCKED BIT(1) + +static unsigned long __kvm_rmap_lock(struct kvm_rmap_head *rmap_head) +{ + unsigned long old_val, new_val; + + lockdep_assert_preemption_disabled(); + + /* + * Elide the lock if the rmap is empty, as lockless walkers (read-only + * mode) don't need to (and can't) walk an empty rmap, nor can they add + * entries to the rmap. I.e. the only paths that process empty rmaps + * do so while holding mmu_lock for write, and are mutually exclusive. + */ + old_val = atomic_long_read(&rmap_head->val); + if (!old_val) + return 0; + + do { + /* + * If the rmap is locked, wait for it to be unlocked before + * trying acquire the lock, e.g. to avoid bouncing the cache + * line. + */ + while (old_val & KVM_RMAP_LOCKED) { + cpu_relax(); + old_val = atomic_long_read(&rmap_head->val); + } + + /* + * Recheck for an empty rmap, it may have been purged by the + * task that held the lock. + */ + if (!old_val) + return 0; + + new_val = old_val | KVM_RMAP_LOCKED; + /* + * Use try_cmpxchg_acquire() to prevent reads and writes to the rmap + * from being reordered outside of the critical section created by + * __kvm_rmap_lock(). + * + * Pairs with the atomic_long_set_release() in kvm_rmap_unlock(). + * + * For the !old_val case, no ordering is needed, as there is no rmap + * to walk. + */ + } while (!atomic_long_try_cmpxchg_acquire(&rmap_head->val, &old_val, new_val)); + + /* + * Return the old value, i.e. _without_ the LOCKED bit set. It's + * impossible for the return value to be 0 (see above), i.e. the read- + * only unlock flow can't get a false positive and fail to unlock. + */ + return old_val; +} + +static unsigned long kvm_rmap_lock(struct kvm *kvm, + struct kvm_rmap_head *rmap_head) +{ + lockdep_assert_held_write(&kvm->mmu_lock); + + return __kvm_rmap_lock(rmap_head); +} + +static void __kvm_rmap_unlock(struct kvm_rmap_head *rmap_head, + unsigned long val) +{ + KVM_MMU_WARN_ON(val & KVM_RMAP_LOCKED); + /* + * Ensure that all accesses to the rmap have completed before unlocking + * the rmap. + * + * Pairs with the atomic_long_try_cmpxchg_acquire() in __kvm_rmap_lock(). + */ + atomic_long_set_release(&rmap_head->val, val); +} + +static void kvm_rmap_unlock(struct kvm *kvm, + struct kvm_rmap_head *rmap_head, + unsigned long new_val) +{ + lockdep_assert_held_write(&kvm->mmu_lock); + + __kvm_rmap_unlock(rmap_head, new_val); +} + +static unsigned long kvm_rmap_get(struct kvm_rmap_head *rmap_head) +{ + return atomic_long_read(&rmap_head->val) & ~KVM_RMAP_LOCKED; +} + +/* + * If mmu_lock isn't held, rmaps can only be locked in read-only mode. The + * actual locking is the same, but the caller is disallowed from modifying the + * rmap, and so the unlock flow is a nop if the rmap is/was empty. + */ +static unsigned long kvm_rmap_lock_readonly(struct kvm_rmap_head *rmap_head) +{ + unsigned long rmap_val; + + preempt_disable(); + rmap_val = __kvm_rmap_lock(rmap_head); + + if (!rmap_val) + preempt_enable(); + + return rmap_val; +} + +static void kvm_rmap_unlock_readonly(struct kvm_rmap_head *rmap_head, + unsigned long old_val) +{ + if (!old_val) + return; + + KVM_MMU_WARN_ON(old_val != kvm_rmap_get(rmap_head)); + + __kvm_rmap_unlock(rmap_head, old_val); + preempt_enable(); +} + +/* * Returns the number of pointers in the rmap chain, not counting the new one. */ -static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, - struct kvm_rmap_head *rmap_head) +static int pte_list_add(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, + u64 *spte, struct kvm_rmap_head *rmap_head) { + unsigned long old_val, new_val; struct pte_list_desc *desc; int count = 0; - if (!rmap_head->val) { - rmap_head->val = (unsigned long)spte; - } else if (!(rmap_head->val & KVM_RMAP_MANY)) { + old_val = kvm_rmap_lock(kvm, rmap_head); + + if (!old_val) { + new_val = (unsigned long)spte; + } else if (!(old_val & KVM_RMAP_MANY)) { desc = kvm_mmu_memory_cache_alloc(cache); - desc->sptes[0] = (u64 *)rmap_head->val; + desc->sptes[0] = (u64 *)old_val; desc->sptes[1] = spte; desc->spte_count = 2; desc->tail_count = 0; - rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY; + new_val = (unsigned long)desc | KVM_RMAP_MANY; ++count; } else { - desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); + desc = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY); count = desc->tail_count + desc->spte_count; /* @@ -887,21 +1029,25 @@ static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, */ if (desc->spte_count == PTE_LIST_EXT) { desc = kvm_mmu_memory_cache_alloc(cache); - desc->more = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); + desc->more = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY); desc->spte_count = 0; desc->tail_count = count; - rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY; + new_val = (unsigned long)desc | KVM_RMAP_MANY; + } else { + new_val = old_val; } desc->sptes[desc->spte_count++] = spte; } + + kvm_rmap_unlock(kvm, rmap_head, new_val); + return count; } -static void pte_list_desc_remove_entry(struct kvm *kvm, - struct kvm_rmap_head *rmap_head, +static void pte_list_desc_remove_entry(struct kvm *kvm, unsigned long *rmap_val, struct pte_list_desc *desc, int i) { - struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); + struct pte_list_desc *head_desc = (struct pte_list_desc *)(*rmap_val & ~KVM_RMAP_MANY); int j = head_desc->spte_count - 1; /* @@ -928,9 +1074,9 @@ static void pte_list_desc_remove_entry(struct kvm *kvm, * head at the next descriptor, i.e. the new head. */ if (!head_desc->more) - rmap_head->val = 0; + *rmap_val = 0; else - rmap_head->val = (unsigned long)head_desc->more | KVM_RMAP_MANY; + *rmap_val = (unsigned long)head_desc->more | KVM_RMAP_MANY; mmu_free_pte_list_desc(head_desc); } @@ -938,24 +1084,26 @@ static void pte_list_remove(struct kvm *kvm, u64 *spte, struct kvm_rmap_head *rmap_head) { struct pte_list_desc *desc; + unsigned long rmap_val; int i; - if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm)) - return; + rmap_val = kvm_rmap_lock(kvm, rmap_head); + if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_val, kvm)) + goto out; - if (!