diff options
Diffstat (limited to 'arch/x86/kvm/svm/svm.c')
| -rw-r--r-- | arch/x86/kvm/svm/svm.c | 3556 |
1 files changed, 2219 insertions, 1337 deletions
diff --git a/arch/x86/kvm/svm/svm.c b/arch/x86/kvm/svm/svm.c index 8834822c00cd..f56c2d895011 100644 --- a/arch/x86/kvm/svm/svm.c +++ b/arch/x86/kvm/svm/svm.c @@ -1,4 +1,4 @@ -#define pr_fmt(fmt) "SVM: " fmt +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kvm_host.h> @@ -6,6 +6,7 @@ #include "mmu.h" #include "kvm_cache_regs.h" #include "x86.h" +#include "smm.h" #include "cpuid.h" #include "pmu.h" @@ -25,8 +26,13 @@ #include <linux/pagemap.h> #include <linux/swap.h> #include <linux/rwsem.h> +#include <linux/cc_platform.h> +#include <linux/smp.h> +#include <linux/string_choices.h> +#include <linux/mutex.h> #include <asm/apic.h> +#include <asm/msr.h> #include <asm/perf_event.h> #include <asm/tlbflush.h> #include <asm/desc.h> @@ -36,8 +42,11 @@ #include <asm/spec-ctrl.h> #include <asm/cpu_device_id.h> #include <asm/traps.h> +#include <asm/reboot.h> +#include <asm/fpu/api.h> + +#include <trace/events/ipi.h> -#include <asm/virtext.h> #include "trace.h" #include "svm.h" @@ -46,9 +55,8 @@ #include "kvm_onhyperv.h" #include "svm_onhyperv.h" -#define __ex(x) __kvm_handle_fault_on_reboot(x) - MODULE_AUTHOR("Qumranet"); +MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions"); MODULE_LICENSE("GPL"); #ifdef MODULE @@ -62,24 +70,8 @@ MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); #define SEG_TYPE_LDT 2 #define SEG_TYPE_BUSY_TSS16 3 -#define SVM_FEATURE_LBRV (1 << 1) -#define SVM_FEATURE_SVML (1 << 2) -#define SVM_FEATURE_TSC_RATE (1 << 4) -#define SVM_FEATURE_VMCB_CLEAN (1 << 5) -#define SVM_FEATURE_FLUSH_ASID (1 << 6) -#define SVM_FEATURE_DECODE_ASSIST (1 << 7) -#define SVM_FEATURE_PAUSE_FILTER (1 << 10) - -#define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) - -#define TSC_RATIO_RSVD 0xffffff0000000000ULL -#define TSC_RATIO_MIN 0x0000000000000001ULL -#define TSC_RATIO_MAX 0x000000ffffffffffULL - static bool erratum_383_found __read_mostly; -u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; - /* * Set osvw_len to higher value when updated Revision Guides * are published and we know what the new status bits are @@ -87,35 +79,6 @@ u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; static uint64_t osvw_len = 4, osvw_status; static DEFINE_PER_CPU(u64, current_tsc_ratio); -#define TSC_RATIO_DEFAULT 0x0100000000ULL - -static const struct svm_direct_access_msrs { - u32 index; /* Index of the MSR */ - bool always; /* True if intercept is initially cleared */ -} direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { - { .index = MSR_STAR, .always = true }, - { .index = MSR_IA32_SYSENTER_CS, .always = true }, - { .index = MSR_IA32_SYSENTER_EIP, .always = false }, - { .index = MSR_IA32_SYSENTER_ESP, .always = false }, -#ifdef CONFIG_X86_64 - { .index = MSR_GS_BASE, .always = true }, - { .index = MSR_FS_BASE, .always = true }, - { .index = MSR_KERNEL_GS_BASE, .always = true }, - { .index = MSR_LSTAR, .always = true }, - { .index = MSR_CSTAR, .always = true }, - { .index = MSR_SYSCALL_MASK, .always = true }, -#endif - { .index = MSR_IA32_SPEC_CTRL, .always = false }, - { .index = MSR_IA32_PRED_CMD, .always = false }, - { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, - { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, - { .index = MSR_IA32_LASTINTFROMIP, .always = false }, - { .index = MSR_IA32_LASTINTTOIP, .always = false }, - { .index = MSR_EFER, .always = false }, - { .index = MSR_IA32_CR_PAT, .always = false }, - { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, - { .index = MSR_INVALID, .always = false }, -}; /* * These 2 parameters are used to config the controls for Pause-Loop Exiting: @@ -174,10 +137,10 @@ module_param_named(npt, npt_enabled, bool, 0444); /* allow nested virtualization in KVM/SVM */ static int nested = true; -module_param(nested, int, S_IRUGO); +module_param(nested, int, 0444); /* enable/disable Next RIP Save */ -static int nrips = true; +int nrips = true; module_param(nrips, int, 0444); /* enable/disable Virtual VMLOAD VMSAVE */ @@ -185,35 +148,37 @@ static int vls = true; module_param(vls, int, 0444); /* enable/disable Virtual GIF */ -static int vgif = true; +int vgif = true; module_param(vgif, int, 0444); -/* - * enable / disable AVIC. Because the defaults differ for APICv - * support between VMX and SVM we cannot use module_param_named. - */ -static bool avic; -module_param(avic, bool, 0444); +/* enable/disable LBR virtualization */ +int lbrv = true; +module_param(lbrv, int, 0444); + +static int tsc_scaling = true; +module_param(tsc_scaling, int, 0444); + +module_param(enable_device_posted_irqs, bool, 0444); bool __read_mostly dump_invalid_vmcb; module_param(dump_invalid_vmcb, bool, 0644); + +bool intercept_smi = true; +module_param(intercept_smi, bool, 0444); + +bool vnmi = true; +module_param(vnmi, bool, 0444); + static bool svm_gp_erratum_intercept = true; static u8 rsm_ins_bytes[] = "\x0f\xaa"; static unsigned long iopm_base; -struct kvm_ldttss_desc { - u16 limit0; - u16 base0; - unsigned base1:8, type:5, dpl:2, p:1; - unsigned limit1:4, zero0:3, g:1, base2:8; - u32 base3; - u32 zero1; -} __attribute__((packed)); +DEFINE_PER_CPU(struct svm_cpu_data, svm_data); -DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); +static DEFINE_MUTEX(vmcb_dump_mutex); /* * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via @@ -222,41 +187,12 @@ DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to * defer the restoration of TSC_AUX until the CPU returns to userspace. */ -static int tsc_aux_uret_slot __read_mostly = -1; - -static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; - -#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) -#define MSRS_RANGE_SIZE 2048 -#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) - -u32 svm_msrpm_offset(u32 msr) -{ - u32 offset; - int i; - - for (i = 0; i < NUM_MSR_MAPS; i++) { - if (msr < msrpm_ranges[i] || - msr >= msrpm_ranges[i] + MSRS_IN_RANGE) - continue; +int tsc_aux_uret_slot __ro_after_init = -1; - offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ - offset += (i * MSRS_RANGE_SIZE); /* add range offset */ - - /* Now we have the u8 offset - but need the u32 offset */ - return offset / 4; - } - - /* MSR not in any range */ - return MSR_INVALID; -} - -#define MAX_INST_SIZE 15 - -static int get_max_npt_level(void) +static int get_npt_level(void) { #ifdef CONFIG_X86_64 - return PT64_ROOT_4LEVEL; + return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; #else return PT32E_ROOT_LEVEL; #endif @@ -278,7 +214,7 @@ int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { if (!(efer & EFER_SVME)) { - svm_leave_nested(svm); + svm_leave_nested(vcpu); svm_set_gif(svm, true); /* #GP intercept is still needed for vmware backdoor */ if (!enable_vmware_backdoor) @@ -300,7 +236,11 @@ int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) return ret; } - if (svm_gp_erratum_intercept) + /* + * Never intercept #GP for SEV guests, KVM can't + * decrypt guest memory to workaround the erratum. + */ + if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) set_exception_intercept(svm, GP_VECTOR); } } @@ -310,12 +250,6 @@ int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) return 0; } -static int is_external_interrupt(u32 info) -{ - info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; - return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); -} - static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); @@ -337,9 +271,12 @@ static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) } -static int skip_emulated_instruction(struct kvm_vcpu *vcpu) +static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, + int emul_type, + bool commit_side_effects) { struct vcpu_svm *svm = to_svm(vcpu); + unsigned long old_rflags; /* * SEV-ES does not expose the next RIP. The RIP update is controlled by @@ -354,70 +291,109 @@ static int skip_emulated_instruction(struct kvm_vcpu *vcpu) } if (!svm->next_rip) { - if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) + if (unlikely(!commit_side_effects)) + old_rflags = svm->vmcb->save.rflags; + + if (!kvm_emulate_instruction(vcpu, emul_type)) return 0; + + if (unlikely(!commit_side_effects)) + svm->vmcb->save.rflags = old_rflags; } else { kvm_rip_write(vcpu, svm->next_rip); } done: - svm_set_interrupt_shadow(vcpu, 0); + if (likely(commit_side_effects)) + svm_set_interrupt_shadow(vcpu, 0); return 1; } -static void svm_queue_exception(struct kvm_vcpu *vcpu) +static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) +{ + return __svm_skip_emulated_instruction(vcpu, EMULTYPE_SKIP, true); +} + +static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu, u8 vector) { + const int emul_type = EMULTYPE_SKIP | EMULTYPE_SKIP_SOFT_INT | + EMULTYPE_SET_SOFT_INT_VECTOR(vector); + unsigned long rip, old_rip = kvm_rip_read(vcpu); struct vcpu_svm *svm = to_svm(vcpu); - unsigned nr = vcpu->arch.exception.nr; - bool has_error_code = vcpu->arch.exception.has_error_code; - u32 error_code = vcpu->arch.exception.error_code; - kvm_deliver_exception_payload(vcpu); + /* + * Due to architectural shortcomings, the CPU doesn't always provide + * NextRIP, e.g. if KVM intercepted an exception that occurred while + * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip + * the instruction even if NextRIP is supported to acquire the next + * RIP so that it can be shoved into the NextRIP field, otherwise + * hardware will fail to advance guest RIP during event injection. + * Drop the exception/interrupt if emulation fails and effectively + * retry the instruction, it's the least awful option. If NRIPS is + * in use, the skip must not commit any side effects such as clearing + * the interrupt shadow or RFLAGS.RF. + */ + if (!__svm_skip_emulated_instruction(vcpu, emul_type, !nrips)) + return -EIO; - if (nr == BP_VECTOR && !nrips) { - unsigned long rip, old_rip = kvm_rip_read(vcpu); + rip = kvm_rip_read(vcpu); - /* - * For guest debugging where we have to reinject #BP if some - * INT3 is guest-owned: - * Emulate nRIP by moving RIP forward. Will fail if injection - * raises a fault that is not intercepted. Still better than - * failing in all cases. - */ - (void)skip_emulated_instruction(vcpu); - rip = kvm_rip_read(vcpu); - svm->int3_rip = rip + svm->vmcb->save.cs.base; - svm->int3_injected = rip - old_rip; - } + /* + * Save the injection information, even when using next_rip, as the + * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection + * doesn't complete due to a VM-Exit occurring while the CPU is + * vectoring the event. Decoding the instruction isn't guaranteed to + * work as there may be no backing instruction, e.g. if the event is + * being injected by L1 for L2, or if the guest is patching INT3 into + * a different instruction. + */ + svm->soft_int_injected = true; + svm->soft_int_csbase = svm->vmcb->save.cs.base; + svm->soft_int_old_rip = old_rip; + svm->soft_int_next_rip = rip; + + if (nrips) + kvm_rip_write(vcpu, old_rip); + + if (static_cpu_has(X86_FEATURE_NRIPS)) + svm->vmcb->control.next_rip = rip; + + return 0; +} + +static void svm_inject_exception(struct kvm_vcpu *vcpu) +{ + struct kvm_queued_exception *ex = &vcpu->arch.exception; + struct vcpu_svm *svm = to_svm(vcpu); + + kvm_deliver_exception_payload(vcpu, ex); - svm->vmcb->control.event_inj = nr + if (kvm_exception_is_soft(ex->vector) && + svm_update_soft_interrupt_rip(vcpu, ex->vector)) + return; + + svm->vmcb->control.event_inj = ex->vector | SVM_EVTINJ_VALID - | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) + | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) | SVM_EVTINJ_TYPE_EXEPT; - svm->vmcb->control.event_inj_err = error_code; + svm->vmcb->control.event_inj_err = ex->error_code; } static void svm_init_erratum_383(void) { - u32 low, high; - int err; u64 val; if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) return; /* Use _safe variants to not break nested virtualization */ - val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); - if (err) + if (native_read_msr_safe(MSR_AMD64_DC_CFG, &val)) return; val |= (1ULL << 47); - low = lower_32_bits(val); - high = upper_32_bits(val); - - native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); + native_write_msr_safe(MSR_AMD64_DC_CFG, val); erratum_383_found = true; } @@ -443,76 +419,124 @@ static void svm_init_osvw(struct kvm_vcpu *vcpu) vcpu->arch.osvw.status |= 1; } -static int has_svm(void) +static bool __kvm_is_svm_supported(void) { - const char *msg; + int cpu = smp_processor_id(); + struct cpuinfo_x86 *c = &cpu_data(cpu); - if (!cpu_has_svm(&msg)) { - printk(KERN_INFO "has_svm: %s\n", msg); - return 0; + if (c->x86_vendor != X86_VENDOR_AMD && + c->x86_vendor != X86_VENDOR_HYGON) { + pr_err("CPU %d isn't AMD or Hygon\n", cpu); + return false; } - if (sev_active()) { + if (!cpu_has(c, X86_FEATURE_SVM)) { + pr_err("SVM not supported by CPU %d\n", cpu); + return false; + } + + if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { pr_info("KVM is unsupported when running as an SEV guest\n"); - return 0; + return false; } - if (pgtable_l5_enabled()) { - pr_info("KVM doesn't yet support 5-level paging on AMD SVM\n"); - return 0; + return true; +} + +static bool kvm_is_svm_supported(void) +{ + bool supported; + + migrate_disable(); + supported = __kvm_is_svm_supported(); + migrate_enable(); + + return supported; +} + +static int svm_check_processor_compat(void) +{ + if (!__kvm_is_svm_supported()) + return -EIO; + + return 0; +} + +static void __svm_write_tsc_multiplier(u64 multiplier) +{ + if (multiplier == __this_cpu_read(current_tsc_ratio)) + return; + + wrmsrq(MSR_AMD64_TSC_RATIO, multiplier); + __this_cpu_write(current_tsc_ratio, multiplier); +} + +static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd) +{ + return &sd->save_area->host_sev_es_save; +} + +static inline void kvm_cpu_svm_disable(void) +{ + uint64_t efer; + + wrmsrq(MSR_VM_HSAVE_PA, 0); + rdmsrq(MSR_EFER, efer); + if (efer & EFER_SVME) { + /* + * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and + * NMI aren't blocked. + */ + stgi(); + wrmsrq(MSR_EFER, efer & ~EFER_SVME); } +} - return 1; +static void svm_emergency_disable_virtualization_cpu(void) +{ + kvm_rebooting = true; + + kvm_cpu_svm_disable(); } -static void svm_hardware_disable(void) +static void svm_disable_virtualization_cpu(void) { /* Make sure we clean up behind us */ - if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) - wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); + if (tsc_scaling) + __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); - cpu_svm_disable(); + kvm_cpu_svm_disable(); amd_pmu_disable_virt(); } -static int svm_hardware_enable(void) +static int svm_enable_virtualization_cpu(void) { struct svm_cpu_data *sd; uint64_t efer; - struct desc_struct *gdt; int me = raw_smp_processor_id(); - rdmsrl(MSR_EFER, efer); + rdmsrq(MSR_EFER, efer); if (efer & EFER_SVME) return -EBUSY; - if (!has_svm()) { - pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); - return -EINVAL; - } - sd = per_cpu(svm_data, me); - if (!sd) { - pr_err("%s: svm_data is NULL on %d\n", __func__, me); - return -EINVAL; - } - + sd = per_cpu_ptr(&svm_data, me); sd->asid_generation = 1; sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; sd->next_asid = sd->max_asid + 1; sd->min_asid = max_sev_asid + 1; - gdt = get_current_gdt_rw(); - sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); - - wrmsrl(MSR_EFER, efer | EFER_SVME); + wrmsrq(MSR_EFER, efer | EFER_SVME); - wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area)); + wrmsrq(MSR_VM_HSAVE_PA, sd->save_area_pa); if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { - wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); - __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); + /* + * Set the default value, even if we don't use TSC scaling + * to avoid having stale value in the msr + */ + __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); } @@ -526,13 +550,12 @@ static int svm_hardware_enable(void) * erratum is present everywhere). */ if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { - uint64_t len, status = 0; + u64 len, status = 0; int err; - len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); + err = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &len); if (!err) - status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, - &err); + err = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &status); if (err) osvw_status = osvw_len = 0; @@ -554,261 +577,281 @@ static int svm_hardware_enable(void) static void svm_cpu_uninit(int cpu) { - struct svm_cpu_data *sd = per_cpu(svm_data, cpu); + struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); - if (!sd) + if (!sd->save_area) return; - per_cpu(svm_data, cpu) = NULL; kfree(sd->sev_vmcbs); - __free_page(sd->save_area); - kfree(sd); + __free_page(__sme_pa_to_page(sd->save_area_pa)); + sd->save_area_pa = 0; + sd->save_area = NULL; } static int svm_cpu_init(int cpu) { - struct svm_cpu_data *sd; + struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); + struct page *save_area_page; int ret = -ENOMEM; - sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); - if (!sd) + memset(sd, 0, sizeof(struct svm_cpu_data)); + save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL); + if (!save_area_page) return ret; - sd->cpu = cpu; - sd->save_area = alloc_page(GFP_KERNEL); - if (!sd->save_area) - goto free_cpu_data; - - clear_page(page_address(sd->save_area)); ret = sev_cpu_init(sd); if (ret) goto free_save_area; - per_cpu(svm_data, cpu) = sd; - + sd->save_area = page_address(save_area_page); + sd->save_area_pa = __sme_page_pa(save_area_page); return 0; free_save_area: - __free_page(sd->save_area); -free_cpu_data: - kfree(sd); + __free_page(save_area_page); return ret; } -static int direct_access_msr_slot(u32 msr) +static void set_dr_intercepts(struct vcpu_svm *svm) { - u32 i; + struct vmcb *vmcb = svm->vmcb01.ptr; - for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) - if (direct_access_msrs[i].index == msr) - return i; + vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); + vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); + vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); + vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); + vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); + vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); + vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); + vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); + vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); + vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); + vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); + vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); + vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); + vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); + vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); + vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); - return -ENOENT; + recalc_intercepts(svm); } -static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, - int write) +static void clr_dr_intercepts(struct vcpu_svm *svm) { - struct vcpu_svm *svm = to_svm(vcpu); - int slot = direct_access_msr_slot(msr); + struct vmcb *vmcb = svm->vmcb01.ptr; - if (slot == -ENOENT) - return; - - /* Set the shadow bitmaps to the desired intercept states */ - if (read) - set_bit(slot, svm->shadow_msr_intercept.read); - else - clear_bit(slot, svm->shadow_msr_intercept.read); + vmcb->control.intercepts[INTERCEPT_DR] = 0; - if (write) - set_bit(slot, svm->shadow_msr_intercept.write); - else - clear_bit(slot, svm->shadow_msr_intercept.write); -} - -static bool valid_msr_intercept(u32 index) -{ - return direct_access_msr_slot(index) != -ENOENT; + recalc_intercepts(svm); } static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) { - u8 bit_write; - unsigned long tmp; - u32 offset; - u32 *msrpm; - - msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: - to_svm(vcpu)->msrpm; - - offset = svm_msrpm_offset(msr); - bit_write = 2 * (msr & 0x0f) + 1; - tmp = msrpm[offset]; - - BUG_ON(offset == MSR_INVALID); - - return !!test_bit(bit_write, &tmp); -} - -static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, - u32 msr, int read, int write) -{ - u8 bit_read, bit_write; - unsigned long tmp; - u32 offset; - /* - * If this warning triggers extend the direct_access_msrs list at the - * beginning of the file + * For non-nested case: + * If the L01 MSR bitmap does not intercept the MSR, then we need to + * save it. + * + * For nested case: + * If the L02 MSR bitmap does not intercept the MSR, then we need to + * save it. */ - WARN_ON(!valid_msr_intercept(msr)); - - /* Enforce non allowed MSRs to trap */ - if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) - read = 0; - - if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) - write = 0; + void *msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm : + to_svm(vcpu)->msrpm; - offset = svm_msrpm_offset(msr); - bit_read = 2 * (msr & 0x0f); - bit_write = 2 * (msr & 0x0f) + 1; - tmp = msrpm[offset]; + return svm_test_msr_bitmap_write(msrpm, msr); +} - BUG_ON(offset == MSR_INVALID); +void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set) +{ + struct vcpu_svm *svm = to_svm(vcpu); + void *msrpm = svm->msrpm; - read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); - write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); + /* Don't disable interception for MSRs userspace wants to handle. */ + if (type & MSR_TYPE_R) { + if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) + svm_clear_msr_bitmap_read(msrpm, msr); + else + svm_set_msr_bitmap_read(msrpm, msr); + } - msrpm[offset] = tmp; + if (type & MSR_TYPE_W) { + if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) + svm_clear_msr_bitmap_write(msrpm, msr); + else + svm_set_msr_bitmap_write(msrpm, msr); + } svm_hv_vmcb_dirty_nested_enlightenments(vcpu); - -} - -void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, - int read, int write) -{ - set_shadow_msr_intercept(vcpu, msr, read, write); - set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); + svm->nested.force_msr_bitmap_recalc = true; } -u32 *svm_vcpu_alloc_msrpm(void) +void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask) { - unsigned int order = get_order(MSRPM_SIZE); - struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); - u32 *msrpm; + unsigned int order = get_order(size); + struct page *pages = alloc_pages(gfp_mask, order); + void *pm; if (!pages) return NULL; - msrpm = page_address(pages); - memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); + /* + * Set all bits in the permissions map so that all MSR and I/O accesses + * are intercepted by default. + */ + pm = page_address(pages); + memset(pm, 0xff, PAGE_SIZE * (1 << order)); - return msrpm; + return pm; } -void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) +static void svm_recalc_lbr_msr_intercepts(struct kvm_vcpu *vcpu) { - int i; + struct vcpu_svm *svm = to_svm(vcpu); + bool intercept = !(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK); - for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { - if (!direct_access_msrs[i].always) - continue; - set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); - } -} + if (intercept == svm->lbr_msrs_intercepted) + return; + + svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHFROMIP, MSR_TYPE_RW, intercept); + svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHTOIP, MSR_TYPE_RW, intercept); + svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTFROMIP, MSR_TYPE_RW, intercept); + svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTTOIP, MSR_TYPE_RW, intercept); + if (sev_es_guest(vcpu->kvm)) + svm_set_intercept_for_msr(vcpu, MSR_IA32_DEBUGCTLMSR, MSR_TYPE_RW, intercept); + + svm->lbr_msrs_intercepted = intercept; +} -void svm_vcpu_free_msrpm(u32 *msrpm) +void svm_vcpu_free_msrpm(void *msrpm) { __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); } -static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) +static void svm_recalc_msr_intercepts(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); - u32 i; - /* - * Set intercept permissions for all direct access MSRs again. They - * will automatically get filtered through the MSR filter, so we are - * back in sync after this. - */ - for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { - u32 msr = direct_access_msrs[i].index; - u32 read = test_bit(i, svm->shadow_msr_intercept.read); - u32 write = test_bit(i, svm->shadow_msr_intercept.write); + svm_disable_intercept_for_msr(vcpu, MSR_STAR, MSR_TYPE_RW); + svm_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); - set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); - } -} +#ifdef CONFIG_X86_64 + svm_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); + svm_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); + svm_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); + svm_disable_intercept_for_msr(vcpu, MSR_LSTAR, MSR_TYPE_RW); + svm_disable_intercept_for_msr(vcpu, MSR_CSTAR, MSR_TYPE_RW); + svm_disable_intercept_for_msr(vcpu, MSR_SYSCALL_MASK, MSR_TYPE_RW); +#endif -static void add_msr_offset(u32 offset) -{ - int i; + if (lbrv) + svm_recalc_lbr_msr_intercepts(vcpu); - for (i = 0; i < MSRPM_OFFSETS; ++i) { + if (cpu_feature_enabled(X86_FEATURE_IBPB)) + svm_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, + !guest_has_pred_cmd_msr(vcpu)); - /* Offset already in list? */ - if (msrpm_offsets[i] == offset) - return; + if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D)) + svm_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, + !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D)); + + /* + * Disable interception of SPEC_CTRL if KVM doesn't need to manually + * context switch the MSR (SPEC_CTRL is virtualized by the CPU), or if + * the guest has a non-zero SPEC_CTRL value, i.e. is likely actively + * using SPEC_CTRL. + */ + if (cpu_feature_enabled(X86_FEATURE_V_SPEC_CTRL)) + svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW, + !guest_has_spec_ctrl_msr(vcpu)); + else + svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW, + !svm->spec_ctrl); - /* Slot used by another offset? */ - if (msrpm_offsets[i] != MSR_INVALID) - continue; + /* + * Intercept SYSENTER_EIP and SYSENTER_ESP when emulating an Intel CPU, + * as AMD hardware only store 32 bits, whereas Intel CPUs track 64 bits. + */ + svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW, + guest_cpuid_is_intel_compatible(vcpu)); + svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW, + guest_cpuid_is_intel_compatible(vcpu)); + + if (kvm_aperfmperf_in_guest(vcpu->kvm)) { + svm_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R); + svm_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R); + } - /* Add offset to list */ - msrpm_offsets[i] = offset; + if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) { + bool shstk_enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK); - return; + svm_set_intercept_for_msr(vcpu, MSR_IA32_U_CET, MSR_TYPE_RW, !shstk_enabled); + svm_set_intercept_for_msr(vcpu, MSR_IA32_S_CET, MSR_TYPE_RW, !shstk_enabled); + svm_set_intercept_for_msr(vcpu, MSR_IA32_PL0_SSP, MSR_TYPE_RW, !shstk_enabled); + svm_set_intercept_for_msr(vcpu, MSR_IA32_PL1_SSP, MSR_TYPE_RW, !shstk_enabled); + svm_set_intercept_for_msr(vcpu, MSR_IA32_PL2_SSP, MSR_TYPE_RW, !shstk_enabled); + svm_set_intercept_for_msr(vcpu, MSR_IA32_PL3_SSP, MSR_TYPE_RW, !shstk_enabled); } + if (sev_es_guest(vcpu->kvm)) + sev_es_recalc_msr_intercepts(vcpu); + /* - * If this BUG triggers the msrpm_offsets table has an overflow. Just - * increase MSRPM_OFFSETS in this case. + * x2APIC intercepts are modified on-demand and cannot be filtered by + * userspace. */ - BUG(); } -static void init_msrpm_offsets(void) +void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) { - int i; + to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; + to_vmcb->save.br_from = from_vmcb->save.br_from; + to_vmcb->save.br_to = from_vmcb->save.br_to; + to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; + to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; - memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); - - for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { - u32 offset; - - offset = svm_msrpm_offset(direct_access_msrs[i].index); - BUG_ON(offset == MSR_INVALID); + vmcb_mark_dirty(to_vmcb, VMCB_LBR); +} - add_msr_offset(offset); - } +static void __svm_enable_lbrv(struct kvm_vcpu *vcpu) +{ + to_svm(vcpu)->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; } -static void svm_enable_lbrv(struct kvm_vcpu *vcpu) +void svm_enable_lbrv(struct kvm_vcpu *vcpu) { - struct vcpu_svm *svm = to_svm(vcpu); + __svm_enable_lbrv(vcpu); + svm_recalc_lbr_msr_intercepts(vcpu); +} - svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; - set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); - set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); - set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); - set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); +static void __svm_disable_lbrv(struct kvm_vcpu *vcpu) +{ + KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm); + to_svm(vcpu)->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; } -static void svm_disable_lbrv(struct kvm_vcpu *vcpu) +void svm_update_lbrv(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); + bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; + bool enable_lbrv = (svm->vmcb->save.dbgctl & DEBUGCTLMSR_LBR) || + (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) && + (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); - svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; - set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); - set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); - set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); - set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); + if (enable_lbrv && !current_enable_lbrv) + __svm_enable_lbrv(vcpu); + else if (!enable_lbrv && current_enable_lbrv) + __svm_disable_lbrv(vcpu); + + /* + * During nested transitions, it is possible that the current VMCB has + * LBR_CTL set, but the previous LBR_CTL had it cleared (or vice versa). + * In this case, even though LBR_CTL does not need an update, intercepts + * do, so always recalculate the intercepts here. + */ + svm_recalc_lbr_msr_intercepts(vcpu); } void disable_nmi_singlestep(struct vcpu_svm *svm) @@ -830,6 +873,9 @@ static void grow_ple_window(struct kvm_vcpu *vcpu) struct vmcb_control_area *control = &svm->vmcb->control; int old = control->pause_filter_count; + if (kvm_pause_in_guest(vcpu->kvm)) + return; + control->pause_filter_count = __grow_ple_window(old, pause_filter_count, pause_filter_count_grow, @@ -848,6 +894,9 @@ static void shrink_ple_window(struct kvm_vcpu *vcpu) struct vmcb_control_area *control = &svm->vmcb->control; int old = control->pause_filter_count; + if (kvm_pause_in_guest(vcpu->kvm)) + return; + control->pause_filter_count = __shrink_ple_window(old, pause_filter_count, @@ -860,229 +909,21 @@ static void shrink_ple_window(struct kvm_vcpu *vcpu) } } -/* - * The default MMIO mask is a single bit (excluding the present bit), - * which could conflict with the memory encryption bit. Check for - * memory encryption support and override the default MMIO mask if - * memory encryption is enabled. - */ -static __init void svm_adjust_mmio_mask(void) -{ - unsigned int enc_bit, mask_bit; - u64 msr, mask; - - /* If there is no memory encryption support, use existing mask */ - if (cpuid_eax(0x80000000) < 0x8000001f) - return; - - /* If memory encryption is not enabled, use existing mask */ - rdmsrl(MSR_AMD64_SYSCFG, msr); - if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) - return; - - enc_bit = cpuid_ebx(0x8000001f) & 0x3f; - mask_bit = boot_cpu_data.x86_phys_bits; - - /* Increment the mask bit if it is the same as the encryption bit */ - if (enc_bit == mask_bit) - mask_bit++; - - /* - * If the mask bit location is below 52, then some bits above the - * physical addressing limit will always be reserved, so use the - * rsvd_bits() function to generate the mask. This mask, along with - * the present bit, will be used to generate a page fault with - * PFER.RSV = 1. - * - * If the mask bit location is 52 (or above), then clear the mask. - */ - mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; - - kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); -} - -static void svm_hardware_teardown(void) +static void svm_hardware_unsetup(void) { int cpu; - sev_hardware_teardown(); + avic_hardware_unsetup(); + + sev_hardware_unsetup(); for_each_possible_cpu(cpu) svm_cpu_uninit(cpu); - __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), - get_order(IOPM_SIZE)); + __free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE)); iopm_base = 0; } -static __init void svm_set_cpu_caps(void) -{ - kvm_set_cpu_caps(); - - supported_xss = 0; - - /* CPUID 0x80000001 and 0x8000000A (SVM features) */ - if (nested) { - kvm_cpu_cap_set(X86_FEATURE_SVM); - - if (nrips) - kvm_cpu_cap_set(X86_FEATURE_NRIPS); - - if (npt_enabled) - kvm_cpu_cap_set(X86_FEATURE_NPT); - - /* Nested VM can receive #VMEXIT instead of triggering #GP */ - kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); - } - - /* CPUID 0x80000008 */ - if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || - boot_cpu_has(X86_FEATURE_AMD_SSBD)) - kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); - - /* CPUID 0x8000001F (SME/SEV features) */ - sev_set_cpu_caps(); -} - -static __init int svm_hardware_setup(void) -{ - int cpu; - struct page *iopm_pages; - void *iopm_va; - int r; - unsigned int order = get_order(IOPM_SIZE); - - /* - * NX is required for shadow paging and for NPT if the NX huge pages - * mitigation is enabled. - */ - if (!boot_cpu_has(X86_FEATURE_NX)) { - pr_err_ratelimited("NX (Execute Disable) not supported\n"); - return -EOPNOTSUPP; - } - kvm_enable_efer_bits(EFER_NX); - - iopm_pages = alloc_pages(GFP_KERNEL, order); - - if (!iopm_pages) - return -ENOMEM; - - iopm_va = page_address(iopm_pages); - memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); - iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; - - init_msrpm_offsets(); - - supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); - - if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) - kvm_enable_efer_bits(EFER_FFXSR); - - if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { - kvm_has_tsc_control = true; - kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; - kvm_tsc_scaling_ratio_frac_bits = 32; - } - - tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); - - /* Check for pause filtering support */ - if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { - pause_filter_count = 0; - pause_filter_thresh = 0; - } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { - pause_filter_thresh = 0; - } - - if (nested) { - printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); - kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); - } - - /* - * KVM's MMU doesn't support using 2-level paging for itself, and thus - * NPT isn't supported if the host is using 2-level paging since host - * CR4 is unchanged on VMRUN. - */ - if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) - npt_enabled = false; - - if (!boot_cpu_has(X86_FEATURE_NPT)) - npt_enabled = false; - - kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G); - pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); - - /* Note, SEV setup consumes npt_enabled. */ - sev_hardware_setup(); - - svm_hv_hardware_setup(); - - svm_adjust_mmio_mask(); - - for_each_possible_cpu(cpu) { - r = svm_cpu_init(cpu); - if (r) - goto err; - } - - if (nrips) { - if (!boot_cpu_has(X86_FEATURE_NRIPS)) - nrips = false; - } - - enable_apicv = avic = avic && npt_enabled && boot_cpu_has(X86_FEATURE_AVIC); - - if (enable_apicv) { - pr_info("AVIC enabled\n"); - - amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); - } - - if (vls) { - if (!npt_enabled || - !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || - !IS_ENABLED(CONFIG_X86_64)) { - vls = false; - } else { - pr_info("Virtual VMLOAD VMSAVE supported\n"); - } - } - - if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) - svm_gp_erratum_intercept = false; - - if (vgif) { - if (!boot_cpu_has(X86_FEATURE_VGIF)) - vgif = false; - else - pr_info("Virtual GIF supported\n"); - } - - svm_set_cpu_caps(); - - /* - * It seems that on AMD processors PTE's accessed bit is - * being set by the CPU hardware before the NPF vmexit. - * This is not expected behaviour and our tests fail because - * of it. - * A workaround here is to disable support for - * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. - * In this case userspace can know if there is support using - * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle - * it - * If future AMD CPU models change the behaviour described above, - * this variable can be changed accordingly - */ - allow_smaller_maxphyaddr = !npt_enabled; - - return 0; - -err: - svm_hardware_teardown(); - return r; -} - static void init_seg(struct vmcb_seg *seg) { seg->selector = 0; @@ -1109,54 +950,81 @@ static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) { - return kvm_default_tsc_scaling_ratio; + struct vcpu_svm *svm = to_svm(vcpu); + + return svm->tsc_ratio_msr; } -static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) +static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; - svm->vmcb->control.tsc_offset = offset; + svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); } -static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) +void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) { - wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); + preempt_disable(); + if (to_svm(vcpu)->guest_state_loaded) + __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); + preempt_enable(); } /* Evaluate instruction intercepts that depend on guest CPUID features. */ -static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, - struct vcpu_svm *svm) +static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu) { + struct vcpu_svm *svm = to_svm(vcpu); + /* * Intercept INVPCID if shadow paging is enabled to sync/free shadow * roots, or if INVPCID is disabled in the guest to inject #UD. */ if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { if (!npt_enabled || - !