diff options
Diffstat (limited to 'arch/x86/kvm/vmx/nested.c')
| -rw-r--r-- | arch/x86/kvm/vmx/nested.c | 5521 |
1 files changed, 3630 insertions, 1891 deletions
diff --git a/arch/x86/kvm/vmx/nested.c b/arch/x86/kvm/vmx/nested.c index 2616bd2c7f2c..40777278eabb 100644 --- a/arch/x86/kvm/vmx/nested.c +++ b/arch/x86/kvm/vmx/nested.c @@ -1,23 +1,32 @@ // SPDX-License-Identifier: GPL-2.0 +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt -#include <linux/frame.h> +#include <linux/objtool.h> #include <linux/percpu.h> #include <asm/debugreg.h> #include <asm/mmu_context.h> +#include <asm/msr.h> +#include "x86.h" #include "cpuid.h" #include "hyperv.h" #include "mmu.h" #include "nested.h" +#include "pmu.h" +#include "posted_intr.h" +#include "sgx.h" #include "trace.h" -#include "x86.h" +#include "vmx.h" +#include "smm.h" static bool __read_mostly enable_shadow_vmcs = 1; module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO); -static bool __read_mostly nested_early_check = 0; -module_param(nested_early_check, bool, S_IRUGO); +static bool __ro_after_init warn_on_missed_cc; +module_param(warn_on_missed_cc, bool, 0444); + +#define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK /* * Hyper-V requires all of these, so mark them as supported even though @@ -41,21 +50,25 @@ static unsigned long *vmx_bitmap[VMX_BITMAP_NR]; #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP]) #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP]) -static u16 shadow_read_only_fields[] = { -#define SHADOW_FIELD_RO(x) x, +struct shadow_vmcs_field { + u16 encoding; + u16 offset; +}; +static struct shadow_vmcs_field shadow_read_only_fields[] = { +#define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) }, #include "vmcs_shadow_fields.h" }; static int max_shadow_read_only_fields = ARRAY_SIZE(shadow_read_only_fields); -static u16 shadow_read_write_fields[] = { -#define SHADOW_FIELD_RW(x) x, +static struct shadow_vmcs_field shadow_read_write_fields[] = { +#define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) }, #include "vmcs_shadow_fields.h" }; static int max_shadow_read_write_fields = ARRAY_SIZE(shadow_read_write_fields); -void init_vmcs_shadow_fields(void) +static void init_vmcs_shadow_fields(void) { int i, j; @@ -63,34 +76,40 @@ void init_vmcs_shadow_fields(void) memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE); for (i = j = 0; i < max_shadow_read_only_fields; i++) { - u16 field = shadow_read_only_fields[i]; + struct shadow_vmcs_field entry = shadow_read_only_fields[i]; + u16 field = entry.encoding; if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && (i + 1 == max_shadow_read_only_fields || - shadow_read_only_fields[i + 1] != field + 1)) + shadow_read_only_fields[i + 1].encoding != field + 1)) pr_err("Missing field from shadow_read_only_field %x\n", field + 1); clear_bit(field, vmx_vmread_bitmap); -#ifdef CONFIG_X86_64 if (field & 1) +#ifdef CONFIG_X86_64 continue; +#else + entry.offset += sizeof(u32); #endif - if (j < i) - shadow_read_only_fields[j] = field; - j++; + shadow_read_only_fields[j++] = entry; } max_shadow_read_only_fields = j; for (i = j = 0; i < max_shadow_read_write_fields; i++) { - u16 field = shadow_read_write_fields[i]; + struct shadow_vmcs_field entry = shadow_read_write_fields[i]; + u16 field = entry.encoding; if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && (i + 1 == max_shadow_read_write_fields || - shadow_read_write_fields[i + 1] != field + 1)) + shadow_read_write_fields[i + 1].encoding != field + 1)) pr_err("Missing field from shadow_read_write_field %x\n", field + 1); + WARN_ONCE(field >= GUEST_ES_AR_BYTES && + field <= GUEST_TR_AR_BYTES, + "Update vmcs12_write_any() to drop reserved bits from AR_BYTES"); + /* * PML and the preemption timer can be emulated, but the * processor cannot vmwrite to fields that don't exist @@ -115,13 +134,13 @@ void init_vmcs_shadow_fields(void) clear_bit(field, vmx_vmwrite_bitmap); clear_bit(field, vmx_vmread_bitmap); -#ifdef CONFIG_X86_64 if (field & 1) +#ifdef CONFIG_X86_64 continue; +#else + entry.offset += sizeof(u32); #endif - if (j < i) - shadow_read_write_fields[j] = field; - j++; + shadow_read_write_fields[j++] = entry; } max_shadow_read_write_fields = j; } @@ -152,52 +171,158 @@ static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu) static int nested_vmx_failValid(struct kvm_vcpu *vcpu, u32 vm_instruction_error) { - struct vcpu_vmx *vmx = to_vmx(vcpu); - - /* - * failValid writes the error number to the current VMCS, which - * can't be done if there isn't a current VMCS. - */ - if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs) - return nested_vmx_failInvalid(vcpu); - vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_SF | X86_EFLAGS_OF)) | X86_EFLAGS_ZF); get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error; /* - * We don't need to force a shadow sync because - * VM_INSTRUCTION_ERROR is not shadowed + * We don't need to force sync to shadow VMCS because + * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all + * fields and thus must be synced. */ + if (nested_vmx_is_evmptr12_set(to_vmx(vcpu))) + to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true; + return kvm_skip_emulated_instruction(vcpu); } +static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + /* + * failValid writes the error number to the current VMCS, which + * can't be done if there isn't a current VMCS. + */ + if (vmx->nested.current_vmptr == INVALID_GPA && + !nested_vmx_is_evmptr12_valid(vmx)) + return nested_vmx_failInvalid(vcpu); + + return nested_vmx_failValid(vcpu, vm_instruction_error); +} + static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator) { /* TODO: not to reset guest simply here. */ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); - pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator); + pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator); +} + +static inline bool vmx_control_verify(u32 control, u32 low, u32 high) +{ + return fixed_bits_valid(control, low, high); +} + +static inline u64 vmx_control_msr(u32 low, u32 high) +{ + return low | ((u64)high << 32); } static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx) { - vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS); - vmcs_write64(VMCS_LINK_POINTER, -1ull); + secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS); + vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); + vmx->nested.need_vmcs12_to_shadow_sync = false; } static inline void nested_release_evmcs(struct kvm_vcpu *vcpu) { +#ifdef CONFIG_KVM_HYPERV + struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); + struct vcpu_vmx *vmx = to_vmx(vcpu); + + kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map); + vmx->nested.hv_evmcs = NULL; + vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; + + if (hv_vcpu) { + hv_vcpu->nested.pa_page_gpa = INVALID_GPA; + hv_vcpu->nested.vm_id = 0; + hv_vcpu->nested.vp_id = 0; + } +#endif +} + +static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr) +{ +#ifdef CONFIG_KVM_HYPERV + struct vcpu_vmx *vmx = to_vmx(vcpu); + /* + * When Enlightened VMEntry is enabled on the calling CPU we treat + * memory area pointer by vmptr as Enlightened VMCS (as there's no good + * way to distinguish it from VMCS12) and we must not corrupt it by + * writing to the non-existent 'launch_state' field. The area doesn't + * have to be the currently active EVMCS on the calling CPU and there's + * nothing KVM has to do to transition it from 'active' to 'non-active' + * state. It is possible that the area will stay mapped as + * vmx->nested.hv_evmcs but this shouldn't be a problem. + */ + if (!guest_cpu_cap_has_evmcs(vcpu) || + !evmptr_is_valid(nested_get_evmptr(vcpu))) + return false; + + if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr) + nested_release_evmcs(vcpu); + + return true; +#else + return false; +#endif +} + +static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx, + struct loaded_vmcs *prev) +{ + struct vmcs_host_state *dest, *src; + + if (unlikely(!vmx->vt.guest_state_loaded)) + return; + + src = &prev->host_state; + dest = &vmx->loaded_vmcs->host_state; + + vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base); + dest->ldt_sel = src->ldt_sel; +#ifdef CONFIG_X86_64 + dest->ds_sel = src->ds_sel; + dest->es_sel = src->es_sel; +#endif +} + +static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs) +{ struct vcpu_vmx *vmx = to_vmx(vcpu); + struct loaded_vmcs *prev; + int cpu; - if (!vmx->nested.hv_evmcs) + if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs)) return; - kunmap(vmx->nested.hv_evmcs_page); - kvm_release_page_dirty(vmx->nested.hv_evmcs_page); - vmx->nested.hv_evmcs_vmptr = -1ull; - vmx->nested.hv_evmcs_page = NULL; - vmx->nested.hv_evmcs = NULL; + cpu = get_cpu(); + prev = vmx->loaded_vmcs; + vmx->loaded_vmcs = vmcs; + vmx_vcpu_load_vmcs(vcpu, cpu); + vmx_sync_vmcs_host_state(vmx, prev); + put_cpu(); + + vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET; + + /* + * All lazily updated registers will be reloaded from VMCS12 on both + * vmentry and vmexit. + */ + vcpu->arch.regs_dirty = 0; +} + +static void nested_put_vmcs12_pages(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map); + kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map); + kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map); + vmx->nested.pi_desc = NULL; } /* @@ -208,14 +333,20 @@ static void free_nested(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); + if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01)) + vmx_switch_vmcs(vcpu, &vmx->vmcs01); + if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon) return; + kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); + vmx->nested.vmxon = false; vmx->nested.smm.vmxon = false; + vmx->nested.vmxon_ptr = INVALID_GPA; free_vpid(vmx->nested.vpid02); vmx->nested.posted_intr_nv = -1; - vmx->nested.current_vmptr = -1ull; + vmx->nested.current_vmptr = INVALID_GPA; if (enable_shadow_vmcs) { vmx_disable_shadow_vmcs(vmx); vmcs_clear(vmx->vmcs01.shadow_vmcs); @@ -223,49 +354,19 @@ static void free_nested(struct kvm_vcpu *vcpu) vmx->vmcs01.shadow_vmcs = NULL; } kfree(vmx->nested.cached_vmcs12); + vmx->nested.cached_vmcs12 = NULL; kfree(vmx->nested.cached_shadow_vmcs12); - /* Unpin physical memory we referred to in the vmcs02 */ - if (vmx->nested.apic_access_page) { - kvm_release_page_dirty(vmx->nested.apic_access_page); - vmx->nested.apic_access_page = NULL; - } - if (vmx->nested.virtual_apic_page) { - kvm_release_page_dirty(vmx->nested.virtual_apic_page); - vmx->nested.virtual_apic_page = NULL; - } - if (vmx->nested.pi_desc_page) { - kunmap(vmx->nested.pi_desc_page); - kvm_release_page_dirty(vmx->nested.pi_desc_page); - vmx->nested.pi_desc_page = NULL; - vmx->nested.pi_desc = NULL; - } + vmx->nested.cached_shadow_vmcs12 = NULL; + + nested_put_vmcs12_pages(vcpu); - kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); + kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); nested_release_evmcs(vcpu); free_loaded_vmcs(&vmx->nested.vmcs02); } -static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int cpu; - - if (vmx->loaded_vmcs == vmcs) - return; - - cpu = get_cpu(); - vmx_vcpu_put(vcpu); - vmx->loaded_vmcs = vmcs; - vmx_vcpu_load(vcpu, cpu); - put_cpu(); - - vm_entry_controls_reset_shadow(vmx); - vm_exit_controls_reset_shadow(vmx); - vmx_segment_cache_clear(vmx); -} - /* * Ensure that the current vmcs of the logical processor is the * vmcs01 of the vcpu before calling free_nested(). @@ -273,44 +374,111 @@ static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs) void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu) { vcpu_load(vcpu); - vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01); - free_nested(vcpu); + vmx_leave_nested(vcpu); vcpu_put(vcpu); } +#define EPTP_PA_MASK GENMASK_ULL(51, 12) + +static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp) +{ + return VALID_PAGE(root_hpa) && + ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK)); +} + +static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp, + gpa_t addr) +{ + unsigned long roots = 0; + uint i; + struct kvm_mmu_root_info *cached_root; + + WARN_ON_ONCE(!mmu_is_nested(vcpu)); + + for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { + cached_root = &vcpu->arch.mmu->prev_roots[i]; + + if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd, + eptp)) + roots |= KVM_MMU_ROOT_PREVIOUS(i); + } + if (roots) + kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots); +} + static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); struct vcpu_vmx *vmx = to_vmx(vcpu); - u32 exit_reason; - unsigned long exit_qualification = vcpu->arch.exit_qualification; + unsigned long exit_qualification; + u32 vm_exit_reason; if (vmx->nested.pml_full) { - exit_reason = EXIT_REASON_PML_FULL; + vm_exit_reason = EXIT_REASON_PML_FULL; vmx->nested.pml_full = false; - exit_qualification &= INTR_INFO_UNBLOCK_NMI; - } else if (fault->error_code & PFERR_RSVD_MASK) - exit_reason = EXIT_REASON_EPT_MISCONFIG; - else - exit_reason = EXIT_REASON_EPT_VIOLATION; - nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification); + /* + * It should be impossible to trigger a nested PML Full VM-Exit + * for anything other than an EPT Violation from L2. KVM *can* + * trigger nEPT page fault injection in response to an EPT + * Misconfig, e.g. if the MMIO SPTE was stale and L1's EPT + * tables also changed, but KVM should not treat EPT Misconfig + * VM-Exits as writes. + */ + WARN_ON_ONCE(vmx->vt.exit_reason.basic != EXIT_REASON_EPT_VIOLATION); + + /* + * PML Full and EPT Violation VM-Exits both use bit 12 to report + * "NMI unblocking due to IRET", i.e. the bit can be propagated + * as-is from the original EXIT_QUALIFICATION. + */ + exit_qualification = vmx_get_exit_qual(vcpu) & INTR_INFO_UNBLOCK_NMI; + } else { + if (fault->error_code & PFERR_RSVD_MASK) { + vm_exit_reason = EXIT_REASON_EPT_MISCONFIG; + exit_qualification = 0; + } else { + exit_qualification = fault->exit_qualification; + exit_qualification |= vmx_get_exit_qual(vcpu) & + (EPT_VIOLATION_GVA_IS_VALID | + EPT_VIOLATION_GVA_TRANSLATED); + vm_exit_reason = EXIT_REASON_EPT_VIOLATION; + } + + /* + * Although the caller (kvm_inject_emulated_page_fault) would + * have already synced the faulting address in the shadow EPT + * tables for the current EPTP12, we also need to sync it for + * any other cached EPTP02s based on the same EP4TA, since the + * TLB associates mappings to the EP4TA rather than the full EPTP. + */ + nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer, + fault->address); + } + + nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification); vmcs12->guest_physical_address = fault->address; } +static void nested_ept_new_eptp(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT; + int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps); + + kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level, + nested_ept_ad_enabled(vcpu), + nested_ept_get_eptp(vcpu)); +} + static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu) { WARN_ON(mmu_is_nested(vcpu)); vcpu->arch.mmu = &vcpu->arch.guest_mmu; - kvm_init_shadow_ept_mmu(vcpu, - to_vmx(vcpu)->nested.msrs.ept_caps & - VMX_EPT_EXECUTE_ONLY_BIT, - nested_ept_ad_enabled(vcpu), - nested_ept_get_cr3(vcpu)); - vcpu->arch.mmu->set_cr3 = vmx_set_cr3; - vcpu->arch.mmu->get_cr3 = nested_ept_get_cr3; + nested_ept_new_eptp(vcpu); + vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp; vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault; vcpu->arch.mmu->get_pdptr = kvm_pdptr_read; @@ -335,67 +503,22 @@ static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12, return inequality ^ bit; } - -/* - * KVM wants to inject page-faults which it got to the guest. This function - * checks whether in a nested guest, we need to inject them to L1 or L2. - */ -static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - unsigned int nr = vcpu->arch.exception.nr; - bool has_payload = vcpu->arch.exception.has_payload; - unsigned long payload = vcpu->arch.exception.payload; - - if (nr == PF_VECTOR) { - if (vcpu->arch.exception.nested_apf) { - *exit_qual = vcpu->arch.apf.nested_apf_token; - return 1; - } - if (nested_vmx_is_page_fault_vmexit(vmcs12, - vcpu->arch.exception.error_code)) { - *exit_qual = has_payload ? payload : vcpu->arch.cr2; - return 1; - } - } else if (vmcs12->exception_bitmap & (1u << nr)) { - if (nr == DB_VECTOR) { - if (!has_payload) { - payload = vcpu->arch.dr6; - payload &= ~(DR6_FIXED_1 | DR6_BT); - payload ^= DR6_RTM; - } - *exit_qual = payload; - } else - *exit_qual = 0; - return 1; - } - - return 0; -} - - -static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu, - struct x86_exception *fault) +static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector, + u32 error_code) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - WARN_ON(!is_guest_mode(vcpu)); - - if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) && - !to_vmx(vcpu)->nested.nested_run_pending) { - vmcs12->vm_exit_intr_error_code = fault->error_code; - nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, - PF_VECTOR | INTR_TYPE_HARD_EXCEPTION | - INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK, - fault->address); - } else { - kvm_inject_page_fault(vcpu, fault); - } -} + /* + * Drop bits 31:16 of the error code when performing the #PF mask+match + * check. All VMCS fields involved are 32 bits, but Intel CPUs never + * set bits 31:16 and VMX disallows setting bits 31:16 in the injected + * error code. Including the to-be-dropped bits in the check might + * result in an "impossible" or missed exit from L1's perspective. + */ + if (vector == PF_VECTOR) + return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code); -static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa) -{ - return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu)); + return (vmcs12->exception_bitmap & (1u << vector)); } static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu, @@ -404,8 +527,8 @@ static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu, if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) return 0; - if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) || - !page_address_valid(vcpu, vmcs12->io_bitmap_b)) + if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) || + CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b))) return -EINVAL; return 0; @@ -417,7 +540,7 @@ static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu, if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) return 0; - if (!page_address_valid(vcpu, vmcs12->msr_bitmap)) + if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap))) return -EINVAL; return 0; @@ -429,74 +552,69 @@ static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu, if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) return 0; - if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)) + if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))) + return -EINVAL; + + if (CC(!nested_cpu_has_vid(vmcs12) && vmcs12->tpr_threshold >> 4)) return -EINVAL; return 0; } /* - * Check if MSR is intercepted for L01 MSR bitmap. + * For x2APIC MSRs, ignore the vmcs01 bitmap. L1 can enable x2APIC without L1 + * itself utilizing x2APIC. All MSRs were previously set to be intercepted, + * only the "disable intercept" case needs to be handled. */ -static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr) +static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1, + unsigned long *msr_bitmap_l0, + u32 msr, int type) { - unsigned long *msr_bitmap; - int f = sizeof(unsigned long); - - if (!cpu_has_vmx_msr_bitmap()) - return true; + if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr)) + vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr); - msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; - - if (msr <= 0x1fff) { - return !!test_bit(msr, msr_bitmap + 0x800 / f); - } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { - msr &= 0x1fff; - return !!test_bit(msr, msr_bitmap + 0xc00 / f); - } - - return true; + if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr)) + vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr); } -/* - * If a msr is allowed by L0, we should check whether it is allowed by L1. - * The corresponding bit will be cleared unless both of L0 and L1 allow it. - */ -static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1, - unsigned long *msr_bitmap_nested, - u32 msr, int type) +static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) { - int f = sizeof(unsigned long); - - /* - * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals - * have the write-low and read-high bitmap offsets the wrong way round. - * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. - */ - if (msr <= 0x1fff) { - if (type & MSR_TYPE_R && - !test_bit(msr, msr_bitmap_l1 + 0x000 / f)) - /* read-low */ - __clear_bit(msr, msr_bitmap_nested + 0x000 / f); + int msr; - if (type & MSR_TYPE_W && - !test_bit(msr, msr_bitmap_l1 + 0x800 / f)) - /* write-low */ - __clear_bit(msr, msr_bitmap_nested + 0x800 / f); + for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { + unsigned word = msr / BITS_PER_LONG; - } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { - msr &= 0x1fff; - if (type & MSR_TYPE_R && - !test_bit(msr, msr_bitmap_l1 + 0x400 / f)) - /* read-high */ - __clear_bit(msr, msr_bitmap_nested + 0x400 / f); + msr_bitmap[word] = ~0; + msr_bitmap[word + (0x800 / sizeof(long))] = ~0; + } +} - if (type & MSR_TYPE_W && - !test_bit(msr, msr_bitmap_l1 + 0xc00 / f)) - /* write-high */ - __clear_bit(msr, msr_bitmap_nested + 0xc00 / f); +#define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw) \ +static inline \ +void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx, \ + unsigned long *msr_bitmap_l1, \ + unsigned long *msr_bitmap_l0, u32 msr) \ +{ \ + if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) || \ + vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr)) \ + vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr); \ + else \ + vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr); \ +} +BUILD_NVMX_MSR_INTERCEPT_HELPER(read) +BUILD_NVMX_MSR_INTERCEPT_HELPER(write) - } +static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx, + unsigned long *msr_bitmap_l1, + unsigned long *msr_bitmap_l0, + u32 msr, int types) +{ + if (types & MSR_TYPE_R) + nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1, + msr_bitmap_l0, msr); + if (types & MSR_TYPE_W) + nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1, + msr_bitmap_l0, msr); } /* @@ -506,89 +624,127 @@ static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1, static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { + struct vcpu_vmx *vmx = to_vmx(vcpu); int msr; - struct page *page; unsigned long *msr_bitmap_l1; - unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap; - /* - * pred_cmd & spec_ctrl are trying to verify two things: - * - * 1. L0 gave a permission to L1 to actually passthrough the MSR. This - * ensures that we do not accidentally generate an L02 MSR bitmap - * from the L12 MSR bitmap that is too permissive. - * 2. That L1 or L2s have actually used the MSR. This avoids - * unnecessarily merging of the bitmap if the MSR is unused. This - * works properly because we only update the L01 MSR bitmap lazily. - * So even if L0 should pass L1 these MSRs, the L01 bitmap is only - * updated to reflect this when L1 (or its L2s) actually write to - * the MSR. - */ - bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD); - bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL); + unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap; + struct kvm_host_map map; /* Nothing to do if the MSR bitmap is not in use. */ if (!cpu_has_vmx_msr_bitmap() || !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) return false; - if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && - !pred_cmd && !spec_ctrl) - return false; + /* + * MSR bitmap update can be skipped when: + * - MSR bitmap for L1 hasn't changed. + * - Nested hypervisor (L1) is attempting to launch the same L2 as + * before. + * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature + * and tells KVM (L0) there were no changes in MSR bitmap for L2. + */ + if (!vmx->nested.force_msr_bitmap_recalc) { + struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx); + + if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap && + evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP) + return true; + } - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap); - if (is_error_page(page)) + if (kvm_vcpu_map_readonly(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), &map)) return false; - msr_bitmap_l1 = (unsigned long *)kmap(page); - if (nested_cpu_has_apic_reg_virt(vmcs12)) { - /* - * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it - * just lets the processor take the value from the virtual-APIC page; - * take those 256 bits directly from the L1 bitmap. - */ - for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { - unsigned word = msr / BITS_PER_LONG; - msr_bitmap_l0[word] = msr_bitmap_l1[word]; - msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0; + msr_bitmap_l1 = (unsigned long *)map.hva; + + /* + * To keep the control flow simple, pay eight 8-byte writes (sixteen + * 4-byte writes on 32-bit systems) up front to enable intercepts for + * the x2APIC MSR range and selectively toggle those relevant to L2. + */ + enable_x2apic_msr_intercepts(msr_bitmap_l0); + + if (nested_cpu_has_virt_x2apic_mode(vmcs12)) { + if (nested_cpu_has_apic_reg_virt(vmcs12)) { + /* + * L0 need not intercept reads for MSRs between 0x800 + * and 0x8ff, it just lets the processor take the value + * from the virtual-APIC page; take those 256 bits + * directly from the L1 bitmap. + */ + for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { + unsigned word = msr / BITS_PER_LONG; + + msr_bitmap_l0[word] = msr_bitmap_l1[word]; + } } - } else { - for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { - unsigned word = msr / BITS_PER_LONG; - msr_bitmap_l0[word] = ~0; - msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0; + + nested_vmx_disable_intercept_for_x2apic_msr( + msr_bitmap_l1, msr_bitmap_l0, + X2APIC_MSR(APIC_TASKPRI), + MSR_TYPE_R | MSR_TYPE_W); + + if (nested_cpu_has_vid(vmcs12)) { + nested_vmx_disable_intercept_for_x2apic_msr( + msr_bitmap_l1, msr_bitmap_l0, + X2APIC_MSR(APIC_EOI), + MSR_TYPE_W); + nested_vmx_disable_intercept_for_x2apic_msr( + msr_bitmap_l1, msr_bitmap_l0, + X2APIC_MSR(APIC_SELF_IPI), + MSR_TYPE_W); } } - nested_vmx_disable_intercept_for_msr( - msr_bitmap_l1, msr_bitmap_l0, - X2APIC_MSR(APIC_TASKPRI), - MSR_TYPE_W); + /* + * Always check vmcs01's bitmap to honor userspace MSR filters and any + * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through. + */ +#ifdef CONFIG_X86_64 + nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, + MSR_FS_BASE, MSR_TYPE_RW); - if (nested_cpu_has_vid(vmcs12)) { - nested_vmx_disable_intercept_for_msr( - msr_bitmap_l1, msr_bitmap_l0, - X2APIC_MSR(APIC_EOI), - MSR_TYPE_W); - nested_vmx_disable_intercept_for_msr( - msr_bitmap_l1, msr_bitmap_l0, - X2APIC_MSR(APIC_SELF_IPI), - MSR_TYPE_W); - } + nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, + MSR_GS_BASE, MSR_TYPE_RW); + + nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, + MSR_KERNEL_GS_BASE, MSR_TYPE_RW); +#endif + nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, + MSR_IA32_SPEC_CTRL, MSR_TYPE_RW); + + nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, + MSR_IA32_PRED_CMD, MSR_TYPE_W); + + nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, + MSR_IA32_FLUSH_CMD, MSR_TYPE_W); + + nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, + MSR_IA32_APERF, MSR_TYPE_R); + + nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, + MSR_IA32_MPERF, MSR_TYPE_R); + + nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, + MSR_IA32_U_CET, MSR_TYPE_RW); - if (spec_ctrl) - nested_vmx_disable_intercept_for_msr( - msr_bitmap_l1, msr_bitmap_l0, - MSR_IA32_SPEC_CTRL, - MSR_TYPE_R | MSR_TYPE_W); + nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, + MSR_IA32_S_CET, MSR_TYPE_RW); - if (pred_cmd) - nested_vmx_disable_intercept_for_msr( - msr_bitmap_l1, msr_bitmap_l0, - MSR_IA32_PRED_CMD, - MSR_TYPE_W); + nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, + MSR_IA32_PL0_SSP, MSR_TYPE_RW); - kunmap(page); - kvm_release_page_clean(page); + nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, + MSR_IA32_PL1_SSP, MSR_TYPE_RW); + + nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, + MSR_IA32_PL2_SSP, MSR_TYPE_RW); + + nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, + MSR_IA32_PL3_SSP, MSR_TYPE_RW); + + kvm_vcpu_unmap(vcpu, &map); + + vmx->nested.force_msr_bitmap_recalc = false; return true; } @@ -596,33 +752,39 @@ static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu, static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { - struct vmcs12 *shadow; - struct page *page; + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache; if (!nested_cpu_has_shadow_vmcs(vmcs12) || - vmcs12->vmcs_link_pointer == -1ull) + vmcs12->vmcs_link_pointer == INVALID_GPA) return; - shadow = get_shadow_vmcs12(vcpu); - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer); - - memcpy(shadow, kmap(page), VMCS12_SIZE); + if (ghc->gpa != vmcs12->vmcs_link_pointer && + kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, + vmcs12->vmcs_link_pointer, VMCS12_SIZE)) + return; - kunmap(page); - kvm_release_page_clean(page); + kvm_read_guest_cached(vcpu->kvm, ghc, get_shadow_vmcs12(vcpu), + VMCS12_SIZE); } static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { struct vcpu_vmx *vmx = to_vmx(vcpu); + struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache; if (!nested_cpu_has_shadow_vmcs(vmcs12) || - vmcs12->vmcs_link_pointer == -1ull) + vmcs12->vmcs_link_pointer == INVALID_GPA) return; - kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer, - get_shadow_vmcs12(vcpu), VMCS12_SIZE); + if (ghc->gpa != vmcs12->vmcs_link_pointer && + kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, + vmcs12->vmcs_link_pointer, VMCS12_SIZE)) + return; + + kvm_write_guest_cached(vcpu->kvm, ghc, get_shadow_vmcs12(vcpu), + VMCS12_SIZE); } /* @@ -635,16 +797,11 @@ static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu) VM_EXIT_ACK_INTR_ON_EXIT; } -static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu) -{ - return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu)); -} - static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) && - !page_address_valid(vcpu, vmcs12->apic_access_addr)) + CC(!page_address_valid(vcpu, vmcs12->apic_access_addr))) return -EINVAL; else return 0; @@ -663,16 +820,15 @@ static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu, * If virtualize x2apic mode is enabled, * virtualize apic access must be disabled. */ - if (nested_cpu_has_virt_x2apic_mode(vmcs12) && - nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) + if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) && + nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))) return -EINVAL; /* * If virtual interrupt delivery is enabled, * we must exit on external interrupts. */ - if (nested_cpu_has_vid(vmcs12) && - !nested_exit_on_intr(vcpu)) + if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu))) return -EINVAL; /* @@ -683,30 +839,45 @@ static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu, * bits 5:0 of posted_intr_desc_addr should be zero. */ if (nested_cpu_has_posted_intr(vmcs12) && - (!nested_cpu_has_vid(vmcs12) || - !nested_exit_intr_ack_set(vcpu) || - (vmcs12->posted_intr_nv & 0xff00) || - (vmcs12->posted_intr_desc_addr & 0x3f) || - (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))) + (CC(!nested_cpu_has_vid(vmcs12)) || + CC(!nested_exit_intr_ack_set(vcpu)) || + CC((vmcs12->posted_intr_nv & 0xff00)) || + CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64)))) return -EINVAL; /* tpr shadow is needed by all apicv features. */ - if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) + if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))) return -EINVAL; return 0; } +static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low, + vmx->nested.msrs.misc_high); + + return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER; +} + static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu, u32 count, u64 addr) { - int maxphyaddr; - if (count == 0) return 0; - maxphyaddr = cpuid_maxphyaddr(vcpu); - if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr || - (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) + + /* + * Exceeding the limit results in architecturally _undefined_ behavior, + * i.e. KVM is allowed to do literally anything in response to a bad + * limit. Immediately generate a consistency check so that code that + * consumes the count doesn't need to worry about extreme edge cases. + */ + if (count > nested_vmx_max_atomic_switch_msrs(vcpu)) + return -EINVAL; + + if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) || + !