(rmap_head->val & KVM_RMAP_MANY)) { - if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm)) - return; + if (!(rmap_val & KVM_RMAP_MANY)) { + if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_val != spte, kvm)) + goto out; - rmap_head->val = 0; + rmap_val = 0; } else { - desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); + desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); while (desc) { for (i = 0; i < desc->spte_count; ++i) { if (desc->sptes[i] == spte) { - pte_list_desc_remove_entry(kvm, rmap_head, + pte_list_desc_remove_entry(kvm, &rmap_val, desc, i); - return; + goto out; } } desc = desc->more; @@ -963,6 +1111,9 @@ static void pte_list_remove(struct kvm *kvm, u64 *spte, KVM_BUG_ON_DATA_CORRUPTION(true, kvm); } + +out: + kvm_rmap_unlock(kvm, rmap_head, rmap_val); } static void kvm_zap_one_rmap_spte(struct kvm *kvm, @@ -977,17 +1128,19 @@ static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, struct kvm_rmap_head *rmap_head) { struct pte_list_desc *desc, *next; + unsigned long rmap_val; int i; - if (!rmap_head->val) + rmap_val = kvm_rmap_lock(kvm, rmap_head); + if (!rmap_val) return false; - if (!(rmap_head->val & KVM_RMAP_MANY)) { - mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); + if (!(rmap_val & KVM_RMAP_MANY)) { + mmu_spte_clear_track_bits(kvm, (u64 *)rmap_val); goto out; } - desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); + desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); for (; desc; desc = next) { for (i = 0; i < desc->spte_count; i++) @@ -997,20 +1150,21 @@ static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, } out: /* rmap_head is meaningless now, remember to reset it */ - rmap_head->val = 0; + kvm_rmap_unlock(kvm, rmap_head, 0); return true; } unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) { + unsigned long rmap_val = kvm_rmap_get(rmap_head); struct pte_list_desc *desc; - if (!rmap_head->val) + if (!rmap_val) return 0; - else if (!(rmap_head->val & KVM_RMAP_MANY)) + else if (!(rmap_val & KVM_RMAP_MANY)) return 1; - desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); + desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); return desc->tail_count + desc->spte_count; } @@ -1053,6 +1207,7 @@ static void rmap_remove(struct kvm *kvm, u64 *spte) */ struct rmap_iterator { /* private fields */ + struct rmap_head *head; struct pte_list_desc *desc; /* holds the sptep if not NULL */ int pos; /* index of the sptep */ }; @@ -1067,23 +1222,19 @@ struct rmap_iterator { static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, struct rmap_iterator *iter) { - u64 *sptep; + unsigned long rmap_val = kvm_rmap_get(rmap_head); - if (!rmap_head->val) + if (!rmap_val) return NULL; - if (!(rmap_head->val & KVM_RMAP_MANY)) { + if (!(rmap_val & KVM_RMAP_MANY)) { iter->desc = NULL; - sptep = (u64 *)rmap_head->val; - goto out; + return (u64 *)rmap_val; } - iter->desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); + iter->desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); iter->pos = 0; - sptep = iter->desc->sptes[iter->pos]; -out: - BUG_ON(!is_shadow_present_pte(*sptep)); - return sptep; + return iter->desc->sptes[iter->pos]; } /* @@ -1093,14 +1244,11 @@ out: */ static u64 *rmap_get_next(struct rmap_iterator *iter) { - u64 *sptep; - if (iter->desc) { if (iter->pos < PTE_LIST_EXT - 1) { ++iter->pos; - sptep = iter->desc->sptes[iter->pos]; - if (sptep) - goto out; + if (iter->desc->sptes[iter->pos]) + return iter->desc->sptes[iter->pos]; } iter->desc = iter->desc->more; @@ -1108,20 +1256,24 @@ static u64 *rmap_get_next(struct rmap_iterator *iter) if (iter->desc) { iter->pos = 0; /* desc->sptes[0] cannot be NULL */ - sptep = iter->desc->sptes[iter->pos]; - goto out; + return iter->desc->sptes[iter->pos]; } } return NULL; -out: - BUG_ON(!is_shadow_present_pte(*sptep)); - return sptep; } -#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ - for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ - _spte_; _spte_ = rmap_get_next(_iter_)) +#define __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ + for (_sptep_ = rmap_get_first(_rmap_head_, _iter_); \ + _sptep_; _sptep_ = rmap_get_next(_iter_)) + +#define for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ + __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ + if (!WARN_ON_ONCE(!is_shadow_present_pte(*(_sptep_)))) \ + +#define for_each_rmap_spte_lockless(_rmap_head_, _iter_, _sptep_, _spte_) \ + __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ + if (is_shadow_present_pte(_spte_ = mmu_spte_get_lockless(sptep))) static void drop_spte(struct kvm *kvm, u64 *sptep) { @@ -1207,12 +1359,13 @@ static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, struct rmap_iterator iter; bool flush = false; - for_each_rmap_spte(rmap_head, &iter, sptep) + for_each_rmap_spte(rmap_head, &iter, sptep) { if (spte_ad_need_write_protect(*sptep)) flush |= test_and_clear_bit(PT_WRITABLE_SHIFT, (unsigned long *)sptep); else flush |= spte_clear_dirty(sptep); + } return flush; } @@ -1304,15 +1457,15 @@ void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, * enabled but it chooses between clearing the Dirty bit and Writeable * bit based on the context. */ - if (kvm_x86_ops.cpu_dirty_log_size) + if (kvm->arch.cpu_dirty_log_size) kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); else kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); } -int kvm_cpu_dirty_log_size(void) +int kvm_cpu_dirty_log_size(struct kvm *kvm) { - return kvm_x86_ops.cpu_dirty_log_size; + return kvm->arch.cpu_dirty_log_size; } bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, @@ -1401,7 +1554,7 @@ static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) while (++iterator->rmap <= iterator->end_rmap) { iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level); - if (iterator->rmap->val) + if (atomic_long_read(&iterator->rmap->val)) return; } @@ -1533,7 +1686,7 @@ static void __rmap_add(struct kvm *kvm, kvm_update_page_stats(kvm, sp->role.level, 1); rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); - rmap_count = pte_list_add(cache, spte, rmap_head); + rmap_count = pte_list_add(kvm, cache, spte, rmap_head); if (rmap_count > kvm->stat.max_mmu_rmap_size) kvm->stat.max_mmu_rmap_size = rmap_count; @@ -1552,51 +1705,67 @@ static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, } static bool kvm_rmap_age_gfn_range(struct kvm *kvm, - struct kvm_gfn_range *range, bool test_only) + struct kvm_gfn_range *range, + bool test_only) { - struct slot_rmap_walk_iterator iterator; + struct kvm_rmap_head *rmap_head; struct rmap_iterator iter; + unsigned long rmap_val; bool young = false; u64 *sptep; + gfn_t gfn; + int level; + u64 spte; - for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, - range->start, range->end - 1, &iterator) { - for_each_rmap_spte(iterator.rmap, &iter, sptep) { - u64 spte = *sptep; + for (level = PG_LEVEL_4K; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { + for (gfn = range->start; gfn < range->end; + gfn += KVM_PAGES_PER_HPAGE(level)) { + rmap_head = gfn_to_rmap(gfn, level, range->slot); + rmap_val = kvm_rmap_lock_readonly(rmap_head); - if (!is_accessed_spte(spte)) - continue; + for_each_rmap_spte_lockless(rmap_head, &iter, sptep, spte) { + if (!is_accessed_spte(spte)) + continue; - if (test_only) - return true; - - if (spte_ad_enabled(spte)) { - clear_bit((ffs(shadow_accessed_mask) - 1), - (unsigned long *)sptep); - } else { - /* - * WARN if mmu_spte_update() signals the need - * for a TLB flush, as Access tracking a SPTE - * should never trigger an _immediate_ flush. - */ - spte = mark_spte_for_access_track(spte); - WARN_ON_ONCE(mmu_spte_update(sptep, spte)); + if (test_only) { + kvm_rmap_unlock_readonly(rmap_head, rmap_val); + return true; + } + + if (spte_ad_enabled(spte)) + clear_bit((ffs(shadow_accessed_mask) - 1), + (unsigned long *)sptep); + else + /* + * If the following cmpxchg fails, the + * spte is being concurrently modified + * and should most likely stay young. + */ + cmpxchg64(sptep, spte, + mark_spte_for_access_track(spte)); + young = true; } - young = true; + + kvm_rmap_unlock_readonly(rmap_head, rmap_val); } } return young; } +static bool kvm_may_have_shadow_mmu_sptes(struct kvm *kvm) +{ + return !tdp_mmu_enabled || READ_ONCE(kvm->arch.indirect_shadow_pages); +} + bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) { bool young = false; - if (kvm_memslots_have_rmaps(kvm)) - young = kvm_rmap_age_gfn_range(kvm, range, false); - if (tdp_mmu_enabled) - young |= kvm_tdp_mmu_age_gfn_range(kvm, range); + young = kvm_tdp_mmu_age_gfn_range(kvm, range); + + if (kvm_may_have_shadow_mmu_sptes(kvm)) + young |= kvm_rmap_age_gfn_range(kvm, range, false); return young; } @@ -1605,11 +1774,14 @@ bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) { bool young = false; - if (kvm_memslots_have_rmaps(kvm)) - young = kvm_rmap_age_gfn_range(kvm, range, true); - if (tdp_mmu_enabled) - young |= kvm_tdp_mmu_test_age_gfn(kvm, range); + young = kvm_tdp_mmu_test_age_gfn(kvm, range); + + if (young) + return young; + + if (kvm_may_have_shadow_mmu_sptes(kvm)) + young |= kvm_rmap_age_gfn_range(kvm, range, true); return young; } @@ -1656,13 +1828,14 @@ static unsigned kvm_page_table_hashfn(gfn_t gfn) return hash_64(gfn, KVM_MMU_HASH_SHIFT); } -static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, +static void mmu_page_add_parent_pte(struct kvm *kvm, + struct kvm_mmu_memory_cache *cache, struct kvm_mmu_page *sp, u64 *parent_pte) { if (!parent_pte) return; - pte_list_add(cache, parent_pte, &sp->parent_ptes); + pte_list_add(kvm, cache, parent_pte, &sp->parent_ptes); } static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, @@ -2352,7 +2525,7 @@ static void __link_shadow_page(struct kvm *kvm, mmu_spte_set(sptep, spte); - mmu_page_add_parent_pte(cache, sp, sptep); + mmu_page_add_parent_pte(kvm, cache, sp, sptep); /* * The non-direct sub-pagetable must be updated before linking. For @@ -2416,7 +2589,8 @@ static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, * avoids retaining a large number of stale nested SPs. */ if (tdp_enabled && invalid_list && - child->role.guest_mode && !child->parent_ptes.val) + child->role.guest_mode && + !atomic_long_read(&child->parent_ptes.val)) return