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) + !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID)) svm_set_intercept(svm, INTERCEPT_INVPCID); else svm_clr_intercept(svm, INTERCEPT_INVPCID); } if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { - if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) + if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP)) svm_clr_intercept(svm, INTERCEPT_RDTSCP); else svm_set_intercept(svm, INTERCEPT_RDTSCP); } + + if (guest_cpuid_is_intel_compatible(vcpu)) { + svm_set_intercept(svm, INTERCEPT_VMLOAD); + svm_set_intercept(svm, INTERCEPT_VMSAVE); + svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; + } else { + /* + * If hardware supports Virtual VMLOAD VMSAVE then enable it + * in VMCB and clear intercepts to avoid #VMEXIT. + */ + if (vls) { + svm_clr_intercept(svm, INTERCEPT_VMLOAD); + svm_clr_intercept(svm, INTERCEPT_VMSAVE); + svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; + } + } } -static void init_vmcb(struct kvm_vcpu *vcpu) +static void svm_recalc_intercepts(struct kvm_vcpu *vcpu) { - struct vcpu_svm *svm = to_svm(vcpu); - struct vmcb_control_area *control = &svm->vmcb->control; - struct vmcb_save_area *save = &svm->vmcb->save; + svm_recalc_instruction_intercepts(vcpu); + svm_recalc_msr_intercepts(vcpu); +} - vcpu->arch.hflags = 0; +static void init_vmcb(struct kvm_vcpu *vcpu, bool init_event) +{ + struct vcpu_svm *svm = to_svm(vcpu); + struct vmcb *vmcb = svm->vmcb01.ptr; + struct vmcb_control_area *control = &vmcb->control; + struct vmcb_save_area *save = &vmcb->save; svm_set_intercept(svm, INTERCEPT_CR0_READ); svm_set_intercept(svm, INTERCEPT_CR3_READ); @@ -1185,7 +1053,10 @@ static void init_vmcb(struct kvm_vcpu *vcpu) svm_set_intercept(svm, INTERCEPT_INTR); svm_set_intercept(svm, INTERCEPT_NMI); - svm_set_intercept(svm, INTERCEPT_SMI); + + if (intercept_smi) + svm_set_intercept(svm, INTERCEPT_SMI); + svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); svm_set_intercept(svm, INTERCEPT_RDPMC); svm_set_intercept(svm, INTERCEPT_CPUID); @@ -1213,10 +1084,14 @@ static void init_vmcb(struct kvm_vcpu *vcpu) svm_set_intercept(svm, INTERCEPT_MWAIT); } - if (!kvm_hlt_in_guest(vcpu->kvm)) - svm_set_intercept(svm, INTERCEPT_HLT); + if (!kvm_hlt_in_guest(vcpu->kvm)) { + if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT)) + svm_set_intercept(svm, INTERCEPT_IDLE_HLT); + else + svm_set_intercept(svm, INTERCEPT_HLT); + } - control->iopm_base_pa = __sme_set(iopm_base); + control->iopm_base_pa = iopm_base; control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); control->int_ctl = V_INTR_MASKING_MASK; @@ -1233,29 +1108,14 @@ static void init_vmcb(struct kvm_vcpu *vcpu) SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; save->cs.limit = 0xffff; + save->gdtr.base = 0; save->gdtr.limit = 0xffff; + save->idtr.base = 0; save->idtr.limit = 0xffff; init_sys_seg(&save->ldtr, SEG_TYPE_LDT); init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); - svm_set_cr4(vcpu, 0); - svm_set_efer(vcpu, 0); - save->dr6 = 0xffff0ff0; - kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); - save->rip = 0x0000fff0; - vcpu->arch.regs[VCPU_REGS_RIP] = save->rip; - - /* - * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. - * It also updates the guest-visible cr0 value. - */ - svm_set_cr0(vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); - kvm_mmu_reset_context(vcpu); - - save->cr4 = X86_CR4_PAE; - /* rdx = ?? */ - if (npt_enabled) { /* Setup VMCB for Nested Paging */ control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; @@ -1265,14 +1125,12 @@ static void init_vmcb(struct kvm_vcpu *vcpu) svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); save->g_pat = vcpu->arch.pat; save->cr3 = 0; - save->cr4 = 0; } svm->current_vmcb->asid_generation = 0; svm->asid = 0; svm->nested.vmcb12_gpa = INVALID_GPA; svm->nested.last_vmcb12_gpa = INVALID_GPA; - vcpu->arch.hflags = 0; if (!kvm_pause_in_guest(vcpu->kvm)) { control->pause_filter_count = pause_filter_count; @@ -1283,17 +1141,11 @@ static void init_vmcb(struct kvm_vcpu *vcpu) svm_clr_intercept(svm, INTERCEPT_PAUSE); } - svm_recalc_instruction_intercepts(vcpu, svm); - - /* - * If the host supports V_SPEC_CTRL then disable the interception - * of MSR_IA32_SPEC_CTRL. - */ - if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) - set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); - if (kvm_vcpu_apicv_active(vcpu)) - avic_init_vmcb(svm); + avic_init_vmcb(svm, vmcb); + + if (vnmi) + svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; if (vgif) { svm_clr_intercept(svm, INTERCEPT_STGI); @@ -1301,46 +1153,46 @@ static void init_vmcb(struct kvm_vcpu *vcpu) svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; } - if (sev_guest(vcpu->kvm)) { - svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; - clr_exception_intercept(svm, UD_VECTOR); + if (vcpu->kvm->arch.bus_lock_detection_enabled) + svm_set_intercept(svm, INTERCEPT_BUSLOCK); - if (sev_es_guest(vcpu->kvm)) { - /* Perform SEV-ES specific VMCB updates */ - sev_es_init_vmcb(svm); - } - } + if (sev_guest(vcpu->kvm)) + sev_init_vmcb(svm, init_event); + + svm_hv_init_vmcb(vmcb); - svm_hv_init_vmcb(svm->vmcb); + kvm_make_request(KVM_REQ_RECALC_INTERCEPTS, vcpu); - vmcb_mark_all_dirty(svm->vmcb); + vmcb_mark_all_dirty(vmcb); enable_gif(svm); +} +static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + svm_init_osvw(vcpu); + + if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) + vcpu->arch.microcode_version = 0x01000065; + svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; + + svm->nmi_masked = false; + svm->awaiting_iret_completion = false; } static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) { struct vcpu_svm *svm = to_svm(vcpu); - u32 dummy; - u32 eax = 1; svm->spec_ctrl = 0; svm->virt_spec_ctrl = 0; - if (!init_event) { - vcpu->arch.apic_base = APIC_DEFAULT_PHYS_BASE | - MSR_IA32_APICBASE_ENABLE; - if (kvm_vcpu_is_reset_bsp(vcpu)) - vcpu->arch.apic_base |= MSR_IA32_APICBASE_BSP; - } - init_vmcb(vcpu); - - kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false); - kvm_rdx_write(vcpu, eax); + init_vmcb(vcpu, init_event); - if (kvm_vcpu_apicv_active(vcpu) && !init_event) - avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE); + if (!init_event) + __svm_vcpu_reset(vcpu); } void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) @@ -1349,117 +1201,134 @@ void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) svm->vmcb = target_vmcb->ptr; } -static int svm_create_vcpu(struct kvm_vcpu *vcpu) +static int svm_vcpu_precreate(struct kvm *kvm) +{ + return avic_alloc_physical_id_table(kvm); +} + +static int svm_vcpu_create(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm; struct page *vmcb01_page; - struct page *vmsa_page = NULL; int err; BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); svm = to_svm(vcpu); err = -ENOMEM; - vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); + vmcb01_page = snp_safe_alloc_page(); if (!vmcb01_page) goto out; - if (sev_es_guest(vcpu->kvm)) { - /* - * SEV-ES guests require a separate VMSA page used to contain - * the encrypted register state of the guest. - */ - vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); - if (!vmsa_page) - goto error_free_vmcb_page; - - /* - * SEV-ES guests maintain an encrypted version of their FPU - * state which is restored and saved on VMRUN and VMEXIT. - * Free the fpu structure to prevent KVM from attempting to - * access the FPU state. - */ - kvm_free_guest_fpu(vcpu); - } + err = sev_vcpu_create(vcpu); + if (err) + goto error_free_vmcb_page; err = avic_init_vcpu(svm); if (err) - goto error_free_vmsa_page; - - /* We initialize this flag to true to make sure that the is_running - * bit would be set the first time the vcpu is loaded. - */ - if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm)) - svm->avic_is_running = true; + goto error_free_sev; svm->msrpm = svm_vcpu_alloc_msrpm(); if (!svm->msrpm) { err = -ENOMEM; - goto error_free_vmsa_page; + goto error_free_sev; } - svm_vcpu_init_msrpm(vcpu, svm->msrpm); + svm->x2avic_msrs_intercepted = true; + svm->lbr_msrs_intercepted = true; svm->vmcb01.ptr = page_address(vmcb01_page); svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); - - if (vmsa_page) - svm->vmsa = page_address(vmsa_page); - - svm->guest_state_loaded = false; - svm_switch_vmcb(svm, &svm->vmcb01); - init_vmcb(vcpu); - - svm_init_osvw(vcpu); - vcpu->arch.microcode_version = 0x01000065; - if (sev_es_guest(vcpu->kvm)) - /* Perform SEV-ES specific VMCB creation updates */ - sev_es_create_vcpu(svm); + svm->guest_state_loaded = false; return 0; -error_free_vmsa_page: - if (vmsa_page) - __free_page(vmsa_page); +error_free_sev: + sev_free_vcpu(vcpu); error_free_vmcb_page: __free_page(vmcb01_page); out: return err; } -static void svm_clear_current_vmcb(struct vmcb *vmcb) +static void svm_vcpu_free(struct kvm_vcpu *vcpu) { - int i; + struct vcpu_svm *svm = to_svm(vcpu); - for_each_online_cpu(i) - cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); + WARN_ON_ONCE(!list_empty(&svm->ir_list)); + + svm_leave_nested(vcpu); + svm_free_nested(svm); + + sev_free_vcpu(vcpu); + + __free_page(__sme_pa_to_page(svm->vmcb01.pa)); + svm_vcpu_free_msrpm(svm->msrpm); } -static void svm_free_vcpu(struct kvm_vcpu *vcpu) +#ifdef CONFIG_CPU_MITIGATIONS +static DEFINE_SPINLOCK(srso_lock); +static atomic_t srso_nr_vms; + +static void svm_srso_clear_bp_spec_reduce(void *ign) { - struct vcpu_svm *svm = to_svm(vcpu); + struct svm_cpu_data *sd = this_cpu_ptr(&svm_data); + + if (!sd->bp_spec_reduce_set) + return; + + msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT); + sd->bp_spec_reduce_set = false; +} + +static void svm_srso_vm_destroy(void) +{ + if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) + return; + + if (atomic_dec_return(&srso_nr_vms)) + return; + + guard(spinlock)(&srso_lock); /* - * The vmcb page can be recycled, causing a false negative in - * svm_vcpu_load(). So, ensure that no logical CPU has this - * vmcb page recorded as its current vmcb. + * Verify a new VM didn't come along, acquire the lock, and increment + * the count before this task acquired the lock. */ - svm_clear_current_vmcb(svm->vmcb); + if (atomic_read(&srso_nr_vms)) + return; - svm_free_nested(svm); + on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1); +} - sev_free_vcpu(vcpu); +static void svm_srso_vm_init(void) +{ + if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) + return; - __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); - __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); + /* + * Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0 + * transition, i.e. destroying the last VM, is fully complete, e.g. so + * that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs. + */ + if (atomic_inc_not_zero(&srso_nr_vms)) + return; + + guard(spinlock)(&srso_lock); + + atomic_inc(&srso_nr_vms); } +#else +static void svm_srso_vm_init(void) { } +static void svm_srso_vm_destroy(void) { } +#endif -static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) +static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); - struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); + struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); if (sev_es_guest(vcpu->kvm)) sev_es_unmap_ghcb(svm); @@ -1471,23 +1340,28 @@ static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) * Save additional host state that will be restored on VMEXIT (sev-es) * or subsequent vmload of host save area. */ - if (sev_es_guest(vcpu->kvm)) { - sev_es_prepare_guest_switch(svm, vcpu->cpu); - } else { - vmsave(__sme_page_pa(sd->save_area)); - } + vmsave(sd->save_area_pa); + if (sev_es_guest(vcpu->kvm)) + sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd)); - if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { - u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; - if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { - __this_cpu_write(current_tsc_ratio, tsc_ratio); - wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); - } - } + if (tsc_scaling) + __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); - if (likely(tsc_aux_uret_slot >= 0)) + /* + * TSC_AUX is always virtualized (context switched by hardware) for + * SEV-ES guests when the feature is available. For non-SEV-ES guests, + * context switch TSC_AUX via the user_return MSR infrastructure (not + * all CPUs support TSC_AUX virtualization). + */ + if (likely(tsc_aux_uret_slot >= 0) && + (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); + if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) && + !sd->bp_spec_reduce_set) { + sd->bp_spec_reduce_set = true; + msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT); + } svm->guest_state_loaded = true; } @@ -1498,19 +1372,18 @@ static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { - struct vcpu_svm *svm = to_svm(vcpu); - struct svm_cpu_data *sd = per_cpu(svm_data, cpu); + if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm)) + shrink_ple_window(vcpu); - if (sd->current_vmcb != svm->vmcb) { - sd->current_vmcb = svm->vmcb; - indirect_branch_prediction_barrier(); - } - avic_vcpu_load(vcpu, cpu); + if (kvm_vcpu_apicv_active(vcpu)) + avic_vcpu_load(vcpu, cpu); } static void svm_vcpu_put(struct kvm_vcpu *vcpu) { - avic_vcpu_put(vcpu); + if (kvm_vcpu_apicv_active(vcpu)) + avic_vcpu_put(vcpu); + svm_prepare_host_switch(vcpu); ++vcpu->stat.host_state_reload; @@ -1544,15 +1417,30 @@ static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) to_svm(vcpu)->vmcb->save.rflags = rflags; } +static bool svm_get_if_flag(struct kvm_vcpu *vcpu) +{ + struct vmcb *vmcb = to_svm(vcpu)->vmcb; + + return sev_es_guest(vcpu->kvm) + ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK + : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; +} + static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) { + kvm_register_mark_available(vcpu, reg); + switch (reg) { case VCPU_EXREG_PDPTR: - BUG_ON(!npt_enabled); - load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); + /* + * When !npt_enabled, mmu->pdptrs[] is already available since + * it is always updated per SDM when moving to CRs. + */ + if (npt_enabled) + load_pdptrs(vcpu, kvm_read_cr3(vcpu)); break; default: - WARN_ON_ONCE(1); + KVM_BUG_ON(1, vcpu->kvm); } } @@ -1560,11 +1448,24 @@ static void svm_set_vintr(struct vcpu_svm *svm) { struct vmcb_control_area *control; - /* The following fields are ignored when AVIC is enabled */ - WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu)); + /* + * The following fields are ignored when AVIC is enabled + */ + WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); + svm_set_intercept(svm, INTERCEPT_VINTR); /* + * Recalculating intercepts may have cleared the VINTR intercept. If + * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF + * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. + * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as + * interrupts will never be unblocked while L2 is running. + */ + if (!svm_is_intercept(svm, INTERCEPT_VINTR)) + return; + + /* * This is just a dummy VINTR to actually cause a vmexit to happen. * Actual injection of virtual interrupts happens through EVENTINJ. */ @@ -1578,17 +1479,20 @@ static void svm_set_vintr(struct vcpu_svm *svm) static void svm_clear_vintr(struct vcpu_svm *svm) { - const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK; svm_clr_intercept(svm, INTERCEPT_VINTR); /* Drop int_ctl fields related to VINTR injection. */ - svm->vmcb->control.int_ctl &= mask; + svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; if (is_guest_mode(&svm->vcpu)) { - svm->vmcb01.ptr->control.int_ctl &= mask; + svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != (svm->nested.ctl.int_ctl & V_TPR_MASK)); - svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask; + + svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & + V_IRQ_INJECTION_BITS_MASK; + + svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; } vmcb_mark_dirty(svm->vmcb, VMCB_INTR); @@ -1696,6 +1600,15 @@ static int svm_get_cpl(struct kvm_vcpu *vcpu) return save->cpl; } +static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) +{ + struct kvm_segment cs; + + svm_get_segment(vcpu, &cs, VCPU_SREG_CS); + *db = cs.db; + *l = cs.l; +} + static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { struct vcpu_svm *svm = to_svm(vcpu); @@ -1730,28 +1643,57 @@ static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) vmcb_mark_dirty(svm->vmcb, VMCB_DT); } +static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + /* + * For guests that don't set guest_state_protected, the cr3 update is + * handled via kvm_mmu_load() while entering the guest. For guests + * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to + * VMCB save area now, since the save area will become the initial + * contents of the VMSA, and future VMCB save area updates won't be + * seen. + */ + if (sev_es_guest(vcpu->kvm)) { + svm->vmcb->save.cr3 = cr3; + vmcb_mark_dirty(svm->vmcb, VMCB_CR); + } +} + +static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) +{ + return true; +} + void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { struct vcpu_svm *svm = to_svm(vcpu); u64 hcr0 = cr0; + bool old_paging = is_paging(vcpu); #ifdef CONFIG_X86_64 - if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { + if (vcpu->arch.efer & EFER_LME) { if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { vcpu->arch.efer |= EFER_LMA; - svm->vmcb->save.efer |= EFER_LMA | EFER_LME; + if (!vcpu->arch.guest_state_protected) + svm->vmcb->save.efer |= EFER_LMA | EFER_LME; } if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { vcpu->arch.efer &= ~EFER_LMA; - svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); + if (!vcpu->arch.guest_state_protected) + svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); } } #endif vcpu->arch.cr0 = cr0; - if (!npt_enabled) + if (!npt_enabled) { hcr0 |= X86_CR0_PG | X86_CR0_WP; + if (old_paging != is_paging(vcpu)) + svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); + } /* * re-enable caching here because the QEMU bios @@ -1791,18 +1733,19 @@ void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; unsigned long old_cr4 = vcpu->arch.cr4; - if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) - svm_flush_tlb(vcpu); - vcpu->arch.cr4 = cr4; - if (!npt_enabled) + if (!npt_enabled) { cr4 |= X86_CR4_PAE; + + if (!is_paging(vcpu)) + cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); + } cr4 |= host_cr4_mce; to_svm(vcpu)->vmcb->save.cr4 = cr4; vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) - kvm_update_cpuid_runtime(vcpu); + vcpu->arch.cpuid_dynamic_bits_dirty = true; } static void svm_set_segment(struct kvm_vcpu *vcpu, @@ -1861,11 +1804,11 @@ static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) svm->asid = sd->next_asid++; } -static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) +static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value) { - struct vmcb *vmcb = svm->vmcb; + struct vmcb *vmcb = to_svm(vcpu)->vmcb; - if (svm->vcpu.arch.guest_state_protected) + if (vcpu->arch.guest_state_protected) return; if (unlikely(value != vmcb->save.dr6)) { @@ -1878,7 +1821,7 @@ static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); - if (vcpu->arch.guest_state_protected) + if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) return; get_debugreg(vcpu->arch.db[0], 0); @@ -1922,15 +1865,33 @@ static int pf_interception(struct kvm_vcpu *vcpu) static int npf_interception(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); + int rc; - u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); + u64 fault_address = svm->vmcb->control.exit_info_2; u64 error_code = svm->vmcb->control.exit_info_1; - trace_kvm_page_fault(fault_address, error_code); - return kvm_mmu_page_fault(vcpu, fault_address, error_code, - static_cpu_has(X86_FEATURE_DECODEASSISTS) ? - svm->vmcb->control.insn_bytes : NULL, - svm->vmcb->control.insn_len); + /* + * WARN if hardware generates a fault with an error code that collides + * with KVM-defined sythentic flags. Clear the flags and continue on, + * i.e. don't terminate the VM, as KVM can't possibly be relying on a + * flag that KVM doesn't know about. + */ + if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK)) + error_code &= ~PFERR_SYNTHETIC_MASK; + + if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK)) + error_code |= PFERR_PRIVATE_ACCESS; + + trace_kvm_page_fault(vcpu, fault_address, error_code); + rc = kvm_mmu_page_fault(vcpu, fault_address, error_code, + static_cpu_has(X86_FEATURE_DECODEASSISTS) ? + svm->vmcb->control.insn_bytes : NULL, + svm->vmcb->control.insn_len); + + if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK) + sev_handle_rmp_fault(vcpu, fault_address, error_code); + + return rc; } static int db_interception(struct kvm_vcpu *vcpu) @@ -1990,14 +1951,13 @@ static int ac_interception(struct kvm_vcpu *vcpu) static bool is_erratum_383(void) { - int err, i; + int i; u64 value; if (!erratum_383_found) return false; - value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); - if (err) + if (native_read_msr_safe(MSR_IA32_MC0_STATUS, &value)) return false; /* Bit 62 may or may not be set for this mce */ @@ -2008,17 +1968,11 @@ static bool is_erratum_383(void) /* Clear MCi_STATUS registers */ for (i = 0; i < 6; ++i) - native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); - - value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); - if (!err) { - u32 low, high; + native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0); + if (!native_read_msr_safe(MSR_IA32_MCG_STATUS, &value)) { value &= ~(1ULL << 2); - low = lower_32_bits(value); - high = upper_32_bits(value); - - native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); + native_write_msr_safe(MSR_IA32_MCG_STATUS, value); } /* Flush tlb to evict multi-match entries */ @@ -2034,7 +1988,7 @@ static void svm_handle_mce(struct kvm_vcpu *vcpu) * Erratum 383 triggered. Guest state is corrupt so kill the * guest. */ - pr_err("KVM: Guest triggered AMD Erratum 383\n"); + pr_err("Guest triggered AMD Erratum 383\n"); kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); @@ -2058,19 +2012,26 @@ static int shutdown_interception(struct kvm_vcpu *vcpu) struct kvm_run *kvm_run = vcpu->run; struct vcpu_svm *svm = to_svm(vcpu); - /* - * The VM save area has already been encrypted so it - * cannot be reinitialized - just terminate. - */ - if (sev_es_guest(vcpu->kvm)) - return -EINVAL; /* - * VMCB is undefined after a SHUTDOWN intercept - * so reinitialize it. + * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put + * the VMCB in a known good state. Unfortuately, KVM doesn't have + * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking + * userspace. At a platform view, INIT is acceptable behavior as + * there exist bare metal platforms that automatically INIT the CPU + * in response to shutdown. + * + * The VM save area for SEV-ES guests has already been encrypted so it + * cannot be reinitialized, i.e. synthesizing INIT is futile. */ - clear_page(svm->vmcb); - init_vmcb(vcpu); + if (!sev_es_guest(vcpu->kvm)) { + clear_page(svm->vmcb); +#ifdef CONFIG_KVM_SMM + if (is_smm(vcpu)) + kvm_smm_changed(vcpu, false); +#endif + kvm_vcpu_reset(vcpu, true); + } kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; return 0; @@ -2106,6 +2067,11 @@ static int nmi_interception(struct kvm_vcpu *vcpu) return 1; } +static int smi_interception(struct kvm_vcpu *vcpu) +{ + return 1; +} + static int intr_interception(struct kvm_vcpu *vcpu) { ++vcpu->stat.irq_exits; @@ -2134,13 +2100,14 @@ static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) ret = kvm_skip_emulated_instruction(vcpu); if (vmload) { - nested_svm_vmloadsave(vmcb12, svm->vmcb); + svm_copy_vmloadsave_state(svm->vmcb, vmcb12); svm->sysenter_eip_hi = 0; svm->sysenter_esp_hi = 0; - } else - nested_svm_vmloadsave(svm->vmcb, vmcb12); + } else { + svm_copy_vmloadsave_state(vmcb12, svm->vmcb); + } - kvm_vcpu_unmap(vcpu, &map, true); + kvm_vcpu_unmap(vcpu, &map); return ret; } @@ -2252,8 +2219,13 @@ static int gp_interception(struct kvm_vcpu *vcpu) if (!is_guest_mode(vcpu)) return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); - } else + } else { + /* All SVM instructions expect page aligned RAX */ + if (svm->vmcb->save.rax & ~PAGE_MASK) + goto reinject; + return emulate_svm_instr(vcpu, opcode); + } reinject: kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); @@ -2269,7 +2241,7 @@ void svm_set_gif(struct vcpu_svm *svm, bool value) * Likewise, clear the VINTR intercept, we will set it * again while processing KVM_REQ_EVENT if needed. */ - if (vgif_enabled(svm)) + if (vgif) svm_clr_intercept(svm, INTERCEPT_STGI); if (svm_is_intercept(svm, INTERCEPT_VINTR)) svm_clear_vintr(svm); @@ -2277,7 +2249,8 @@ void svm_set_gif(struct vcpu_svm *svm, bool value) enable_gif(svm); if (svm->vcpu.arch.smi_pending || svm->vcpu.arch.nmi_pending || - kvm_cpu_has_injectable_intr(&svm->vcpu)) + kvm_cpu_has_injectable_intr(&svm->vcpu) || + kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); } else { disable_gif(svm); @@ -2287,7 +2260,7 @@ void svm_set_gif(struct vcpu_svm *svm, bool value) * in use, we still rely on the VINTR intercept (rather than * STGI) to detect an open interrupt window. */ - if (!vgif_enabled(svm)) + if (!vgif) svm_clear_vintr(svm); } } @@ -2384,6 +2357,7 @@ static int task_switch_interception(struct kvm_vcpu *vcpu) kvm_clear_exception_queue(vcpu); break; case SVM_EXITINTINFO_TYPE_INTR: + case SVM_EXITINTINFO_TYPE_SOFT: kvm_clear_interrupt_queue(vcpu); break; default: @@ -2395,7 +2369,7 @@ static int task_switch_interception(struct kvm_vcpu *vcpu) int_type == SVM_EXITINTINFO_TYPE_SOFT || (int_type == SVM_EXITINTINFO_TYPE_EXEPT && (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { - if (!skip_emulated_instruction(vcpu)) + if (!svm_skip_emulated_instruction(vcpu)) return 0; } @@ -2406,16 +2380,30 @@ static int task_switch_interception(struct kvm_vcpu *vcpu) has_error_code, error_code); } +static void svm_clr_iret_intercept(struct vcpu_svm *svm) +{ + if (!sev_es_guest(svm->vcpu.kvm)) + svm_clr_intercept(svm, INTERCEPT_IRET); +} + +static void svm_set_iret_intercept(struct vcpu_svm *svm) +{ + if (!sev_es_guest(svm->vcpu.kvm)) + svm_set_intercept(svm, INTERCEPT_IRET); +} + static int iret_interception(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); + WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); + ++vcpu->stat.nmi_window_exits; - vcpu->arch.hflags |= HF_IRET_MASK; - if (!sev_es_guest(vcpu->kvm)) { - svm_clr_intercept(svm, INTERCEPT_IRET); - svm->nmi_iret_rip = kvm_rip_read(vcpu); - } + svm->awaiting_iret_completion = true; + + svm_clr_iret_intercept(svm); + svm->nmi_iret_rip = kvm_rip_read(vcpu); + kvm_make_request(KVM_REQ_EVENT, vcpu); return 1; } @@ -2447,7 +2435,7 @@ static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, bool ret = false; if (!is_guest_mode(vcpu) || - (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) + (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) return false; cr0 &= ~SVM_CR0_SELECTIVE_MASK; @@ -2576,9 +2564,15 @@ static int dr_interception(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); int reg, dr; - unsigned long val; int err = 0; + /* + * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT + * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. + */ + if (sev_es_guest(vcpu->kvm)) + return 1; + if (vcpu->guest_debug == 0) { /* * No more DR vmexits; force a reload of the debug registers @@ -2597,11 +2591,9 @@ static int dr_interception(struct kvm_vcpu *vcpu) dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; if (dr >= 16) { /* mov to DRn */ dr -= 16; - val = kvm_register_read(vcpu, reg); - err = kvm_set_dr(vcpu, dr, val); + err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); } else { - kvm_get_dr(vcpu, dr, &val); - kvm_register_write(vcpu, reg, val); + kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); } return kvm_complete_insn_gp(vcpu, err); @@ -2641,29 +2633,46 @@ static int efer_trap(struct kvm_vcpu *vcpu) return kvm_complete_insn_gp(vcpu, ret); } -static int svm_get_msr_feature(struct kvm_msr_entry *msr) +static int svm_get_feature_msr(u32 msr, u64 *data) { - msr->data = 0; + *data = 0; - switch (msr->index) { - case MSR_F10H_DECFG: - if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) - msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; + switch (msr) { + case MSR_AMD64_DE_CFG: + if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) + *data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; break; - case MSR_IA32_PERF_CAPABILITIES: - return 0; default: - return KVM_MSR_RET_INVALID; + return KVM_MSR_RET_UNSUPPORTED; } return 0; } +static bool sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, + struct msr_data *msr_info) +{ + return sev_es_guest(vcpu->kvm) && vcpu->arch.guest_state_protected && + msr_info->index != MSR_IA32_XSS && + !msr_write_intercepted(vcpu, msr_info->index); +} + static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { struct vcpu_svm *svm = to_svm(vcpu); + if (sev_es_prevent_msr_access(vcpu, msr_info)) { + msr_info->data = 0; + return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; + } + switch (msr_info->index) { + case MSR_AMD64_TSC_RATIO: + if (!msr_info->host_initiated && + !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) + return 1; + msr_info->data = svm->tsc_ratio_msr; + break; case MSR_STAR: msr_info->data = svm->vmcb01.ptr->save.star; break; @@ -2674,6 +2683,12 @@ static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) case MSR_CSTAR: msr_info->data = svm->vmcb01.ptr->save.cstar; break; + case MSR_GS_BASE: + msr_info->data = svm->vmcb01.ptr->save.gs.base; + break; + case MSR_FS_BASE: + msr_info->data = svm->vmcb01.ptr->save.fs.base; + break; case MSR_KERNEL_GS_BASE: msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; break; @@ -2686,22 +2701,26 @@ static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) break; case MSR_IA32_SYSENTER_EIP: msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; - if (guest_cpuid_is_intel(vcpu)) + if (guest_cpuid_is_intel_compatible(vcpu)) msr_info->data |= (u64)svm->sysenter_eip_hi << 32; break; case MSR_IA32_SYSENTER_ESP: msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; - if (guest_cpuid_is_intel(vcpu)) + if (guest_cpuid_is_intel_compatible(vcpu)) msr_info->data |= (u64)svm->sysenter_esp_hi << 32; break; + case MSR_IA32_S_CET: + msr_info->data = svm->vmcb->save.s_cet; + break; + case MSR_IA32_INT_SSP_TAB: + msr_info->data = svm->vmcb->save.isst_addr; + break; + case MSR_KVM_INTERNAL_GUEST_SSP: + msr_info->data = svm->vmcb->save.ssp; + break; case MSR_TSC_AUX: msr_info->data = svm->tsc_aux; break; - /* - * Nobody will change the following 5 values in the VMCB so we can - * safely return them on rdmsr. They will always be 0 until LBRV is - * implemented. - */ case MSR_IA32_DEBUGCTLMSR: msr_info->data = svm->vmcb->save.dbgctl; break; @@ -2735,7 +2754,7 @@ static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) break; case MSR_AMD64_VIRT_SPEC_CTRL: if (!msr_info->host_initiated && - !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) + !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD)) return 1; msr_info->data = svm->virt_spec_ctrl; @@ -2757,7 +2776,7 @@ static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) msr_info->data = 0x1E; } break; - case MSR_F10H_DECFG: + case MSR_AMD64_DE_CFG: msr_info->data = svm->msr_decfg; break; default: @@ -2769,14 +2788,10 @@ static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) { struct vcpu_svm *svm = to_svm(vcpu); - if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->ghcb)) + if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) return kvm_complete_insn_gp(vcpu, err); - ghcb_set_sw_exit_info_1(svm->ghcb, 1); - ghcb_set_sw_exit_info_2(svm->ghcb, - X86_TRAP_GP | - SVM_EVTINJ_TYPE_EXEPT | - SVM_EVTINJ_VALID); + svm_vmgexit_inject_exception(svm, X86_TRAP_GP); return 1; } @@ -2808,15 +2823,49 @@ static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) { struct vcpu_svm *svm = to_svm(vcpu); - int r; + int ret = 0; u32 ecx = msr->index; u64 data = msr->data; + + if (sev_es_prevent_msr_access(vcpu, msr)) + return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; + switch (ecx) { - case MSR_IA32_CR_PAT: - if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) + case MSR_AMD64_TSC_RATIO: + + if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) { + + if (!msr->host_initiated) + return 1; + /* + * In case TSC scaling is not enabled, always + * leave this MSR at the default value. + * + * Due to bug in qemu 6.2.0, it would try to set + * this msr to 0 if tsc scaling is not enabled. + * Ignore this value as well. + */ + if (data != 0 && data != svm->tsc_ratio_msr) + return 1; + break; + } + + if (data & SVM_TSC_RATIO_RSVD) return 1; - vcpu->arch.pat = data; + + svm->tsc_ratio_msr = data; + + if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) && + is_guest_mode(vcpu)) + nested_svm_update_tsc_ratio_msr(vcpu); + + break; + case MSR_IA32_CR_PAT: + ret = kvm_set_msr_common(vcpu, msr); + if (ret) + break; + svm->vmcb01.ptr->save.g_pat = data; if (is_guest_mode(vcpu)) nested_vmcb02_compute_g_pat(svm); @@ -2844,30 +2893,15 @@ static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) * * For nested: * The handling of the MSR bitmap for L2 guests is done in - * nested_svm_vmrun_msrpm. + * nested_svm_merge_msrpm(). * We update the L1 MSR bit as well since it will end up * touching the MSR anyway now. */ - set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); - break; - case MSR_IA32_PRED_CMD: - if (!msr->host_initiated && - !guest_has_pred_cmd_msr(vcpu)) - return 1; - - if (data & ~PRED_CMD_IBPB) - return 1; - if (!boot_cpu_has(X86_FEATURE_IBPB)) - return 1; - if (!data) - break; - - wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); - set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); + svm_disable_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW); break; case MSR_AMD64_VIRT_SPEC_CTRL: if (!msr->host_initiated && - !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) + !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD)) return 1; if (data & ~SPEC_CTRL_SSBD) @@ -2885,6 +2919,12 @@ static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) case MSR_CSTAR: svm->vmcb01.ptr->save.cstar = data; break; + case MSR_GS_BASE: + svm->vmcb01.ptr->save.gs.base = data; + break; + case MSR_FS_BASE: + svm->vmcb01.ptr->save.fs.base = data; + break; case MSR_KERNEL_GS_BASE: svm->vmcb01.ptr->save.kernel_gs_base = data; break; @@ -2904,76 +2944,104 @@ static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) * 32 bit part of these msrs to support Intel's * implementation of SYSENTER/SYSEXIT. */ - svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; + svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; break; case MSR_IA32_SYSENTER_ESP: svm->vmcb01.ptr->save.sysenter_esp = (u32)data; - svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; + svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; + break; + case MSR_IA32_S_CET: + svm->vmcb->save.s_cet = data; + vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET); + break; + case MSR_IA32_INT_SSP_TAB: + svm->vmcb->save.isst_addr = data; + vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET); + break; + case MSR_KVM_INTERNAL_GUEST_SSP: + svm->vmcb->save.ssp = data; + vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET); break; case MSR_TSC_AUX: /* + * TSC_AUX is always virtualized for SEV-ES guests when the + * feature is available. The user return MSR support is not + * required in this case because TSC_AUX is restored on #VMEXIT + * from the host save area. + */ + if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) + break; + + /* * TSC_AUX is usually changed only during boot and never read - * directly. Intercept TSC_AUX instead of exposing it to the - * guest via direct_access_msrs, and switch it via user return. + * directly. Intercept TSC_AUX and switch it via user return. */ preempt_disable(); - r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); + ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); preempt_enable(); - if (r) - return 1; + if (ret) + break; svm->tsc_aux = data; break; case MSR_IA32_DEBUGCTLMSR: - if (!boot_cpu_has(X86_FEATURE_LBRV)) { - vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", - __func__, data); + if (!lbrv) { + kvm_pr_unimpl_wrmsr(vcpu, ecx, data); break; } + + /* + * Suppress BTF as KVM doesn't virtualize BTF, but there's no + * way to communicate lack of support to the guest. + */ + if (data & DEBUGCTLMSR_BTF) { + kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data); + data &= ~DEBUGCTLMSR_BTF; + } + if (data & DEBUGCTL_RESERVED_BITS) return 1; + if (svm->vmcb->save.dbgctl == data) + break; + svm->vmcb->save.dbgctl = data; vmcb_mark_dirty(svm->vmcb, VMCB_LBR); - if (data & (1ULL<<0)) - svm_enable_lbrv(vcpu); - else - svm_disable_lbrv(vcpu); + svm_update_lbrv(vcpu); break; case MSR_VM_HSAVE_PA: - svm->nested.hsave_msr = data; + /* + * Old kernels did not validate the value written to + * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid + * value to allow live migrating buggy or malicious guests + * originating from those kernels. + */ + if (!msr->host_initiated && !page_address_valid(vcpu, data)) + return 1; + + svm->nested.hsave_msr = data & PAGE_MASK; break; case MSR_VM_CR: return svm_set_vm_cr(vcpu, data); case MSR_VM_IGNNE: - vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); + kvm_pr_unimpl_wrmsr(vcpu, ecx, data); break; - case MSR_F10H_DECFG: { - struct kvm_msr_entry msr_entry; + case MSR_AMD64_DE_CFG: { + u64 supported_de_cfg; - msr_entry.index = msr->index; - if (svm_get_msr_feature(&msr_entry)) + if (svm_get_feature_msr(ecx, &supported_de_cfg)) return 