kvm_mmu_prepare_zap_page(kvm, child, invalid_list); } @@ -2846,7 +3020,8 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, } if (is_shadow_present_pte(*sptep)) { - if (prefetch) + if (prefetch && is_last_spte(*sptep, level) && + pfn == spte_to_pfn(*sptep)) return RET_PF_SPURIOUS; /* @@ -2860,7 +3035,7 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, child = spte_to_child_sp(pte); drop_parent_pte(vcpu->kvm, child, sptep); flush = true; - } else if (pfn != spte_to_pfn(*sptep)) { + } else if (WARN_ON_ONCE(pfn != spte_to_pfn(*sptep))) { drop_spte(vcpu->kvm, sptep); flush = true; } else @@ -4662,19 +4837,6 @@ out_unlock: } #endif -bool kvm_mmu_may_ignore_guest_pat(void) -{ - /* - * When EPT is enabled (shadow_memtype_mask is non-zero), and the VM - * has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is to - * honor the memtype from the guest's PAT so that guest accesses to - * memory that is DMA'd aren't cached against the guest's wishes. As a - * result, KVM _may_ ignore guest PAT, whereas without non-coherent DMA, - * KVM _always_ ignores guest PAT (when EPT is enabled). - */ - return shadow_memtype_mask; -} - int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) { #ifdef CONFIG_X86_64 @@ -4685,8 +4847,7 @@ int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) return direct_page_fault(vcpu, fault); } -static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, - u8 *level) +int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, u8 *level) { int r; @@ -4700,6 +4861,10 @@ static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, do { if (signal_pending(current)) return -EINTR; + + if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) + return -EIO; + cond_resched(); r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level); } while (r == RET_PF_RETRY); @@ -4724,18 +4889,23 @@ static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, return -EIO; } } +EXPORT_SYMBOL_GPL(kvm_tdp_map_page); long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, struct kvm_pre_fault_memory *range) { u64 error_code = PFERR_GUEST_FINAL_MASK; u8 level = PG_LEVEL_4K; + u64 direct_bits; u64 end; int r; if (!vcpu->kvm->arch.pre_fault_allowed) return -EOPNOTSUPP; + if (kvm_is_gfn_alias(vcpu->kvm, gpa_to_gfn(range->gpa))) + return -EINVAL; + /* * reload is efficient when called repeatedly, so we can do it on * every iteration. @@ -4744,15 +4914,18 @@ long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, if (r) return r; + direct_bits = 0; if (kvm_arch_has_private_mem(vcpu->kvm) && kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa))) error_code |= PFERR_PRIVATE_ACCESS; + else + direct_bits = gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm)); /* * Shadow paging uses GVA for kvm page fault, so restrict to * two-dimensional paging. */ - r = kvm_tdp_map_page(vcpu, range->gpa, error_code, &level); + r = kvm_tdp_map_page(vcpu, range->gpa | direct_bits, error_code, &level); if (r < 0) return r; @@ -5416,12 +5589,19 @@ void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) { + int maxpa; + + if (vcpu->kvm->arch.vm_type == KVM_X86_TDX_VM) + maxpa = cpuid_query_maxguestphyaddr(vcpu); + else + maxpa = cpuid_maxphyaddr(vcpu); + /* tdp_root_level is architecture forced level, use it if nonzero */ if (tdp_root_level) return tdp_root_level; /* Use 5-level TDP if and only if it's useful/necessary. */ - if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) + if (max_tdp_level == 5 && maxpa <= 48) return 4; return max_tdp_level; @@ -5740,6 +5920,7 @@ int kvm_mmu_load(struct kvm_vcpu *vcpu) out: return r; } +EXPORT_SYMBOL_GPL(kvm_mmu_load); void kvm_mmu_unload(struct kvm_vcpu *vcpu) { @@ -5801,6 +5982,7 @@ void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); } +EXPORT_SYMBOL_GPL(kvm_mmu_free_obsolete_roots); static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, int *bytes) @@ -7065,6 +7247,7 @@ static void kvm_mmu_zap_memslot(struct kvm *kvm, .start = slot->base_gfn, .end = slot->base_gfn + slot->npages, .may_block = true, + .attr_filter = KVM_FILTER_PRIVATE | KVM_FILTER_SHARED, }; bool flush; @@ -7496,9 +7679,30 @@ void kvm_mmu_pre_destroy_vm(struct kvm *kvm) } #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES +static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, + int level) +{ + return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; +} + +static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, + int level) +{ + lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; +} + +static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, + int level) +{ + lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; +} + bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, struct kvm_gfn_range *range) { + struct kvm_memory_slot *slot = range->slot; + int level; + /* * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM @@ -7513,6 +7717,38 @@ bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) return false; + if (WARN_ON_ONCE(range->end <= range->start)) + return false; + + /* + * If the head and tail pages of the range currently allow a hugepage, + * i.e. reside fully in the slot and don't have mixed attributes, then + * add each corresponding hugepage range to the ongoing invalidation, + * e.g. to prevent KVM from creating a hugepage in response to a fault + * for a gfn whose attributes aren't changing. Note, only the range + * of gfns whose attributes are being modified needs to be explicitly + * unmapped, as that will unmap any existing hugepages. + */ + for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { + gfn_t start = gfn_round_for_level(range->start, level); + gfn_t end = gfn_round_for_level(range->end - 1, level); + gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); + + if ((start != range->start || start + nr_pages > range->end) && + start >= slot->base_gfn && + start + nr_pages <= slot->base_gfn + slot->npages && + !hugepage_test_mixed(slot, start, level)) + kvm_mmu_invalidate_range_add(kvm, start, start + nr_pages); + + if (end == start) + continue; + + if ((end + nr_pages) > range->end && + (end + nr_pages) <= (slot->base_gfn + slot->npages) && + !hugepage_test_mixed(slot, end, level)) + kvm_mmu_invalidate_range_add(kvm, end, end + nr_pages); + } + /* Unmap the old attribute page. */ if (range->arg.attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE) range->attr_filter = KVM_FILTER_SHARED; @@ -7522,23 +7758,7 @@ bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, return kvm_unmap_gfn_range(kvm, range); } -static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, - int level) -{ - return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; -} -static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, - int level) -{ - lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; -} - -static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, - int level) -{ - lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; -} static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t gfn, int level, unsigned long attrs) diff --git a/arch/x86/kvm/mmu/mmu_internal.h b/arch/x86/kvm/mmu/mmu_internal.h index 75f00598289d..db8f33e4de62 100644 --- a/arch/x86/kvm/mmu/mmu_internal.h +++ b/arch/x86/kvm/mmu/mmu_internal.h @@ -187,7 +187,8 @@ static inline gfn_t kvm_gfn_root_bits(const struct kvm *kvm, const struct kvm_mm return kvm_gfn_direct_bits(kvm); } -static inline bool kvm_mmu_page_ad_need_write_protect(struct kvm_mmu_page *sp) +static inline bool kvm_mmu_page_ad_need_write_protect(struct kvm *kvm, + struct kvm_mmu_page *sp) { /* * When using the EPT page-modification log, the GPAs in the CPU dirty @@ -197,7 +198,7 @@ static inline bool kvm_mmu_page_ad_need_write_protect(struct kvm_mmu_page *sp) * being enabled is mandatory as the bits used to denote WP-only SPTEs * are reserved for PAE paging (32-bit KVM). */ - return kvm_x86_ops.cpu_dirty_log_size && sp->role.guest_mode; + return kvm->arch.cpu_dirty_log_size && sp->role.guest_mode; } static inline gfn_t gfn_round_for_level(gfn_t gfn, int level) diff --git a/arch/x86/kvm/mmu/page_track.c b/arch/x86/kvm/mmu/page_track.c index 561c331fd6ec..1b17b12393a8 100644 --- a/arch/x86/kvm/mmu/page_track.c +++ b/arch/x86/kvm/mmu/page_track.c @@ -172,6 +172,9 @@ static int kvm_enable_external_write_tracking(struct kvm *kvm) struct kvm_memory_slot *slot; int r = 0, i, bkt; + if (kvm->arch.vm_type == KVM_X86_TDX_VM) + return -EOPNOTSUPP; + mutex_lock(&kvm->slots_arch_lock); /* diff --git a/arch/x86/kvm/mmu/paging_tmpl.h b/arch/x86/kvm/mmu/paging_tmpl.h index f4711674c47b..68e323568e95 100644 --- a/arch/x86/kvm/mmu/paging_tmpl.h +++ b/arch/x86/kvm/mmu/paging_tmpl.h @@ -510,8 +510,7 @@ error: * Note, pte_access holds the raw RWX bits from the EPTE, not * ACC_*_MASK flags! */ - walker->fault.exit_qualification |= (pte_access & VMX_EPT_RWX_MASK) << - EPT_VIOLATION_RWX_SHIFT; + walker->fault.exit_qualification |= EPT_VIOLATION_RWX_TO_PROT(pte_access); } #endif walker->fault.address = addr; diff --git a/arch/x86/kvm/mmu/spte.c b/arch/x86/kvm/mmu/spte.c index 22551e2f1d00..cfce03d8f123 100644 --- a/arch/x86/kvm/mmu/spte.c +++ b/arch/x86/kvm/mmu/spte.c @@ -37,7 +37,6 @@ u64 __read_mostly shadow_mmio_value; u64 __read_mostly shadow_mmio_mask; u64 __read_mostly shadow_mmio_access_mask; u64 __read_mostly shadow_present_mask; -u64 __read_mostly shadow_memtype_mask; u64 __read_mostly shadow_me_value; u64 __read_mostly shadow_me_mask; u64 __read_mostly shadow_acc_track_mask; @@ -96,8 +95,6 @@ u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access) u64 spte = generation_mmio_spte_mask(gen); u64 gpa = gfn << PAGE_SHIFT; - WARN_ON_ONCE(!vcpu->kvm->arch.shadow_mmio_value); - access &= shadow_mmio_access_mask; spte |= vcpu->kvm->arch.shadow_mmio_value | access; spte |= gpa | shadow_nonpresent_or_rsvd_mask; @@ -129,25 +126,32 @@ static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) } /* - * Returns true if the SPTE has bits that may be set without holding mmu_lock. - * The caller is responsible for checking if the SPTE is shadow-present, and - * for determining whether or not the caller cares about non-leaf SPTEs. + * Returns true if the SPTE needs to be updated atomically due to having bits + * that may be changed without holding mmu_lock, and for which KVM must not + * lose information. E.g. KVM must not drop Dirty bit information. The caller + * is responsible for checking if the SPTE is shadow-present, and for + * determining whether or not the caller cares about non-leaf SPTEs. */ -bool spte_has_volatile_bits(u64 spte) +bool spte_needs_atomic_update(u64 spte) { + /* SPTEs can be made Writable bit by KVM's fast page fault handler. */ if (!is_writable_pte(spte) && is_mmu_writable_spte(spte)) return true; - if (is_access_track_spte(spte)) + /* + * A/D-disabled SPTEs can be access-tracked by aging, and access-tracked + * SPTEs can be restored by KVM's fast page fault handler. + */ + if (!spte_ad_enabled(spte)) return true; - if (spte_ad_enabled(spte)) { - if (!