1; - /* Check the supported bits */ - if (data & ~msr_entry.data) - return 1; - - /* Don't allow the guest to change a bit, #GP */ - if (!msr->host_initiated && (data ^ msr_entry.data)) + if (data & ~supported_de_cfg) return 1; svm->msr_decfg = data; break; } - case MSR_IA32_APICBASE: - if (kvm_vcpu_apicv_active(vcpu)) - avic_update_vapic_bar(to_svm(vcpu), data); - fallthrough; default: return kvm_set_msr_common(vcpu, msr); } - return 0; + return ret; } static int msr_interception(struct kvm_vcpu *vcpu) @@ -2990,11 +3058,18 @@ static int interrupt_window_interception(struct kvm_vcpu *vcpu) svm_clear_vintr(to_svm(vcpu)); /* - * For AVIC, the only reason to end up here is ExtINTs. + * If not running nested, for AVIC, the only reason to end up here is ExtINTs. * In this case AVIC was temporarily disabled for * requesting the IRQ window and we have to re-enable it. + * + * If running nested, still remove the VM wide AVIC inhibit to + * support case in which the interrupt window was requested when the + * vCPU was not running nested. + + * All vCPUs which run still run nested, will remain to have their + * AVIC still inhibited due to per-cpu AVIC inhibition. */ - svm_toggle_avic_for_irq_window(vcpu, true); + kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); ++vcpu->stat.irq_window_exits; return 1; @@ -3003,7 +3078,6 @@ static int interrupt_window_interception(struct kvm_vcpu *vcpu) static int pause_interception(struct kvm_vcpu *vcpu) { bool in_kernel; - /* * CPL is not made available for an SEV-ES guest, therefore * vcpu->arch.preempted_in_kernel can never be true. Just @@ -3011,8 +3085,7 @@ static int pause_interception(struct kvm_vcpu *vcpu) */ in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; - if (!kvm_pause_in_guest(vcpu->kvm)) - grow_ple_window(vcpu); + grow_ple_window(vcpu); kvm_vcpu_on_spin(vcpu, in_kernel); return kvm_skip_emulated_instruction(vcpu); @@ -3024,7 +3097,7 @@ static int invpcid_interception(struct kvm_vcpu *vcpu) unsigned long type; gva_t gva; - if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { + if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } @@ -3037,14 +3110,51 @@ static int invpcid_interception(struct kvm_vcpu *vcpu) type = svm->vmcb->control.exit_info_2; gva = svm->vmcb->control.exit_info_1; - if (type > 3) { - kvm_inject_gp(vcpu, 0); + /* + * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the + * stack segment is used. The intercept takes priority over all + * #GP checks except CPL>0, but somehow still generates a linear + * address? The APM is sorely lacking. + */ + if (is_noncanonical_address(gva, vcpu, 0)) { + kvm_queue_exception_e(vcpu, GP_VECTOR, 0); return 1; } return kvm_handle_invpcid(vcpu, type, gva); } +static inline int complete_userspace_buslock(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + /* + * If userspace has NOT changed RIP, then KVM's ABI is to let the guest + * execute the bus-locking instruction. Set the bus lock counter to '1' + * to effectively step past the bus lock. + */ + if (kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip)) + svm->vmcb->control.bus_lock_counter = 1; + + return 1; +} + +static int bus_lock_exit(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; + vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; + + vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu); + vcpu->arch.complete_userspace_io = complete_userspace_buslock; + + if (is_guest_mode(vcpu)) + svm->nested.ctl.bus_lock_rip = vcpu->arch.cui_linear_rip; + + return 0; +} + static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { [SVM_EXIT_READ_CR0] = cr_interception, [SVM_EXIT_READ_CR3] = cr_interception, @@ -3080,8 +3190,7 @@ static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, [SVM_EXIT_INTR] = intr_interception, [SVM_EXIT_NMI] = nmi_interception, - [SVM_EXIT_SMI] = kvm_emulate_as_nop, - [SVM_EXIT_INIT] = kvm_emulate_as_nop, + [SVM_EXIT_SMI] = smi_interception, [SVM_EXIT_VINTR] = interrupt_window_interception, [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, [SVM_EXIT_CPUID] = kvm_emulate_cpuid, @@ -3113,11 +3222,15 @@ static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, [SVM_EXIT_INVPCID] = invpcid_interception, + [SVM_EXIT_IDLE_HLT] = kvm_emulate_halt, [SVM_EXIT_NPF] = npf_interception, + [SVM_EXIT_BUS_LOCK] = bus_lock_exit, [SVM_EXIT_RSM] = rsm_interception, [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, +#ifdef CONFIG_KVM_AMD_SEV [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, +#endif }; static void dump_vmcb(struct kvm_vcpu *vcpu) @@ -3126,14 +3239,21 @@ static void dump_vmcb(struct kvm_vcpu *vcpu) struct vmcb_control_area *control = &svm->vmcb->control; struct vmcb_save_area *save = &svm->vmcb->save; struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; + char *vm_type; if (!dump_invalid_vmcb) { pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); return; } - pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", - svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); + guard(mutex)(&vmcb_dump_mutex); + + vm_type = sev_snp_guest(vcpu->kvm) ? "SEV-SNP" : + sev_es_guest(vcpu->kvm) ? "SEV-ES" : + sev_guest(vcpu->kvm) ? "SEV" : "SVM"; + + pr_err("%s vCPU%u VMCB %p, last attempted VMRUN on CPU %d\n", + vm_type, vcpu->vcpu_id, svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); pr_err("VMCB Control Area:\n"); pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); @@ -3171,6 +3291,17 @@ static void dump_vmcb(struct kvm_vcpu *vcpu) pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); + pr_err("%-20s%016llx\n", "allowed_sev_features:", control->allowed_sev_features); + pr_err("%-20s%016llx\n", "guest_sev_features:", control->guest_sev_features); + + if (sev_es_guest(vcpu->kvm)) { + save = sev_decrypt_vmsa(vcpu); + if (!save) + goto no_vmsa; + + save01 = save; + } + pr_err("VMCB State Save Area:\n"); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "es:", @@ -3212,8 +3343,8 @@ static void dump_vmcb(struct kvm_vcpu *vcpu) "tr:", save01->tr.selector, save01->tr.attrib, save01->tr.limit, save01->tr.base); - pr_err("cpl: %d efer: %016llx\n", - save->cpl, save->efer); + pr_err("vmpl: %d cpl: %d efer: %016llx\n", + save->vmpl, save->cpl, save->efer); pr_err("%-15s %016llx %-13s %016llx\n", "cr0:", save->cr0, "cr2:", save->cr2); pr_err("%-15s %016llx %-13s %016llx\n", @@ -3225,6 +3356,10 @@ static void dump_vmcb(struct kvm_vcpu *vcpu) pr_err("%-15s %016llx %-13s %016llx\n", "rsp:", save->rsp, "rax:", save->rax); pr_err("%-15s %016llx %-13s %016llx\n", + "s_cet:", save->s_cet, "ssp:", save->ssp); + pr_err("%-15s %016llx\n", + "isst_addr:", save->isst_addr); + pr_err("%-15s %016llx %-13s %016llx\n", "star:", save01->star, "lstar:", save01->lstar); pr_err("%-15s %016llx %-13s %016llx\n", "cstar:", save01->cstar, "sfmask:", save01->sfmask); @@ -3241,50 +3376,116 @@ static void dump_vmcb(struct kvm_vcpu *vcpu) pr_err("%-15s %016llx %-13s %016llx\n", "excp_from:", save->last_excp_from, "excp_to:", save->last_excp_to); + + if (sev_es_guest(vcpu->kvm)) { + struct sev_es_save_area *vmsa = (struct sev_es_save_area *)save; + + pr_err("%-15s %016llx\n", + "sev_features", vmsa->sev_features); + + pr_err("%-15s %016llx %-13s %016llx\n", + "pl0_ssp:", vmsa->pl0_ssp, "pl1_ssp:", vmsa->pl1_ssp); + pr_err("%-15s %016llx %-13s %016llx\n", + "pl2_ssp:", vmsa->pl2_ssp, "pl3_ssp:", vmsa->pl3_ssp); + pr_err("%-15s %016llx\n", + "u_cet:", vmsa->u_cet); + + pr_err("%-15s %016llx %-13s %016llx\n", + "rax:", vmsa->rax, "rbx:", vmsa->rbx); + pr_err("%-15s %016llx %-13s %016llx\n", + "rcx:", vmsa->rcx, "rdx:", vmsa->rdx); + pr_err("%-15s %016llx %-13s %016llx\n", + "rsi:", vmsa->rsi, "rdi:", vmsa->rdi); + pr_err("%-15s %016llx %-13s %016llx\n", + "rbp:", vmsa->rbp, "rsp:", vmsa->rsp); + pr_err("%-15s %016llx %-13s %016llx\n", + "r8:", vmsa->r8, "r9:", vmsa->r9); + pr_err("%-15s %016llx %-13s %016llx\n", + "r10:", vmsa->r10, "r11:", vmsa->r11); + pr_err("%-15s %016llx %-13s %016llx\n", + "r12:", vmsa->r12, "r13:", vmsa->r13); + pr_err("%-15s %016llx %-13s %016llx\n", + "r14:", vmsa->r14, "r15:", vmsa->r15); + pr_err("%-15s %016llx %-13s %016llx\n", + "xcr0:", vmsa->xcr0, "xss:", vmsa->xss); + } else { + pr_err("%-15s %016llx %-13s %016lx\n", + "rax:", save->rax, "rbx:", + vcpu->arch.regs[VCPU_REGS_RBX]); + pr_err("%-15s %016lx %-13s %016lx\n", + "rcx:", vcpu->arch.regs[VCPU_REGS_RCX], + "rdx:", vcpu->arch.regs[VCPU_REGS_RDX]); + pr_err("%-15s %016lx %-13s %016lx\n", + "rsi:", vcpu->arch.regs[VCPU_REGS_RSI], + "rdi:", vcpu->arch.regs[VCPU_REGS_RDI]); + pr_err("%-15s %016lx %-13s %016llx\n", + "rbp:", vcpu->arch.regs[VCPU_REGS_RBP], + "rsp:", save->rsp); +#ifdef CONFIG_X86_64 + pr_err("%-15s %016lx %-13s %016lx\n", + "r8:", vcpu->arch.regs[VCPU_REGS_R8], + "r9:", vcpu->arch.regs[VCPU_REGS_R9]); + pr_err("%-15s %016lx %-13s %016lx\n", + "r10:", vcpu->arch.regs[VCPU_REGS_R10], + "r11:", vcpu->arch.regs[VCPU_REGS_R11]); + pr_err("%-15s %016lx %-13s %016lx\n", + "r12:", vcpu->arch.regs[VCPU_REGS_R12], + "r13:", vcpu->arch.regs[VCPU_REGS_R13]); + pr_err("%-15s %016lx %-13s %016lx\n", + "r14:", vcpu->arch.regs[VCPU_REGS_R14], + "r15:", vcpu->arch.regs[VCPU_REGS_R15]); +#endif + } + +no_vmsa: + if (sev_es_guest(vcpu->kvm)) + sev_free_decrypted_vmsa(vcpu, save); } -static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) +static bool svm_check_exit_valid(u64 exit_code) { - if (exit_code < ARRAY_SIZE(svm_exit_handlers) && - svm_exit_handlers[exit_code]) - return 0; + return (exit_code < ARRAY_SIZE(svm_exit_handlers) && + svm_exit_handlers[exit_code]); +} - vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); +static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) +{ dump_vmcb(vcpu); - vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; - vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; - vcpu->run->internal.ndata = 2; - vcpu->run->internal.data[0] = exit_code; - vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; - - return -EINVAL; + kvm_prepare_unexpected_reason_exit(vcpu, exit_code); + return 0; } int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) { - if (svm_handle_invalid_exit(vcpu, exit_code)) - return 0; + if (!svm_check_exit_valid(exit_code)) + return svm_handle_invalid_exit(vcpu, exit_code); -#ifdef CONFIG_RETPOLINE +#ifdef CONFIG_MITIGATION_RETPOLINE if (exit_code == SVM_EXIT_MSR) return msr_interception(vcpu); else if (exit_code == SVM_EXIT_VINTR) return interrupt_window_interception(vcpu); else if (exit_code == SVM_EXIT_INTR) return intr_interception(vcpu); - else if (exit_code == SVM_EXIT_HLT) + else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT) return kvm_emulate_halt(vcpu); else if (exit_code == SVM_EXIT_NPF) return npf_interception(vcpu); +#ifdef CONFIG_KVM_AMD_SEV + else if (exit_code == SVM_EXIT_VMGEXIT) + return sev_handle_vmgexit(vcpu); +#endif #endif return svm_exit_handlers[exit_code](vcpu); } -static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, +static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, + u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code) { struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; + *reason = control->exit_code; *info1 = control->exit_info_1; *info2 = control->exit_info_2; *intr_info = control->exit_int_info; @@ -3295,14 +3496,27 @@ static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, *error_code = 0; } -static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) +static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, + u32 *error_code) +{ + struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; + + *intr_info = control->event_inj; + + if ((*intr_info & SVM_EXITINTINFO_VALID) && + (*intr_info & SVM_EXITINTINFO_VALID_ERR)) + *error_code = control->event_inj_err; + else + *error_code = 0; + +} + +static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) { struct vcpu_svm *svm = to_svm(vcpu); struct kvm_run *kvm_run = vcpu->run; u32 exit_code = svm->vmcb->control.exit_code; - trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); - /* SEV-ES guests must use the CR write traps to track CR registers. */ if (!sev_es_guest(vcpu->kvm)) { if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) @@ -3314,7 +3528,7 @@ static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) if (is_guest_mode(vcpu)) { int vmexit; - trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM); + trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); vmexit = nested_svm_exit_special(svm); @@ -3334,32 +3548,15 @@ static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) return 0; } - if (is_external_interrupt(svm->vmcb->control.exit_int_info) && - exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && - exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && - exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) - printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " - "exit_code 0x%x\n", - __func__, svm->vmcb->control.exit_int_info, - exit_code); - if (exit_fastpath != EXIT_FASTPATH_NONE) return 1; return svm_invoke_exit_handler(vcpu, exit_code); } -static void reload_tss(struct kvm_vcpu *vcpu) -{ - struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); - - sd->tss_desc->type = 9; /* available 32/64-bit TSS */ - load_TR_desc(); -} - -static void pre_svm_run(struct kvm_vcpu *vcpu) +static int pre_svm_run(struct kvm_vcpu *vcpu) { - struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); + struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); struct vcpu_svm *svm = to_svm(vcpu); /* @@ -3379,6 +3576,8 @@ static void pre_svm_run(struct kvm_vcpu *vcpu) /* FIXME: handle wraparound of asid_generation */ if (svm->current_vmcb->asid_generation != sd->asid_generation) new_asid(svm, sd); + + return 0; } static void svm_inject_nmi(struct kvm_vcpu *vcpu) @@ -3386,23 +3585,124 @@ static void svm_inject_nmi(struct kvm_vcpu *vcpu) struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; - vcpu->arch.hflags |= HF_NMI_MASK; - if (!sev_es_guest(vcpu->kvm)) - svm_set_intercept(svm, INTERCEPT_IRET); + + if (svm->nmi_l1_to_l2) + return; + + /* + * No need to manually track NMI masking when vNMI is enabled, hardware + * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the + * case where software directly injects an NMI. + */ + if (!is_vnmi_enabled(svm)) { + svm->nmi_masked = true; + svm_set_iret_intercept(svm); + } ++vcpu->stat.nmi_injections; } -static void svm_set_irq(struct kvm_vcpu *vcpu) +static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); - BUG_ON(!(gif_set(svm))); + if (!is_vnmi_enabled(svm)) + return false; + + return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); +} + +static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + if (!is_vnmi_enabled(svm)) + return false; + + if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) + return false; + + svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; + vmcb_mark_dirty(svm->vmcb, VMCB_INTR); + + /* + * Because the pending NMI is serviced by hardware, KVM can't know when + * the NMI is "injected", but for all intents and purposes, passing the + * NMI off to hardware counts as injection. + */ + ++vcpu->stat.nmi_injections; + + return true; +} + +static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) +{ + struct kvm_queued_interrupt *intr = &vcpu->arch.interrupt; + struct vcpu_svm *svm = to_svm(vcpu); + u32 type; + + if (intr->soft) { + if (svm_update_soft_interrupt_rip(vcpu, intr->nr)) + return; + + type = SVM_EVTINJ_TYPE_SOFT; + } else { + type = SVM_EVTINJ_TYPE_INTR; + } - trace_kvm_inj_virq(vcpu->arch.interrupt.nr); + trace_kvm_inj_virq(intr->nr, intr->soft, reinjected); ++vcpu->stat.irq_injections; - svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | - SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; + svm->vmcb->control.event_inj = intr->nr | SVM_EVTINJ_VALID | type; +} + +void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, + int trig_mode, int vector) +{ + /* + * apic->apicv_active must be read after vcpu->mode. + * Pairs with smp_store_release in vcpu_enter_guest. + */ + bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); + + /* Note, this is called iff the local APIC is in-kernel. */ + if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { + /* Process the interrupt via kvm_check_and_inject_events(). */ + kvm_make_request(KVM_REQ_EVENT, vcpu); + kvm_vcpu_kick(vcpu); + return; + } + + trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); + if (in_guest_mode) { + /* + * Signal the doorbell to tell hardware to inject the IRQ. If + * the vCPU exits the guest before the doorbell chimes, hardware + * will automatically process AVIC interrupts at the next VMRUN. + */ + avic_ring_doorbell(vcpu); + } else { + /* + * Wake the vCPU if it was blocking. KVM will then detect the + * pending IRQ when checking if the vCPU has a wake event. + */ + kvm_vcpu_wake_up(vcpu); + } +} + +static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, + int trig_mode, int vector) +{ + kvm_lapic_set_irr(vector, apic); + + /* + * Pairs with the smp_mb_*() after setting vcpu->guest_mode in + * vcpu_enter_guest() to ensure the write to the vIRR is ordered before + * the read of guest_mode. This guarantees that either VMRUN will see + * and process the new vIRR entry, or that svm_complete_interrupt_delivery + * will signal the doorbell if the CPU has already entered the guest. + */ + smp_mb__after_atomic(); + svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); } static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) @@ -3428,11 +3728,39 @@ static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) svm_set_intercept(svm, INTERCEPT_CR8_WRITE); } +static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + if (is_vnmi_enabled(svm)) + return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; + else + return svm->nmi_masked; +} + +static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) +{ + struct vcpu_svm *svm = to_svm(vcpu); + + if (is_vnmi_enabled(svm)) { + if (masked) + svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; + else + svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; + + } else { + svm->nmi_masked = masked; + if (masked) + svm_set_iret_intercept(svm); + else + svm_clr_iret_intercept(svm); + } +} + bool svm_nmi_blocked(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb *vmcb = svm->vmcb; - bool ret; if (!gif_set(svm)) return true; @@ -3440,10 +3768,10 @@ bool svm_nmi_blocked(struct kvm_vcpu *vcpu) if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) return false; - ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || - (vcpu->arch.hflags & HF_NMI_MASK); + if (svm_get_nmi_mask(vcpu)) + return true; - return ret; + return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; } static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) @@ -3452,31 +3780,13 @@ static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) if (svm->nested.nested_run_pending) return -EBUSY; + if (svm_nmi_blocked(vcpu)) + return 0; + /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) return -EBUSY; - - return !svm_nmi_blocked(vcpu); -} - -static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) -{ - return !!(vcpu->arch.hflags & HF_NMI_MASK); -} - -static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) -{ - struct vcpu_svm *svm = to_svm(vcpu); - - if (masked) { - vcpu->arch.hflags |= HF_NMI_MASK; - if (!sev_es_guest(vcpu->kvm)) - svm_set_intercept(svm, INTERCEPT_IRET); - } else { - vcpu->arch.hflags &= ~HF_NMI_MASK; - if (!sev_es_guest(vcpu->kvm)) - svm_clr_intercept(svm, INTERCEPT_IRET); - } + return 1; } bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) @@ -3487,14 +3797,7 @@ bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) if (!gif_set(svm)) return true; - if (sev_es_guest(vcpu->kvm)) { - /* - * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask - * bit to determine the state of the IF flag. - */ - if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK)) - return true; - } else if (is_guest_mode(vcpu)) { + if (is_guest_mode(vcpu)) { /* As long as interrupts are being delivered... */ if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) @@ -3505,7 +3808,7 @@ bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) if (nested_exit_on_intr(svm)) return false; } else { - if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) + if (!svm_get_if_flag(vcpu)) return true; } @@ -3515,9 +3818,13 @@ bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) { struct vcpu_svm *svm = to_svm(vcpu); + if (svm->nested.nested_run_pending) return -EBUSY; + if (svm_interrupt_blocked(vcpu)) + return 0; + /* * An IRQ must not be injected into L2 if it's supposed to VM-Exit, * e.g. if the IRQ arrived asynchronously after checking nested events. @@ -3525,7 +3832,7 @@ static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) return -EBUSY; - return !svm_interrupt_blocked(vcpu); + return 1; } static void svm_enable_irq_window(struct kvm_vcpu *vcpu) @@ -3540,14 +3847,20 @@ static void svm_enable_irq_window(struct kvm_vcpu *vcpu) * enabled, the STGI interception will not occur. Enable the irq * window under the assumption that the hardware will set the GIF. */ - if (vgif_enabled(svm) || gif_set(svm)) { + if (vgif || gif_set(svm)) { /* * IRQ window is not needed when AVIC is enabled, * unless we have pending ExtINT since it cannot be injected - * via AVIC. In such case, we need to temporarily disable AVIC, + * via AVIC. In such case, KVM needs to temporarily disable AVIC, * and fallback to injecting IRQ via V_IRQ. + * + * If running nested, AVIC is already locally inhibited + * on this vCPU, therefore there is no need to request + * the VM wide AVIC inhibition. */ - svm_toggle_avic_for_irq_window(vcpu, false); + if (!is_guest_mode(vcpu)) + kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); + svm_set_vintr(svm); } } @@ -3556,11 +3869,44 @@ static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); - if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK) - return; /* IRET will cause a vm exit */ + /* + * If NMIs are outright masked, i.e. the vCPU is already handling an + * NMI, and KVM has not yet intercepted an IRET, then there is nothing + * more to do at this time as KVM has already enabled IRET intercepts. + * If KVM has already intercepted IRET, then single-step over the IRET, + * as NMIs aren't architecturally unmasked until the IRET completes. + * + * If vNMI is enabled, KVM should never request an NMI window if NMIs + * are masked, as KVM allows at most one to-be-injected NMI and one + * pending NMI. If two NMIs arrive simultaneously, KVM will inject one + * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are + * unmasked. KVM _will_ request an NMI window in some situations, e.g. + * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately + * inject the NMI. In those situations, KVM needs to single-step over + * the STI shadow or intercept STGI. + */ + if (svm_get_nmi_mask(vcpu)) { + WARN_ON_ONCE(is_vnmi_enabled(svm)); + + if (!svm->awaiting_iret_completion) + return; /* IRET will cause a vm exit */ + } + + /* + * SEV-ES guests are responsible for signaling when a vCPU is ready to + * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. + * KVM can't intercept and single-step IRET to detect when NMIs are + * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. + * + * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware + * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not + * supported NAEs in the GHCB protocol. + */ + if (sev_es_guest(vcpu->kvm)) + return; if (!gif_set(svm)) { - if (vgif_enabled(svm)) + if (vgif) svm_set_intercept(svm, INTERCEPT_STGI); return; /* STGI will cause a vm exit */ } @@ -3574,21 +3920,18 @@ static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); } -static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) -{ - return 0; -} - -static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) -{ - return 0; -} - -void svm_flush_tlb(struct kvm_vcpu *vcpu) +static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); /* + * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. + * A TLB flush for the current ASID flushes both "host" and "guest" TLB + * entries, and thus is a superset of Hyper-V's fine grained flushing. + */ + kvm_hv_vcpu_purge_flush_tlb(vcpu); + + /* * Flush only the current ASID even if the TLB flush was invoked via * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and @@ -3601,6 +3944,37 @@ void svm_flush_tlb(struct kvm_vcpu *vcpu) svm->current_vmcb->asid_generation--; } +static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) +{ + hpa_t root_tdp = vcpu->arch.mmu->root.hpa; + + /* + * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly + * flush the NPT mappings via hypercall as flushing the ASID only + * affects virtual to physical mappings, it does not invalidate guest + * physical to host physical mappings. + */ + if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) + hyperv_flush_guest_mapping(root_tdp); + + svm_flush_tlb_asid(vcpu); +} + +static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) +{ + /* + * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB + * flushes should be routed to hv_flush_remote_tlbs() without requesting + * a "regular" remote flush. Reaching this point means either there's + * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of + * which might be fatal to the guest. Yell, but try to recover. + */ + if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) + hv_flush_remote_tlbs(vcpu->kvm); + + svm_flush_tlb_asid(vcpu); +} + static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) { struct vcpu_svm *svm = to_svm(vcpu); @@ -3626,8 +4000,7 @@ static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) struct vcpu_svm *svm = to_svm(vcpu); u64 cr8; - if (nested_svm_virtualize_tpr(vcpu) || - kvm_vcpu_apicv_active(vcpu)) + if (nested_svm_virtualize_tpr(vcpu)) return; cr8 = kvm_get_cr8(vcpu); @@ -3635,24 +4008,58 @@ static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; } +static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, + int type) +{ + bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); + bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); + struct vcpu_svm *svm = to_svm(vcpu); + + /* + * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's + * associated with the original soft exception/interrupt. next_rip is + * cleared on all exits that can occur while vectoring an event, so KVM + * needs to manually set next_rip for re-injection. Unlike the !nrips + * case below, this needs to be done if and only if KVM is re-injecting + * the same event, i.e. if the event is a soft exception/interrupt, + * otherwise next_rip is unused on VMRUN. + */ + if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && + kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) + svm->vmcb->control.next_rip = svm->soft_int_next_rip; + /* + * If NRIPS isn't enabled, KVM must manually advance RIP prior to + * injecting the soft exception/interrupt. That advancement needs to + * be unwound if vectoring didn't complete. Note, the new event may + * not be the injected event, e.g. if KVM injected an INTn, the INTn + * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will + * be the reported vectored event, but RIP still needs to be unwound. + */ + else if (!nrips && (is_soft || is_exception) && + kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) + kvm_rip_write(vcpu, svm->soft_int_old_rip); +} + static void svm_complete_interrupts(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u8 vector; int type; u32 exitintinfo = svm->vmcb->control.exit_int_info; - unsigned int3_injected = svm->int3_injected; + bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; + bool soft_int_injected = svm->soft_int_injected; - svm->int3_injected = 0; + svm->nmi_l1_to_l2 = false; + svm->soft_int_injected = false; /* - * If we've made progress since setting HF_IRET_MASK, we've + * If we've made progress since setting awaiting_iret_completion, we've * executed an IRET and can allow NMI injection. */ - if ((vcpu->arch.hflags & HF_IRET_MASK) && - (sev_es_guest(vcpu->kvm) || - kvm_rip_read(vcpu) != svm->nmi_iret_rip)) { - vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); + if (svm->awaiting_iret_completion && + kvm_rip_read(vcpu) != svm->nmi_iret_rip) { + svm->awaiting_iret_completion = false; + svm->nmi_masked = false; kvm_make_request(KVM_REQ_EVENT, vcpu); } @@ -3668,42 +4075,41 @@ static void svm_complete_interrupts(struct kvm_vcpu *vcpu) vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; + if (soft_int_injected) + svm_complete_soft_interrupt(vcpu, vector, type); + switch (type) { case SVM_EXITINTINFO_TYPE_NMI: vcpu->arch.nmi_injected = true; + svm->nmi_l1_to_l2 = nmi_l1_to_l2; break; - case SVM_EXITINTINFO_TYPE_EXEPT: + case SVM_EXITINTINFO_TYPE_EXEPT: { + u32 error_code = 0; + /* * Never re-inject a #VC exception. */ if (vector == X86_TRAP_VC) break; - /* - * In case of software exceptions, do not reinject the vector, - * but re-execute the instruction instead. Rewind RIP first - * if we emulated INT3 before. - */ - if (kvm_exception_is_soft(vector)) { - if (vector == BP_VECTOR && int3_injected && - kvm_is_linear_rip(vcpu, svm->int3_rip)) - kvm_rip_write(vcpu, - kvm_rip_read(vcpu) - int3_injected); - break; - } - if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { - u32 err = svm->vmcb->control.exit_int_info_err; - kvm_requeue_exception_e(vcpu, vector, err); + if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) + error_code = svm->vmcb->control.exit_int_info_err; - } else - kvm_requeue_exception(vcpu, vector); + kvm_requeue_exception(vcpu, vector, + exitintinfo & SVM_EXITINTINFO_VALID_ERR, + error_code); break; + } case SVM_EXITINTINFO_TYPE_INTR: kvm_queue_interrupt(vcpu, vector, false); break; + case SVM_EXITINTINFO_TYPE_SOFT: + kvm_queue_interrupt(vcpu, vector, true); + break; default: break; } + } static void svm_cancel_injection(struct kvm_vcpu *vcpu) @@ -3717,48 +4123,84 @@ static void svm_cancel_injection(struct kvm_vcpu *vcpu) svm_complete_interrupts(vcpu); } +static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) +{ + if (to_kvm_sev_info(vcpu->kvm)->need_init) + return -EINVAL; + + return 1; +} + static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) { - if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && - to_svm(vcpu)->vmcb->control.exit_info_1) - return handle_fastpath_set_msr_irqoff(vcpu); + struct vcpu_svm *svm = to_svm(vcpu); + struct vmcb_control_area *control = &svm->vmcb->control; + + /* + * Next RIP must be provided as IRQs are disabled, and accessing guest + * memory to decode the instruction might fault, i.e. might sleep. + */ + if (!nrips || !control->next_rip) + return EXIT_FASTPATH_NONE; + + if (is_guest_mode(vcpu)) + return EXIT_FASTPATH_NONE; + + switch (control->exit_code) { + case SVM_EXIT_MSR: + if (!control->exit_info_1) + break; + return handle_fastpath_wrmsr(vcpu); + case SVM_EXIT_HLT: + return handle_fastpath_hlt(vcpu); + case SVM_EXIT_INVD: + return handle_fastpath_invd(vcpu); + default: + break; + } return EXIT_FASTPATH_NONE; } -static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu) +static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) { + struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); struct vcpu_svm *svm = to_svm(vcpu); - unsigned long vmcb_pa = svm->current_vmcb->pa; - kvm_guest_enter_irqoff(); + guest_state_enter_irqoff(); - if (sev_es_guest(vcpu->kvm)) { - __svm_sev_es_vcpu_run(vmcb_pa); - } else { - struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); + /* + * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of + * VMRUN controls whether or not physical IRQs are masked (KVM always + * runs with V_INTR_MASKING_MASK). Toggle RFLAGS.IF here to avoid the + * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow + * into guest state if delivery of an event during VMRUN triggers a + * #VMEXIT, and the guest_state transitions already tell lockdep that + * IRQs are being enabled/disabled. Note! GIF=0 for the entirety of + * this path, so IRQs aren't actually unmasked while running host code. + */ + raw_local_irq_enable(); - /* - * Use a single vmcb (vmcb01 because it's always valid) for - * context switching guest state via VMLOAD/VMSAVE, that way - * the state doesn't need to be copied between vmcb01 and - * vmcb02 when switching vmcbs for nested virtualization. - */ - vmload(svm->vmcb01.pa); - __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs); - vmsave(svm->vmcb01.pa); + amd_clear_divider(); - vmload(__sme_page_pa(sd->save_area)); - } + if (sev_es_guest(vcpu->kvm)) + __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted, + sev_es_host_save_area(sd)); + else + __svm_vcpu_run(svm, spec_ctrl_intercepted); + + raw_local_irq_disable(); - kvm_guest_exit_irqoff(); + guest_state_exit_irqoff(); } -static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) +static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags) { + bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT; struct vcpu_svm *svm = to_svm(vcpu); + bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); - trace_kvm_entry(vcpu); + trace_kvm_entry(vcpu, force_immediate_exit); svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; @@ -3777,10 +4219,18 @@ static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) * is enough to force an immediate vmexit. */ disable_nmi_singlestep(svm); - smp_send_reschedule(vcpu->cpu); + force_immediate_exit = true; } - pre_svm_run(vcpu); + if (force_immediate_exit) + smp_send_reschedule(vcpu->cpu); + + if (pre_svm_run(vcpu)) { + vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; + vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR; + vcpu->run->fail_entry.cpu = vcpu->cpu; + return EXIT_FASTPATH_EXIT_USERSPACE; + } sync_lapic_to_cr8(vcpu); @@ -3793,16 +4243,26 @@ static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) svm_hv_update_vp_id(svm->vmcb, vcpu); /* - * Run with all-zero DR6 unless needed, so that we can get the exact cause - * of a #DB. + * Run with all-zero DR6 unless the guest can write DR6 freely, so that + * KVM can get the exact cause of a #DB. Note, loading guest DR6 from + * KVM's snapshot is only necessary when DR accesses won't exit. */ - if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) - svm_set_dr6(svm, vcpu->arch.dr6); - else - svm_set_dr6(svm, DR6_ACTIVE_LOW); + if (unlikely(run_flags & KVM_RUN_LOAD_GUEST_DR6)) + svm_set_dr6(vcpu, vcpu->arch.dr6); + else if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))) + svm_set_dr6(vcpu, DR6_ACTIVE_LOW); clgi(); - kvm_load_guest_xsave_state(vcpu); + + /* + * Hardware only context switches DEBUGCTL if LBR virtualization is + * enabled. Manually load DEBUGCTL if necessary (and restore it after + * VM-Exit), as running with the host's DEBUGCTL can negatively affect + * guest state and can even be fatal, e.g. due to Bus Lock Detect. + */ + if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) && + vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl) + update_debugctlmsr(svm->vmcb->save.dbgctl); kvm_wait_lapic_expire(vcpu); @@ -3813,34 +4273,12 @@ static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) * being speculatively taken. */ if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) - x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); + x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); - svm_vcpu_enter_exit(vcpu); - - /* - * We do not use IBRS in the kernel. If this vCPU has used the - * SPEC_CTRL MSR it may have left it on; save the value and - * turn it off. This is much more efficient than blindly adding - * it to the atomic save/restore list. Especially as the former - * (Saving guest MSRs on vmexit) doesn't even exist in KVM. - * - * For non-nested case: - * If the L01 MSR bitmap does not intercept the MSR, then we need to - * save it. - * - * For nested case: - * If the L02 MSR bitmap does not intercept the MSR, then we need to - * save it. - */ - if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) && - unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) - svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); - - if (!sev_es_guest(vcpu->kvm)) - reload_tss(vcpu); + svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) - x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); + x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); if (!sev_es_guest(vcpu->kvm)) { vcpu->arch.cr2 = svm->vmcb->save.cr2; @@ -3848,11 +4286,15 @@ static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; } + vcpu->arch.regs_dirty = 0; if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) - kvm_before_interrupt(vcpu); + kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); + + if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) && + vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl) + update_debugctlmsr(vcpu->arch.host_debugctl); - kvm_load_host_xsave_state(vcpu); stgi(); /* Any pending NMI will happen here */ @@ -3882,22 +4324,12 @@ static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); - if (npt_enabled) - kvm_register_clear_available(vcpu, VCPU_EXREG_PDPTR); + vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; - /* - * We need to handle MC intercepts here before the vcpu has a chance to - * change the physical cpu - */ - if (unlikely(svm->vmcb->control.exit_code == - SVM_EXIT_EXCP_BASE + MC_VECTOR)) - svm_handle_mce(vcpu); + trace_kvm_exit(vcpu, KVM_ISA_SVM); svm_complete_interrupts(vcpu); - if (is_guest_mode(vcpu)) - return EXIT_FASTPATH_NONE; - return svm_exit_handlers_fastpath(vcpu); } @@ -3913,11 +4345,8 @@ static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, hv_track_root_tdp(vcpu, root_hpa); - /* Loading L2's CR3 is handled by enter_svm_guest_mode. */ - if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) - return; cr3 = vcpu->arch.cr3; - } else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { + } else if (root_level >= PT64_ROOT_4LEVEL) { cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); } else { /* PCID in the guest should be impossible with a 32-bit MMU. */ @@ -3929,17 +4358,6 @@ static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, vmcb_mark_dirty(svm->vmcb, VMCB_CR); } -static