(spte & shadow_accessed_mask) || - (is_writable_pte(spte) && !(spte & shadow_dirty_mask))) - return true; - } - - return false; + /* + * Dirty and Accessed bits can be set by the CPU. Ignore the Accessed + * bit, as KVM tolerates false negatives/positives, e.g. KVM doesn't + * invalidate TLBs when aging SPTEs, and so it's safe to clobber the + * Accessed bit (and rare in practice). + */ + return is_writable_pte(spte) && !(spte & shadow_dirty_mask); } bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, @@ -170,7 +174,7 @@ bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, if (sp->role.ad_disabled) spte |= SPTE_TDP_AD_DISABLED; - else if (kvm_mmu_page_ad_need_write_protect(sp)) + else if (kvm_mmu_page_ad_need_write_protect(vcpu->kvm, sp)) spte |= SPTE_TDP_AD_WRPROT_ONLY; spte |= shadow_present_mask; @@ -205,9 +209,7 @@ bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, if (level > PG_LEVEL_4K) spte |= PT_PAGE_SIZE_MASK; - if (shadow_memtype_mask) - spte |= kvm_x86_call(get_mt_mask)(vcpu, gfn, - kvm_is_mmio_pfn(pfn)); + spte |= kvm_x86_call(get_mt_mask)(vcpu, gfn, kvm_is_mmio_pfn(pfn)); if (host_writable) spte |= shadow_host_writable_mask; else @@ -433,6 +435,12 @@ void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask) } EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); +void kvm_mmu_set_mmio_spte_value(struct kvm *kvm, u64 mmio_value) +{ + kvm->arch.shadow_mmio_value = mmio_value; +} +EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_value); + void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask) { /* shadow_me_value must be a subset of shadow_me_mask */ @@ -456,13 +464,7 @@ void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only) /* VMX_EPT_SUPPRESS_VE_BIT is needed for W or X violation. */ shadow_present_mask = (has_exec_only ? 0ull : VMX_EPT_READABLE_MASK) | VMX_EPT_SUPPRESS_VE_BIT; - /* - * EPT overrides the host MTRRs, and so KVM must program the desired - * memtype directly into the SPTEs. Note, this mask is just the mask - * of all bits that factor into the memtype, the actual memtype must be - * dynamically calculated, e.g. to ensure host MMIO is mapped UC. - */ - shadow_memtype_mask = VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT; + shadow_acc_track_mask = VMX_EPT_RWX_MASK; shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE; shadow_mmu_writable_mask = EPT_SPTE_MMU_WRITABLE; @@ -514,12 +516,6 @@ void kvm_mmu_reset_all_pte_masks(void) shadow_x_mask = 0; shadow_present_mask = PT_PRESENT_MASK; - /* - * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB - * memtype in the SPTEs, i.e. relies on host MTRRs to provide the - * correct memtype (WB is the "weakest" memtype). - */ - shadow_memtype_mask = 0; shadow_acc_track_mask = 0; shadow_me_mask = 0; shadow_me_value = 0; diff --git a/arch/x86/kvm/mmu/spte.h b/arch/x86/kvm/mmu/spte.h index 59746854c0af..1e94f081bdaf 100644 --- a/arch/x86/kvm/mmu/spte.h +++ b/arch/x86/kvm/mmu/spte.h @@ -187,7 +187,6 @@ extern u64 __read_mostly shadow_mmio_value; extern u64 __read_mostly shadow_mmio_mask; extern u64 __read_mostly shadow_mmio_access_mask; extern u64 __read_mostly shadow_present_mask; -extern u64 __read_mostly shadow_memtype_mask; extern u64 __read_mostly shadow_me_value; extern u64 __read_mostly shadow_me_mask; @@ -519,7 +518,7 @@ static inline u64 get_mmio_spte_generation(u64 spte) return gen; } -bool spte_has_volatile_bits(u64 spte); +bool spte_needs_atomic_update(u64 spte); bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, const struct kvm_memory_slot *slot, diff --git a/arch/x86/kvm/mmu/tdp_iter.h b/arch/x86/kvm/mmu/tdp_iter.h index 047b78333653..364c5da6c499 100644 --- a/arch/x86/kvm/mmu/tdp_iter.h +++ b/arch/x86/kvm/mmu/tdp_iter.h @@ -25,6 +25,13 @@ static inline u64 kvm_tdp_mmu_write_spte_atomic(tdp_ptep_t sptep, u64 new_spte) return xchg(rcu_dereference(sptep), new_spte); } +static inline u64 tdp_mmu_clear_spte_bits_atomic(tdp_ptep_t sptep, u64 mask) +{ + atomic64_t *sptep_atomic = (atomic64_t *)rcu_dereference(sptep); + + return (u64)atomic64_fetch_and(~mask, sptep_atomic); +} + static inline void __kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 new_spte) { KVM_MMU_WARN_ON(is_ept_ve_possible(new_spte)); @@ -32,28 +39,21 @@ static inline void __kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 new_spte) } /* - * SPTEs must be modified atomically if they are shadow-present, leaf - * SPTEs, and have volatile bits, i.e. has bits that can be set outside - * of mmu_lock. The Writable bit can be set by KVM's fast page fault - * handler, and Accessed and Dirty bits can be set by the CPU. - * - * Note, non-leaf SPTEs do have Accessed bits and those bits are - * technically volatile, but KVM doesn't consume the Accessed bit of - * non-leaf SPTEs, i.e. KVM doesn't care if it clobbers the bit. This - * logic needs to be reassessed if KVM were to use non-leaf Accessed - * bits, e.g. to skip stepping down into child SPTEs when aging SPTEs. + * SPTEs must be modified atomically if they are shadow-present, leaf SPTEs, + * and have volatile bits (bits that can be set outside of mmu_lock) that + * must not be clobbered. */ -static inline bool kvm_tdp_mmu_spte_need_atomic_write(u64 old_spte, int level) +static inline bool kvm_tdp_mmu_spte_need_atomic_update(u64 old_spte, int level) { return