int is_disabled(void) -{ - u64 vm_cr; - - rdmsrl(MSR_VM_CR, vm_cr); - if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) - return 1; - - return 0; -} - static void svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) { @@ -3951,16 +4369,6 @@ svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) hypercall[2] = 0xd9; } -static int __init svm_check_processor_compat(void) -{ - return 0; -} - -static bool svm_cpu_has_accelerated_tpr(void) -{ - return false; -} - /* * The kvm parameter can be NULL (module initialization, or invocation before * VM creation). Be sure to check the kvm parameter before using it. @@ -3969,9 +4377,11 @@ static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) { switch (index) { case MSR_IA32_MCG_EXT_CTL: - case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: + case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: return false; case MSR_IA32_SMBASE: + if (!IS_ENABLED(CONFIG_KVM_SMM)) + return false; /* SEV-ES guests do not support SMM, so report false */ if (kvm && sev_es_guest(kvm)) return false; @@ -3983,77 +4393,34 @@ static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) return true; } -static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) -{ - return 0; -} - static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); - struct kvm_cpuid_entry2 *best; - - vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && - boot_cpu_has(X86_FEATURE_XSAVE) && - boot_cpu_has(X86_FEATURE_XSAVES); - - /* Update nrips enabled cache */ - svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && - guest_cpuid_has(vcpu, X86_FEATURE_NRIPS); - - svm_recalc_instruction_intercepts(vcpu, svm); - /* For sev guests, the memory encryption bit is not reserved in CR3. */ - if (sev_guest(vcpu->kvm)) { - best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0); - if (best) - vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); - } - - if (kvm_vcpu_apicv_active(vcpu)) { - /* - * AVIC does not work with an x2APIC mode guest. If the X2APIC feature - * is exposed to the guest, disable AVIC. - */ - if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC)) - kvm_request_apicv_update(vcpu->kvm, false, - APICV_INHIBIT_REASON_X2APIC); - - /* - * Currently, AVIC does not work with nested virtualization. - * So, we disable AVIC when cpuid for SVM is set in the L1 guest. - */ - if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM)) - kvm_request_apicv_update(vcpu->kvm, false, - APICV_INHIBIT_REASON_NESTED); - } + /* + * SVM doesn't provide a way to disable just XSAVES in the guest, KVM + * can only disable all variants of by disallowing CR4.OSXSAVE from + * being set. As a result, if the host has XSAVE and XSAVES, and the + * guest has XSAVE enabled, the guest can execute XSAVES without + * faulting. Treat XSAVES as enabled in this case regardless of + * whether it's advertised to the guest so that KVM context switches + * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give + * the guest read/write access to the host's XSS. + */ + guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES, + boot_cpu_has(X86_FEATURE_XSAVES) && + guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE)); - if (guest_cpuid_is_intel(vcpu)) { - /* - * We must intercept SYSENTER_EIP and SYSENTER_ESP - * accesses because the processor only stores 32 bits. - * For the same reason we cannot use virtual VMLOAD/VMSAVE. - */ - svm_set_intercept(svm, INTERCEPT_VMLOAD); - svm_set_intercept(svm, INTERCEPT_VMSAVE); - svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; + /* + * Intercept VMLOAD if the vCPU model is Intel in order to emulate that + * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing + * SVM on Intel is bonkers and extremely unlikely to work). + */ + if (guest_cpuid_is_intel_compatible(vcpu)) + guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); - set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); - set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); - } else { - /* - * If hardware supports Virtual VMLOAD VMSAVE then enable it - * in VMCB and clear intercepts to avoid #VMEXIT. - */ - if (vls) { - svm_clr_intercept(svm, INTERCEPT_VMLOAD); - svm_clr_intercept(svm, INTERCEPT_VMSAVE); - svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; - } - /* No need to intercept these MSRs */ - set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); - set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); - } + if (sev_guest(vcpu->kvm)) + sev_vcpu_after_set_cpuid(svm); } static bool svm_has_wbinvd_exit(void) @@ -4151,31 +4518,45 @@ static int svm_check_intercept(struct kvm_vcpu *vcpu, case SVM_EXIT_WRITE_CR0: { unsigned long cr0, val; - if (info->intercept == x86_intercept_cr_write) + /* + * Adjust the exit code accordingly if a CR other than CR0 is + * being written, and skip straight to the common handling as + * only CR0 has an additional selective intercept. + */ + if (info->intercept == x86_intercept_cr_write && info->modrm_reg) { icpt_info.exit_code += info->modrm_reg; - - if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || - info->intercept == x86_intercept_clts) break; + } - if (!(vmcb_is_intercept(&svm->nested.ctl, - INTERCEPT_SELECTIVE_CR0))) + /* + * Convert the exit_code to SVM_EXIT_CR0_SEL_WRITE if a + * selective CR0 intercept is triggered (the common logic will + * treat the selective intercept as being enabled). Note, the + * unconditional intercept has higher priority, i.e. this is + * only relevant if *only* the selective intercept is enabled. + */ + if (vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_CR0_WRITE) || + !(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))) break; - cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; - val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; + /* CLTS never triggers INTERCEPT_SELECTIVE_CR0 */ + if (info->intercept == x86_intercept_clts) + break; + /* LMSW always triggers INTERCEPT_SELECTIVE_CR0 */ if (info->intercept == x86_intercept_lmsw) { - cr0 &= 0xfUL; - val &= 0xfUL; - /* lmsw can't clear PE - catch this here */ - if (cr0 & X86_CR0_PE) - val |= X86_CR0_PE; + icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; + break; } + /* + * MOV-to-CR0 only triggers INTERCEPT_SELECTIVE_CR0 if any bit + * other than SVM_CR0_SELECTIVE_MASK is changed. + */ + cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; + val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; if (cr0 ^ val) icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; - break; } case SVM_EXIT_READ_DR0: @@ -4247,12 +4628,16 @@ out: static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) { -} - -static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) -{ - if (!kvm_pause_in_guest(vcpu->kvm)) - shrink_ple_window(vcpu); + switch (to_svm(vcpu)->vmcb->control.exit_code) { + case SVM_EXIT_EXCP_BASE + MC_VECTOR: + svm_handle_mce(vcpu); + break; + case SVM_EXIT_INTR: + vcpu->arch.at_instruction_boundary = true; + break; + default: + break; + } } static void svm_setup_mce(struct kvm_vcpu *vcpu) @@ -4261,6 +4646,7 @@ static void svm_setup_mce(struct kvm_vcpu *vcpu) vcpu->arch.mcg_cap &= 0x1ff; } +#ifdef CONFIG_KVM_SMM bool svm_smi_blocked(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); @@ -4278,65 +4664,127 @@ static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) if (svm->nested.nested_run_pending) return -EBUSY; + if (svm_smi_blocked(vcpu)) + return 0; + /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) return -EBUSY; - return !svm_smi_blocked(vcpu); + return 1; } -static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate) +static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) { struct vcpu_svm *svm = to_svm(vcpu); + struct kvm_host_map map_save; int ret; - if (is_guest_mode(vcpu)) { - /* FED8h - SVM Guest */ - put_smstate(u64, smstate, 0x7ed8, 1); - /* FEE0h - SVM Guest VMCB Physical Address */ - put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa); + if (!is_guest_mode(vcpu)) + return 0; - svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; - svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; - svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; + /* + * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is + * responsible for ensuring nested SVM and SMIs are mutually exclusive. + */ - ret = nested_svm_vmexit(svm); - if (ret) - return ret; - } + if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) + return 1; + + smram->smram64.svm_guest_flag = 1; + smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; + + svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; + svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; + svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; + + ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); + if (ret) + return ret; + + /* + * KVM uses VMCB01 to store L1 host state while L2 runs but + * VMCB01 is going to be used during SMM and thus the state will + * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save + * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the + * format of the area is identical to guest save area offsetted + * by 0x400 (matches the offset of 'struct vmcb_save_area' + * within 'struct vmcb'). Note: HSAVE area may also be used by + * L1 hypervisor to save additional host context (e.g. KVM does + * that, see svm_prepare_switch_to_guest()) which must be + * preserved. + */ + if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) + return 1; + + BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); + + svm_copy_vmrun_state(map_save.hva + 0x400, + &svm->vmcb01.ptr->save); + + kvm_vcpu_unmap(vcpu, &map_save); return 0; } -static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) +static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) { struct vcpu_svm *svm = to_svm(vcpu); - struct kvm_host_map map; - int ret = 0; + struct kvm_host_map map, map_save; + struct vmcb *vmcb12; + int ret; - if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) { - u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0); - u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8); - u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0); + const struct kvm_smram_state_64 *smram64 = &smram->smram64; - if (guest) { - if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) - return 1; + if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) + return 0; - if (!(saved_efer & EFER_SVME)) - return 1; + /* Non-zero if SMI arrived while vCPU was in guest mode. */ + if (!smram64->svm_guest_flag) + return 0; - if (kvm_vcpu_map(vcpu, - gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL) - return 1; + if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM)) + return 1; - if (svm_allocate_nested(svm)) - return 1; + if (!(smram64->efer & EFER_SVME)) + return 1; - ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, map.hva); - kvm_vcpu_unmap(vcpu, &map, true); - } - } + if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) + return 1; + + ret = 1; + if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) + goto unmap_map; + if (svm_allocate_nested(svm)) + goto unmap_save; + + /* + * Restore L1 host state from L1 HSAVE area as VMCB01 was + * used during SMM (see svm_enter_smm()) + */ + + svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); + + /* + * Enter the nested guest now + */ + + vmcb_mark_all_dirty(svm->vmcb01.ptr); + + vmcb12 = map.hva; + nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); + nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); + ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); + + if (ret) + goto unmap_save; + + svm->nested.nested_run_pending = 1; + +unmap_save: + kvm_vcpu_unmap(vcpu, &map_save); +unmap_map: + kvm_vcpu_unmap(vcpu, &map); return ret; } @@ -4345,103 +4793,173 @@ static void svm_enable_smi_window(struct kvm_vcpu *vcpu) struct vcpu_svm *svm = to_svm(vcpu); if (!gif_set(svm)) { - if (vgif_enabled(svm)) + if (vgif) svm_set_intercept(svm, INTERCEPT_STGI); /* STGI will cause a vm exit */ } else { /* We must be in SMM; RSM will cause a vmexit anyway. */ } } +#endif -static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) +static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, + void *insn, int insn_len) { + struct vcpu_svm *svm = to_svm(vcpu); bool smep, smap, is_user; - unsigned long cr4; + u64 error_code; + + /* Check that emulation is possible during event vectoring */ + if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) && + !kvm_can_emulate_event_vectoring(emul_type)) + return X86EMUL_UNHANDLEABLE_VECTORING; + + /* Emulation is always possible when KVM has access to all guest state. */ + if (!sev_guest(vcpu->kvm)) + return X86EMUL_CONTINUE; + + /* #UD and #GP should never be intercepted for SEV guests. */ + WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | + EMULTYPE_TRAP_UD_FORCED | + EMULTYPE_VMWARE_GP)); /* - * When the guest is an SEV-ES guest, emulation is not possible. + * Emulation is impossible for SEV-ES guests as KVM doesn't have access + * to guest register state. */ if (sev_es_guest(vcpu->kvm)) - return false; + return X86EMUL_RETRY_INSTR; + + /* + * Emulation is possible if the instruction is already decoded, e.g. + * when completing I/O after returning from userspace. + */ + if (emul_type & EMULTYPE_NO_DECODE) + return X86EMUL_CONTINUE; + + /* + * Emulation is possible for SEV guests if and only if a prefilled + * buffer containing the bytes of the intercepted instruction is + * available. SEV guest memory is encrypted with a guest specific key + * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and + * decode garbage. + * + * If KVM is NOT trying to simply skip an instruction, inject #UD if + * KVM reached this point without an instruction buffer. In practice, + * this path should never be hit by a well-behaved guest, e.g. KVM + * doesn't intercept #UD or #GP for SEV guests, but this path is still + * theoretically reachable, e.g. via unaccelerated fault-like AVIC + * access, and needs to be handled by KVM to avoid putting the guest + * into an infinite loop. Injecting #UD is somewhat arbitrary, but + * its the least awful option given lack of insight into the guest. + * + * If KVM is trying to skip an instruction, simply resume the guest. + * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM + * will attempt to re-inject the INT3/INTO and skip the instruction. + * In that scenario, retrying the INT3/INTO and hoping the guest will + * make forward progress is the only option that has a chance of + * success (and in practice it will work the vast majority of the time). + */ + if (unlikely(!insn)) { + if (emul_type & EMULTYPE_SKIP) + return X86EMUL_UNHANDLEABLE; + + kvm_queue_exception(vcpu, UD_VECTOR); + return X86EMUL_PROPAGATE_FAULT; + } + + /* + * Emulate for SEV guests if the insn buffer is not empty. The buffer + * will be empty if the DecodeAssist microcode cannot fetch bytes for + * the faulting instruction because the code fetch itself faulted, e.g. + * the guest attempted to fetch from emulated MMIO or a guest page + * table used to translate CS:RIP resides in emulated MMIO. + */ + if (likely(insn_len)) + return X86EMUL_CONTINUE; /* * Detect and workaround Errata 1096 Fam_17h_00_0Fh. * * Errata: - * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is - * possible that CPU microcode implementing DecodeAssist will fail - * to read bytes of instruction which caused #NPF. In this case, - * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly - * return 0 instead of the correct guest instruction bytes. - * - * This happens because CPU microcode reading instruction bytes - * uses a special opcode which attempts to read data using CPL=0 - * privileges. The microcode reads CS:RIP and if it hits a SMAP - * fault, it gives up and returns no instruction bytes. + * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is + * possible that CPU microcode implementing DecodeAssist will fail to + * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly + * be '0'. This happens because microcode reads CS:RIP using a _data_ + * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode + * gives up and does not fill the instruction bytes buffer. * - * Detection: - * We reach here in case CPU supports DecodeAssist, raised #NPF and - * returned 0 in GuestIntrBytes field of the VMCB. - * First, errata can only be triggered in case vCPU CR4.SMAP=1. - * Second, if vCPU CR4.SMEP=1, errata could only be triggered - * in case vCPU CPL==3 (Because otherwise guest would have triggered - * a SMEP fault instead of #NPF). - * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL. - * As most guests enable SMAP if they have also enabled SMEP, use above - * logic in order to attempt minimize false-positive of detecting errata - * while still preserving all cases semantic correctness. + * As above, KVM reaches this point iff the VM is an SEV guest, the CPU + * supports DecodeAssist, a #NPF was raised, KVM's page fault handler + * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the + * GuestIntrBytes field of the VMCB. * - * Workaround: - * To determine what instruction the guest was executing, the hypervisor - * will have to decode the instruction at the instruction pointer. + * This does _not_ mean that the erratum has been encountered, as the + * DecodeAssist will also fail if the load for CS:RIP hits a legitimate + * #PF, e.g. if the guest attempt to execute from emulated MMIO and + * encountered a reserved/not-present #PF. * - * In non SEV guest, hypervisor will be able to read the guest - * memory to decode the instruction pointer when insn_len is zero - * so we return true to indicate that decoding is possible. + * To hit the erratum, the following conditions must be true: + * 1. CR4.SMAP=1 (obviously). + * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot + * have been hit as the guest would have encountered a SMEP + * violation #PF, not a #NPF. + * 3. The #NPF is not due to a code fetch, in which case failure to + * retrieve the instruction bytes is legitimate (see abvoe). * - * But in the SEV guest, the guest memory is encrypted with the - * guest specific key and hypervisor will not be able to decode the - * instruction pointer so we will not able to workaround it. Lets - * print the error and request to kill the guest. - */ - if (likely(!insn || insn_len)) - return true; - - /* - * If RIP is invalid, go ahead with emulation which will cause an - * internal error exit. + * In addition, don't apply the erratum workaround if the #NPF occurred + * while translating guest page tables (see below). */ - if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT)) - return true; + error_code = svm->vmcb->control.exit_info_1; + if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) + goto resume_guest; - cr4 = kvm_read_cr4(vcpu); - smep = cr4 & X86_CR4_SMEP; - smap = cr4 & X86_CR4_SMAP; + smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); + smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); is_user = svm_get_cpl(vcpu) == 3; if (smap && (!smep || is_user)) { - if (!sev_guest(vcpu->kvm)) - return true; + pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); - pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); - kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + /* + * If the fault occurred in userspace, arbitrarily inject #GP + * to avoid killing the guest and to hopefully avoid confusing + * the guest kernel too much, e.g. injecting #PF would not be + * coherent with respect to the guest's page tables. Request + * triple fault if the fault occurred in the kernel as there's + * no fault that KVM can inject without confusing the guest. + * In practice, the triple fault is moot as no sane SEV kernel + * will execute from user memory while also running with SMAP=1. + */ + if (is_user) + kvm_inject_gp(vcpu, 0); + else + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + return X86EMUL_PROPAGATE_FAULT; } - return false; +resume_guest: + /* + * If the erratum was not hit, simply resume the guest and let it fault + * again. While awful, e.g. the vCPU may get stuck in an infinite loop + * if the fault is at CPL=0, it's the lesser of all evils. Exiting to + * userspace will kill the guest, and letting the emulator read garbage + * will yield random behavior and potentially corrupt the guest. + * + * Simply resuming the guest is technically not a violation of the SEV + * architecture. AMD's APM states that all code fetches and page table + * accesses for SEV guest are encrypted, regardless of the C-Bit. The + * APM also states that encrypted accesses to MMIO are "ignored", but + * doesn't explicitly define "ignored", i.e. doing nothing and letting + * the guest spin is technically "ignoring" the access. + */ + return X86EMUL_RETRY_INSTR; } static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); - /* - * TODO: Last condition latch INIT signals on vCPU when - * vCPU is in guest-mode and vmcb12 defines intercept on INIT. - * To properly emulate the INIT intercept, - * svm_check_nested_events() should call nested_svm_vmexit() - * if an INIT signal is pending. - */ - return !gif_set(svm) || - (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT)); + return !gif_set(svm); } static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) @@ -4456,12 +4974,26 @@ static void svm_vm_destroy(struct kvm *kvm) { avic_vm_destroy(kvm); sev_vm_destroy(kvm); + + svm_srso_vm_destroy(); } static int svm_vm_init(struct kvm *kvm) { + int type = kvm->arch.vm_type; + + if (type != KVM_X86_DEFAULT_VM && + type != KVM_X86_SW_PROTECTED_VM) { + kvm->arch.has_protected_state = + (type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM); + to_kvm_sev_info(kvm)->need_init = true; + + kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM); + kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem; + } + if (!pause_filter_count || !pause_filter_thresh) - kvm->arch.pause_in_guest = true; + kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE); if (enable_apicv) { int ret = avic_vm_init(kvm); @@ -4469,40 +5001,59 @@ static int svm_vm_init(struct kvm *kvm) return ret; } + svm_srso_vm_init(); return 0; } -static struct kvm_x86_ops svm_x86_ops __initdata = { - .hardware_unsetup = svm_hardware_teardown, - .hardware_enable = svm_hardware_enable, - .hardware_disable = svm_hardware_disable, - .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, +static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu) +{ + struct page *page = snp_safe_alloc_page(); + + if (!page) + return NULL; + + return page_address(page); +} + +struct kvm_x86_ops svm_x86_ops __initdata = { + .name = KBUILD_MODNAME, + + .check_processor_compatibility = svm_check_processor_compat, + + .hardware_unsetup = svm_hardware_unsetup, + .enable_virtualization_cpu = svm_enable_virtualization_cpu, + .disable_virtualization_cpu = svm_disable_virtualization_cpu, + .emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu, .has_emulated_msr = svm_has_emulated_msr, - .vcpu_create = svm_create_vcpu, - .vcpu_free = svm_free_vcpu, + .vcpu_precreate = svm_vcpu_precreate, + .vcpu_create = svm_vcpu_create, + .vcpu_free = svm_vcpu_free, .vcpu_reset = svm_vcpu_reset, .vm_size = sizeof(struct kvm_svm), .vm_init = svm_vm_init, .vm_destroy = svm_vm_destroy, - .prepare_guest_switch = svm_prepare_guest_switch, + .prepare_switch_to_guest = svm_prepare_switch_to_guest, .vcpu_load = svm_vcpu_load, .vcpu_put = svm_vcpu_put, - .vcpu_blocking = svm_vcpu_blocking, - .vcpu_unblocking = svm_vcpu_unblocking, + .vcpu_blocking = avic_vcpu_blocking, + .vcpu_unblocking = avic_vcpu_unblocking, .update_exception_bitmap = svm_update_exception_bitmap, - .get_msr_feature = svm_get_msr_feature, + .get_feature_msr = svm_get_feature_msr, .get_msr = svm_get_msr, .set_msr = svm_set_msr, .get_segment_base = svm_get_segment_base, .get_segment = svm_get_segment, .set_segment = svm_set_segment, .get_cpl = svm_get_cpl, - .get_cs_db_l_bits = kvm_get_cs_db_l_bits, + .get_cpl_no_cache = svm_get_cpl, + .get_cs_db_l_bits = svm_get_cs_db_l_bits, + .is_valid_cr0 = svm_is_valid_cr0, .set_cr0 = svm_set_cr0, + .post_set_cr3 = sev_post_set_cr3, .is_valid_cr4 = svm_is_valid_cr4, .set_cr4 = svm_set_cr4, .set_efer = svm_set_efer, @@ -4515,22 +5066,26 @@ static struct kvm_x86_ops svm_x86_ops __initdata = { .cache_reg = svm_cache_reg, .get_rflags = svm_get_rflags, .set_rflags = svm_set_rflags, + .get_if_flag = svm_get_if_flag, - .tlb_flush_all = svm_flush_tlb, - .tlb_flush_current = svm_flush_tlb, - .tlb_flush_gva = svm_flush_tlb_gva, - .tlb_flush_guest = svm_flush_tlb, + .flush_tlb_all = svm_flush_tlb_all, + .flush_tlb_current = svm_flush_tlb_current, + .flush_tlb_gva = svm_flush_tlb_gva, + .flush_tlb_guest = svm_flush_tlb_asid, - .run = svm_vcpu_run, - .handle_exit = handle_exit, - .skip_emulated_instruction = skip_emulated_instruction, + .vcpu_pre_run = svm_vcpu_pre_run, + .vcpu_run = svm_vcpu_run, + .handle_exit = svm_handle_exit, + .skip_emulated_instruction = svm_skip_emulated_instruction, .update_emulated_instruction = NULL, .set_interrupt_shadow = svm_set_interrupt_shadow, .get_interrupt_shadow = svm_get_interrupt_shadow, .patch_hypercall = svm_patch_hypercall, - .set_irq = svm_set_irq, - .set_nmi = svm_inject_nmi, - .queue_exception = svm_queue_exception, + .inject_irq = svm_inject_irq, + .inject_nmi = svm_inject_nmi, + .is_vnmi_pending = svm_is_vnmi_pending, + .set_vnmi_pending = svm_set_vnmi_pending, + .inject_exception = svm_inject_exception, .cancel_injection = svm_cancel_injection, .interrupt_allowed = svm_interrupt_allowed, .nmi_allowed = svm_nmi_allowed, @@ -4539,21 +5094,15 @@ static struct kvm_x86_ops svm_x86_ops __initdata = { .enable_nmi_window = svm_enable_nmi_window, .enable_irq_window = svm_enable_irq_window, .update_cr8_intercept = svm_update_cr8_intercept, - .set_virtual_apic_mode = svm_set_virtual_apic_mode, - .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, - .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons, - .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl, - .load_eoi_exitmap = svm_load_eoi_exitmap, - .hwapic_irr_update = svm_hwapic_irr_update, - .hwapic_isr_update = svm_hwapic_isr_update, - .sync_pir_to_irr = kvm_lapic_find_highest_irr, - .apicv_post_state_restore = avic_post_state_restore, - - .set_tss_addr = svm_set_tss_addr, - .set_identity_map_addr = svm_set_identity_map_addr, - .get_mt_mask = svm_get_mt_mask, + + .x2apic_icr_is_split = true, + .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, + .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, + .apicv_post_state_restore = avic_apicv_post_state_restore, + .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, .get_exit_info = svm_get_exit_info, + .get_entry_info = svm_get_entry_info, .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, @@ -4569,59 +5118,392 @@ static struct kvm_x86_ops svm_x86_ops __initdata = { .check_intercept = svm_check_intercept, .handle_exit_irqoff = svm_handle_exit_irqoff, - .request_immediate_exit = __kvm_request_immediate_exit, - - .sched_in = svm_sched_in, - - .pmu_ops = &amd_pmu_ops, .nested_ops = &svm_nested_ops, - .deliver_posted_interrupt = svm_deliver_avic_intr, - .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, - .update_pi_irte = svm_update_pi_irte, + .deliver_interrupt = svm_deliver_interrupt, + .pi_update_irte = avic_pi_update_irte, .setup_mce = svm_setup_mce, +#ifdef CONFIG_KVM_SMM .smi_allowed = svm_smi_allowed, .enter_smm = svm_enter_smm, .leave_smm = svm_leave_smm, .enable_smi_window = svm_enable_smi_window, +#endif - .mem_enc_op = svm_mem_enc_op, - .mem_enc_reg_region = svm_register_enc_region, - .mem_enc_unreg_region = svm_unregister_enc_region, - - .vm_copy_enc_context_from = svm_vm_copy_asid_from, +#ifdef CONFIG_KVM_AMD_SEV + .dev_get_attr = sev_dev_get_attr, + .mem_enc_ioctl = sev_mem_enc_ioctl, + .mem_enc_register_region = sev_mem_enc_register_region, + .mem_enc_unregister_region = sev_mem_enc_unregister_region, + .guest_memory_reclaimed = sev_guest_memory_reclaimed, - .can_emulate_instruction = svm_can_emulate_instruction, + .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, + .vm_move_enc_context_from = sev_vm_move_enc_context_from, +#endif + .check_emulate_instruction = svm_check_emulate_instruction, .apic_init_signal_blocked = svm_apic_init_signal_blocked, - .msr_filter_changed = svm_msr_filter_changed, + .recalc_intercepts = svm_recalc_intercepts, .complete_emulated_msr = svm_complete_emulated_msr, .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, + .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, + .alloc_apic_backing_page = svm_alloc_apic_backing_page, + + .gmem_prepare = sev_gmem_prepare, + .gmem_invalidate = sev_gmem_invalidate, + .gmem_max_mapping_level = sev_gmem_max_mapping_level, }; +/* + * The default MMIO mask is a single bit (excluding the present bit), + * which could conflict with the memory encryption bit. Check for + * memory encryption support and override the default MMIO mask if + * memory encryption is enabled. + */ +static __init void svm_adjust_mmio_mask(void) +{ + unsigned int enc_bit, mask_bit; + u64 msr, mask; + + /* If there is no memory encryption support, use existing mask */ + if (cpuid_eax(0x80000000) < 0x8000001f) + return; + + /* If memory encryption is not enabled, use existing mask */ + rdmsrq(MSR_AMD64_SYSCFG, msr); + if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) + return; + + enc_bit = cpuid_ebx(0x8000001f) & 0x3f; + mask_bit = boot_cpu_data.x86_phys_bits; + + /* Increment the mask bit if it is the same as the encryption bit */ + if (enc_bit == mask_bit) + mask_bit++; + + /* + * If the mask bit location is below 52, then some bits above the + * physical addressing limit will always be reserved, so use the + * rsvd_bits() function to generate the mask. This mask, along with + * the present bit, will be used to generate a page fault with + * PFER.RSV = 1. + * + * If the mask bit location is 52 (or above), then clear the mask. + */ + mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; + + kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); +} + +static __init void svm_set_cpu_caps(void) +{ + kvm_set_cpu_caps(); + + kvm_caps.supported_perf_cap = 0; + + kvm_cpu_cap_clear(X86_FEATURE_IBT); + + /* CPUID 0x80000001 and 0x8000000A (SVM features) */ + if (nested) { + kvm_cpu_cap_set(X86_FEATURE_SVM); + kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); + + /* + * KVM currently flushes TLBs on *every* nested SVM transition, + * and so for all intents and purposes KVM supports flushing by + * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush. + */ + kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID); + + if (nrips) + kvm_cpu_cap_set(X86_FEATURE_NRIPS); + + if (npt_enabled) + kvm_cpu_cap_set(X86_FEATURE_NPT); + + if (tsc_scaling) + kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); + + if (vls) + kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); + if (lbrv) + kvm_cpu_cap_set(X86_FEATURE_LBRV); + + if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) + kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); + + if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) + kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); + + if (vgif) + kvm_cpu_cap_set(X86_FEATURE_VGIF); + + if (vnmi) + kvm_cpu_cap_set(X86_FEATURE_VNMI); + + /* Nested VM can receive #VMEXIT instead of triggering #GP */ + kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); + } + + if (cpu_feature_enabled(X86_FEATURE_BUS_LOCK_THRESHOLD)) + kvm_caps.has_bus_lock_exit = true; + + /* CPUID 0x80000008 */ + if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || + boot_cpu_has(X86_FEATURE_AMD_SSBD)) + kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); + + if (enable_pmu) { + /* + * Enumerate support for PERFCTR_CORE if and only if KVM has + * access to enough counters to virtualize "core" support, + * otherwise limit vPMU support to the legacy number of counters. + */ + if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) + kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, + kvm_pmu_cap.num_counters_gp); + else + kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); + + if (kvm_pmu_cap.version != 2 || + !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) + kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); + } + + /* CPUID 0x8000001F (SME/SEV features) */ + sev_set_cpu_caps(); + + /* + * Clear capabilities that are automatically configured by common code, + * but that require explicit SVM support (that isn't yet implemented). + */ + kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT); + kvm_cpu_cap_clear(X86_FEATURE_MSR_IMM); +} + +static __init int svm_hardware_setup(void) +{ + void *iopm_va; + int cpu, r; + + /* + * NX is required for shadow paging and for NPT if the NX huge pages + * mitigation is enabled. + */ + if (!boot_cpu_has(X86_FEATURE_NX)) { + pr_err_ratelimited("NX (Execute Disable) not supported\n"); + return -EOPNOTSUPP; + } + kvm_enable_efer_bits(EFER_NX); + + kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | + XFEATURE_MASK_BNDCSR); + + if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) + kvm_enable_efer_bits(EFER_FFXSR); + + if (tsc_scaling) { + if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { + tsc_scaling = false; + } else { + pr_info("TSC scaling supported\n"); + kvm_caps.has_tsc_control = true; + } + } + kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; + kvm_caps.tsc_scaling_ratio_frac_bits = 32; + + tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); + + if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) + kvm_enable_efer_bits(EFER_AUTOIBRS); + + /* Check for pause filtering support */ + if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { + pause_filter_count = 0; + pause_filter_thresh = 0; + } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { + pause_filter_thresh = 0; + } + + if (nested) { + pr_info("Nested Virtualization enabled\n"); + kvm_enable_efer_bits(EFER_SVME); + if (!boot_cpu_has(X86_FEATURE_EFER_LMSLE_MBZ)) + kvm_enable_efer_bits(EFER_LMSLE); + + r = nested_svm_init_msrpm_merge_offsets(); + if (r) + return r; + } + + /* + * KVM's MMU doesn't support using 2-level paging for itself, and thus + * NPT isn't supported if the host is using 2-level paging since host + * CR4 is unchanged on VMRUN. + */ + if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) + npt_enabled = false; + + if (!boot_cpu_has(X86_FEATURE_NPT)) + npt_enabled = false; + + /* Force VM NPT level equal to the host's paging level */ + kvm_configure_mmu(npt_enabled, get_npt_level(), + get_npt_level(), PG_LEVEL_1G); + pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled)); + + /* + * It seems that on AMD processors PTE's accessed bit is + * being set by the CPU hardware before the NPF vmexit. + * This is not expected behaviour and our tests fail because + * of it. + * A workaround here is to disable support for + * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. + * In this case userspace can know if there is support using + * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle + * it + * If future AMD CPU models change the behaviour described above, + * this variable can be changed accordingly + */ + allow_smaller_maxphyaddr = !npt_enabled; + + /* Setup shadow_me_value and shadow_me_mask */ + kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); + + svm_adjust_mmio_mask(); + + nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); + + if (lbrv) { + if (!boot_cpu_has(X86_FEATURE_LBRV)) + lbrv = false; + else + pr_info("LBR virtualization supported\n"); + } + + iopm_va = svm_alloc_permissions_map(IOPM_SIZE, GFP_KERNEL); + if (!iopm_va) + return -ENOMEM; + + iopm_base = __sme_set(__pa(iopm_va)); + + /* + * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which + * may be modified by svm_adjust_mmio_mask()), as well as nrips. + */ + sev_hardware_setup(); + + svm_hv_hardware_setup(); + + enable_apicv = avic_hardware_setup(); + if (!enable_apicv) { + enable_ipiv = false; + svm_x86_ops.vcpu_blocking = NULL; + svm_x86_ops.vcpu_unblocking = NULL; + svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; + } + + if (vls) { + if (!npt_enabled || + !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || + !IS_ENABLED(CONFIG_X86_64)) { + vls = false; + } else { + pr_info("Virtual VMLOAD VMSAVE supported\n"); + } + } + + if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) + svm_gp_erratum_intercept = false; + + if (vgif) { + if (!boot_cpu_has(X86_FEATURE_VGIF)) + vgif = false; + else + pr_info("Virtual GIF supported\n"); + } + + vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); + if (vnmi) + pr_info("Virtual NMI enabled\n"); + + if (!vnmi) { + svm_x86_ops.is_vnmi_pending = NULL; + svm_x86_ops.set_vnmi_pending = NULL; + } + + if (!enable_pmu) + pr_info("PMU virtualization is disabled\n"); + + svm_set_cpu_caps(); + + kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_CD_NW_CLEARED; + + for_each_possible_cpu(cpu) { + r = svm_cpu_init(cpu); + if (r) + goto err; + } + + return 0; + +err: + svm_hardware_unsetup(); + return r; +} + + static struct kvm_x86_init_ops svm_init_ops __initdata = { - .cpu_has_kvm_support = has_svm, - .disabled_by_bios = is_disabled, .hardware_setup = svm_hardware_setup, - .check_processor_compatibility = svm_check_processor_compat, .runtime_ops = &svm_x86_ops, + .pmu_ops = &amd_pmu_ops, }; +static void __svm_exit(void) +{ + kvm_x86_vendor_exit(); +} + static int __init svm_init(void) { + int r; + + KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_svm); + __unused_size_checks(); - return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), - __alignof__(struct vcpu_svm), THIS_MODULE); + if (!kvm_is_svm_supported()) + return -EOPNOTSUPP; + + r = kvm_x86_vendor_init(&svm_init_ops); + if (r) + return r; + + /* + * Common KVM initialization _must_ come last, after this, /dev/kvm is + * exposed to userspace! + */ + r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), + THIS_MODULE); + if (r) + goto err_kvm_init; + + return 0; + +err_kvm_init: + __svm_exit(); + return r; } static void __exit svm_exit(void) { kvm_exit(); + __svm_exit(); } module_init(svm_init) |