is_shadow_present_pte(old_spte) && is_last_spte(old_spte, level) && - spte_has_volatile_bits(old_spte); + spte_needs_atomic_update(old_spte); } static inline u64 kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 old_spte, u64 new_spte, int level) { - if (kvm_tdp_mmu_spte_need_atomic_write(old_spte, level)) + if (kvm_tdp_mmu_spte_need_atomic_update(old_spte, level)) return kvm_tdp_mmu_write_spte_atomic(sptep, new_spte); __kvm_tdp_mmu_write_spte(sptep, new_spte); @@ -63,12 +63,8 @@ static inline u64 kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 old_spte, static inline u64 tdp_mmu_clear_spte_bits(tdp_ptep_t sptep, u64 old_spte, u64 mask, int level) { - atomic64_t *sptep_atomic; - - if (kvm_tdp_mmu_spte_need_atomic_write(old_spte, level)) { - sptep_atomic = (atomic64_t *)rcu_dereference(sptep); - return (u64)atomic64_fetch_and(~mask, sptep_atomic); - } + if (kvm_tdp_mmu_spte_need_atomic_update(old_spte, level)) + return tdp_mmu_clear_spte_bits_atomic(sptep, mask); __kvm_tdp_mmu_write_spte(sptep, old_spte & ~mask); return old_spte; diff --git a/arch/x86/kvm/mmu/tdp_mmu.c b/arch/x86/kvm/mmu/tdp_mmu.c index 046b6ba31197..7f3d7229b2c1 100644 --- a/arch/x86/kvm/mmu/tdp_mmu.c +++ b/arch/x86/kvm/mmu/tdp_mmu.c @@ -40,7 +40,9 @@ void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm) kvm_tdp_mmu_invalidate_roots(kvm, KVM_VALID_ROOTS); kvm_tdp_mmu_zap_invalidated_roots(kvm, false); - WARN_ON(atomic64_read(&kvm->arch.tdp_mmu_pages)); +#ifdef CONFIG_KVM_PROVE_MMU + KVM_MMU_WARN_ON(atomic64_read(&kvm->arch.tdp_mmu_pages)); +#endif WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots)); /* @@ -193,6 +195,19 @@ static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm, !tdp_mmu_root_match((_root), (_types)))) { \ } else +/* + * Iterate over all TDP MMU roots in an RCU read-side critical section. + * It is safe to iterate over the SPTEs under the root, but their values will + * be unstable, so all writes must be atomic. As this routine is meant to be + * used without holding the mmu_lock at all, any bits that are flipped must + * be reflected in kvm_tdp_mmu_spte_need_atomic_write(). + */ +#define for_each_tdp_mmu_root_rcu(_kvm, _root, _as_id, _types) \ + list_for_each_entry_rcu(_root, &_kvm->arch.tdp_mmu_roots, link) \ + if ((_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) || \ + !tdp_mmu_root_match((_root), (_types))) { \ + } else + #define for_each_valid_tdp_mmu_root(_kvm, _root, _as_id) \ __for_each_tdp_mmu_root(_kvm, _root, _as_id, KVM_VALID_ROOTS) @@ -312,13 +327,17 @@ static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, static void tdp_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) { kvm_account_pgtable_pages((void *)sp->spt, +1); +#ifdef CONFIG_KVM_PROVE_MMU atomic64_inc(&kvm->arch.tdp_mmu_pages); +#endif } static void tdp_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) { kvm_account_pgtable_pages((void *)sp->spt, -1); +#ifdef CONFIG_KVM_PROVE_MMU atomic64_dec(&kvm->arch.tdp_mmu_pages); +#endif } /** @@ -359,7 +378,7 @@ static void remove_external_spte(struct kvm *kvm, gfn_t gfn, u64 old_spte, /* Zapping leaf spte is allowed only when write lock is held. */ lockdep_assert_held_write(&kvm->mmu_lock); /* Because write lock is held, operation should success. */ - ret = static_call(kvm_x86_remove_external_spte)(kvm, gfn, level, old_pfn); + ret = kvm_x86_call(remove_external_spte)(kvm, gfn, level, old_pfn); KVM_BUG_ON(ret, kvm); } @@ -466,8 +485,8 @@ static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared) } if (is_mirror_sp(sp) && - WARN_ON(static_call(kvm_x86_free_external_spt)(kvm, base_gfn, sp->role.level, - sp->external_spt))) { + WARN_ON(kvm_x86_call(free_external_spt)(kvm, base_gfn, sp->role.level, + sp->external_spt))) { /* * Failed to free page table page in mirror page table and * there is nothing to do further. @@ -519,12 +538,12 @@ static int __must_check set_external_spte_present(struct kvm *kvm, tdp_ptep_t sp * external page table, or leaf. */ if (is_leaf) { - ret = static_call(kvm_x86_set_external_spte)(kvm, gfn, level, new_pfn); + ret = kvm_x86_call(set_external_spte)(kvm, gfn, level, new_pfn); } else { void *external_spt = get_external_spt(gfn, new_spte, level); KVM_BUG_ON(!external_spt, kvm); - ret = static_call(kvm_x86_link_external_spt)(kvm, gfn, level, external_spt); + ret = kvm_x86_call(link_external_spt)(kvm, gfn, level, external_spt); } if (ret) __kvm_tdp_mmu_write_spte(sptep, old_spte); @@ -774,9 +793,6 @@ static inline void tdp_mmu_iter_set_spte(struct kvm *kvm, struct tdp_iter *iter, continue; \ else -#define tdp_mmu_for_each_pte(_iter, _kvm, _root, _start, _end) \ - for_each_tdp_pte(_iter, _kvm, _root, _start, _end) - static inline bool __must_check tdp_mmu_iter_need_resched(struct kvm *kvm, struct tdp_iter *iter) { @@ -1137,13 +1153,12 @@ static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, if (WARN_ON_ONCE(sp->role.level != fault->goal_level)) return RET_PF_RETRY; - if (fault->prefetch && is_shadow_present_pte(iter->old_spte)) - return RET_PF_SPURIOUS; - if (is_shadow_present_pte(iter->old_spte) && - is_access_allowed(fault, iter->old_spte) && - is_last_spte(iter->old_spte, iter->level)) + (fault->prefetch || is_access_allowed(fault, iter->old_spte)) && + is_last_spte(iter->old_spte, iter->level)) { + WARN_ON_ONCE(fault->pfn != spte_to_pfn(iter->old_spte)); return RET_PF_SPURIOUS; + } if (unlikely(!fault->slot)) new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL); @@ -1235,7 +1250,7 @@ int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) rcu_read_lock(); - tdp_mmu_for_each_pte(iter, kvm, root, fault->gfn, fault->gfn + 1) { + for_each_tdp_pte(iter, kvm, root, fault->gfn, fault->gfn + 1) { int r; if (fault->nx_huge_page_workaround_enabled) @@ -1332,21 +1347,22 @@ bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range, * from the clear_young() or clear_flush_young() notifier, which uses the * return value to determine if the page has been accessed. */ -static void kvm_tdp_mmu_age_spte(struct tdp_iter *iter) +static void kvm_tdp_mmu_age_spte(struct kvm *kvm, struct tdp_iter *iter) { u64 new_spte; if (spte_ad_enabled(iter->old_spte)) { - iter->old_spte = tdp_mmu_clear_spte_bits(iter->sptep, - iter->old_spte, - shadow_accessed_mask, - iter->level); + iter->old_spte = tdp_mmu_clear_spte_bits_atomic(iter->sptep, + shadow_accessed_mask); new_spte = iter->old_spte & ~shadow_accessed_mask; } else { new_spte = mark_spte_for_access_track(iter->old_spte); - iter->old_spte = kvm_tdp_mmu_write_spte(iter->sptep, - iter->old_spte, new_spte, - iter->level); + /* + * It is safe for the following cmpxchg to fail. Leave the + * Accessed bit set, as the spte is most likely young anyway. + */ + if (__tdp_mmu_set_spte_atomic(kvm, iter, new_spte)) + return; } trace_kvm_tdp_mmu_spte_changed(iter->as_id, iter->gfn, iter->level, @@ -1371,9 +1387,9 @@ static bool __kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, * valid roots! */ WARN_ON(types & ~KVM_VALID_ROOTS); - __for_each_tdp_mmu_root(kvm, root, range->slot->as_id, types) { - guard(rcu)(); + guard(rcu)(); + for_each_tdp_mmu_root_rcu(kvm, root, range->slot->as_id, types) { tdp_root_for_each_leaf_pte(iter, kvm, root, range->start, range->end) { if (!is_accessed_spte(iter.old_spte)) continue; @@ -1382,7 +1398,7 @@ static bool __kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, return true; ret = true; - kvm_tdp_mmu_age_spte(&iter); + kvm_tdp_mmu_age_spte(kvm, &iter); } } @@ -1613,21 +1629,21 @@ void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm, } } -static bool tdp_mmu_need_write_protect(struct kvm_mmu_page *sp) +static bool tdp_mmu_need_write_protect(struct kvm *kvm, struct kvm_mmu_page *sp) { /* * All TDP MMU shadow pages share the same role as their root, aside * from level, so it is valid to key off any shadow page to determine if * write protection is needed for an entire tree. */ - return kvm_mmu_page_ad_need_write_protect(sp) || !kvm_ad_enabled; + return kvm_mmu_page_ad_need_write_protect(kvm, sp) || !kvm_ad_enabled; } static void clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, gfn_t start, gfn_t end) { - const u64 dbit = tdp_mmu_need_write_protect(root) ? PT_WRITABLE_MASK : - shadow_dirty_mask; + const u64 dbit = tdp_mmu_need_write_protect(kvm, root) ? + PT_WRITABLE_MASK : shadow_dirty_mask; struct tdp_iter iter; rcu_read_lock(); @@ -1672,8 +1688,8 @@ void kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root, gfn_t gfn, unsigned long mask, bool wrprot) { - const u64 dbit = (wrprot || tdp_mmu_need_write_protect(root)) ? PT_WRITABLE_MASK : - shadow_dirty_mask; + const u64 dbit = (wrprot || tdp_mmu_need_write_protect(kvm, root)) ? + PT_WRITABLE_MASK : shadow_dirty_mask; struct tdp_iter iter; lockdep_assert_held_write(&kvm->mmu_lock); @@ -1894,17 +1910,14 @@ bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm, * * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}. */ -int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, - int *root_level) +static int __kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, + struct kvm_mmu_page *root) { - struct kvm_mmu_page *root = root_to_sp(vcpu->arch.mmu->root.hpa); struct tdp_iter iter; gfn_t gfn = addr >> PAGE_SHIFT; int leaf = -1; - *root_level = vcpu->arch.mmu->root_role.level; - - tdp_mmu_for_each_pte(iter, vcpu->kvm, root, gfn, gfn + 1) { + for_each_tdp_pte(iter, vcpu->kvm, root, gfn, gfn + 1) { leaf = iter.level; sptes[leaf] = iter.old_spte; } @@ -1912,6 +1925,36 @@ int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, return leaf; } +int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, + int *root_level) +{ + struct kvm_mmu_page *root = root_to_sp(vcpu->arch.mmu->root.hpa); + *root_level = vcpu->arch.mmu->root_role.level; + + return __kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root); +} + +bool kvm_tdp_mmu_gpa_is_mapped(struct kvm_vcpu *vcpu, u64 gpa) +{ + struct kvm *kvm = vcpu->kvm; + bool is_direct = kvm_is_addr_direct(kvm, gpa); + hpa_t root = is_direct ? vcpu->arch.mmu->root.hpa : + vcpu->arch.mmu->mirror_root_hpa; + u64 sptes[PT64_ROOT_MAX_LEVEL + 1], spte; + int leaf; + + lockdep_assert_held(&kvm->mmu_lock); + rcu_read_lock(); + leaf = __kvm_tdp_mmu_get_walk(vcpu, gpa, sptes, root_to_sp(root)); + rcu_read_unlock(); + if (leaf < 0) + return false; + + spte = sptes[leaf]; + return is_shadow_present_pte(spte) && is_last_spte(spte, leaf); +} +EXPORT_SYMBOL_GPL(kvm_tdp_mmu_gpa_is_mapped); + /* * Returns the last level spte pointer of the shadow page walk for the given * gpa, and sets *spte to the spte value. This spte may be non-preset. If no @@ -1931,7 +1974,7 @@ u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gfn_t gfn, struct tdp_iter iter; tdp_ptep_t sptep = NULL; - tdp_mmu_for_each_pte(iter, vcpu->kvm, root, gfn, gfn + 1) { + for_each_tdp_pte(iter, vcpu->kvm, root, gfn, gfn + 1) { *spte = iter.old_spte; sptep = iter.sptep; } |