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1))) return -EINVAL; return 0; @@ -715,10 +886,12 @@ static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu, static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { - if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count, - vmcs12->vm_exit_msr_load_addr) || - nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count, - vmcs12->vm_exit_msr_store_addr)) + if (CC(nested_vmx_check_msr_switch(vcpu, + vmcs12->vm_exit_msr_load_count, + vmcs12->vm_exit_msr_load_addr)) || + CC(nested_vmx_check_msr_switch(vcpu, + vmcs12->vm_exit_msr_store_count, + vmcs12->vm_exit_msr_store_addr))) return -EINVAL; return 0; @@ -727,8 +900,9 @@ static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu, static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { - if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count, - vmcs12->vm_entry_msr_load_addr)) + if (CC(nested_vmx_check_msr_switch(vcpu, + vmcs12->vm_entry_msr_load_count, + vmcs12->vm_entry_msr_load_addr))) return -EINVAL; return 0; @@ -740,8 +914,8 @@ static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu, if (!nested_cpu_has_pml(vmcs12)) return 0; - if (!nested_cpu_has_ept(vmcs12) || - !page_address_valid(vcpu, vmcs12->pml_address)) + if (CC(!nested_cpu_has_ept(vmcs12)) || + CC(!page_address_valid(vcpu, vmcs12->pml_address))) return -EINVAL; return 0; @@ -750,8 +924,8 @@ static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu, static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { - if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) && - !nested_cpu_has_ept(vmcs12)) + if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) && + !nested_cpu_has_ept(vmcs12))) return -EINVAL; return 0; } @@ -759,8 +933,8 @@ static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu, static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { - if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) && - !nested_cpu_has_ept(vmcs12)) + if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) && + !nested_cpu_has_ept(vmcs12))) return -EINVAL; return 0; } @@ -771,8 +945,8 @@ static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu, if (!nested_cpu_has_shadow_vmcs(vmcs12)) return 0; - if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) || - !page_address_valid(vcpu, vmcs12->vmwrite_bitmap)) + if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) || + CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap))) return -EINVAL; return 0; @@ -782,12 +956,12 @@ static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu, struct vmx_msr_entry *e) { /* x2APIC MSR accesses are not allowed */ - if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8) + if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)) return -EINVAL; - if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */ - e->index == MSR_IA32_UCODE_REV) + if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */ + CC(e->index == MSR_IA32_UCODE_REV)) return -EINVAL; - if (e->reserved != 0) + if (CC(e->reserved != 0)) return -EINVAL; return 0; } @@ -795,9 +969,9 @@ static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu, static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu, struct vmx_msr_entry *e) { - if (e->index == MSR_FS_BASE || - e->index == MSR_GS_BASE || - e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */ + if (CC(e->index == MSR_FS_BASE) || + CC(e->index == MSR_GS_BASE) || + CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */ nested_vmx_msr_check_common(vcpu, e)) return -EINVAL; return 0; @@ -806,7 +980,7 @@ static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu, static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu, struct vmx_msr_entry *e) { - if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */ + if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */ nested_vmx_msr_check_common(vcpu, e)) return -EINVAL; return 0; @@ -815,15 +989,22 @@ static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu, /* * Load guest's/host's msr at nested entry/exit. * return 0 for success, entry index for failure. + * + * One of the failure modes for MSR load/store is when a list exceeds the + * virtual hardware's capacity. To maintain compatibility with hardware inasmuch + * as possible, process all valid entries before failing rather than precheck + * for a capacity violation. */ static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) { u32 i; struct vmx_msr_entry e; - struct msr_data msr; + u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu); - msr.host_initiated = false; for (i = 0; i < count; i++) { + if (WARN_ON_ONCE(i >= max_msr_list_size)) + goto fail; + if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e), &e, sizeof(e))) { pr_debug_ratelimited( @@ -837,9 +1018,7 @@ static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) __func__, i, e.index, e.reserved); goto fail; } - msr.index = e.index; - msr.data = e.value; - if (kvm_set_msr(vcpu, &msr)) { + if (kvm_emulate_msr_write(vcpu, e.index, e.value)) { pr_debug_ratelimited( "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", __func__, i, e.index, e.value); @@ -848,94 +1027,178 @@ static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) } return 0; fail: + /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */ return i + 1; } +static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu, + u32 msr_index, + u64 *data) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + /* + * If the L0 hypervisor stored a more accurate value for the TSC that + * does not include the time taken for emulation of the L2->L1 + * VM-exit in L0, use the more accurate value. + */ + if (msr_index == MSR_IA32_TSC) { + int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest, + MSR_IA32_TSC); + + if (i >= 0) { + u64 val = vmx->msr_autostore.guest.val[i].value; + + *data = kvm_read_l1_tsc(vcpu, val); + return true; + } + } + + if (kvm_emulate_msr_read(vcpu, msr_index, data)) { + pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__, + msr_index); + return false; + } + return true; +} + +static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i, + struct vmx_msr_entry *e) +{ + if (kvm_vcpu_read_guest(vcpu, + gpa + i * sizeof(*e), + e, 2 * sizeof(u32))) { + pr_debug_ratelimited( + "%s cannot read MSR entry (%u, 0x%08llx)\n", + __func__, i, gpa + i * sizeof(*e)); + return false; + } + if (nested_vmx_store_msr_check(vcpu, e)) { + pr_debug_ratelimited( + "%s check failed (%u, 0x%x, 0x%x)\n", + __func__, i, e->index, e->reserved); + return false; + } + return true; +} + static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) { + u64 data; u32 i; struct vmx_msr_entry e; + u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu); for (i = 0; i < count; i++) { - struct msr_data msr_info; - if (kvm_vcpu_read_guest(vcpu, - gpa + i * sizeof(e), - &e, 2 * sizeof(u32))) { - pr_debug_ratelimited( - "%s cannot read MSR entry (%u, 0x%08llx)\n", - __func__, i, gpa + i * sizeof(e)); + if (WARN_ON_ONCE(i >= max_msr_list_size)) return -EINVAL; - } - if (nested_vmx_store_msr_check(vcpu, &e)) { - pr_debug_ratelimited( - "%s check failed (%u, 0x%x, 0x%x)\n", - __func__, i, e.index, e.reserved); + + if (!read_and_check_msr_entry(vcpu, gpa, i, &e)) return -EINVAL; - } - msr_info.host_initiated = false; - msr_info.index = e.index; - if (kvm_get_msr(vcpu, &msr_info)) { - pr_debug_ratelimited( - "%s cannot read MSR (%u, 0x%x)\n", - __func__, i, e.index); + + if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data)) return -EINVAL; - } + if (kvm_vcpu_write_guest(vcpu, gpa + i * sizeof(e) + offsetof(struct vmx_msr_entry, value), - &msr_info.data, sizeof(msr_info.data))) { + &data, sizeof(data))) { pr_debug_ratelimited( "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", - __func__, i, e.index, msr_info.data); + __func__, i, e.index, data); return -EINVAL; } } return 0; } -static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val) +static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index) { - unsigned long invalid_mask; + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + u32 count = vmcs12->vm_exit_msr_store_count; + u64 gpa = vmcs12->vm_exit_msr_store_addr; + struct vmx_msr_entry e; + u32 i; - invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu); - return (val & invalid_mask) == 0; + for (i = 0; i < count; i++) { + if (!read_and_check_msr_entry(vcpu, gpa, i, &e)) + return false; + + if (e.index == msr_index) + return true; + } + return false; } -/* - * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are - * emulating VM entry into a guest with EPT enabled. - * Returns 0 on success, 1 on failure. Invalid state exit qualification code - * is assigned to entry_failure_code on failure. - */ -static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept, - u32 *entry_failure_code) +static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu, + u32 msr_index) { - if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) { - if (!nested_cr3_valid(vcpu, cr3)) { - *entry_failure_code = ENTRY_FAIL_DEFAULT; - return 1; + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmx_msrs *autostore = &vmx->msr_autostore.guest; + bool in_vmcs12_store_list; + int msr_autostore_slot; + bool in_autostore_list; + int last; + + msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index); + in_autostore_list = msr_autostore_slot >= 0; + in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index); + + if (in_vmcs12_store_list && !in_autostore_list) { + if (autostore->nr == MAX_NR_LOADSTORE_MSRS) { + /* + * Emulated VMEntry does not fail here. Instead a less + * accurate value will be returned by + * nested_vmx_get_vmexit_msr_value() by reading KVM's + * internal MSR state instead of reading the value from + * the vmcs02 VMExit MSR-store area. + */ + pr_warn_ratelimited( + "Not enough msr entries in msr_autostore. Can't add msr %x\n", + msr_index); + return; } + last = autostore->nr++; + autostore->val[last].index = msr_index; + } else if (!in_vmcs12_store_list && in_autostore_list) { + last = --autostore->nr; + autostore->val[msr_autostore_slot] = autostore->val[last]; + } +} - /* - * If PAE paging and EPT are both on, CR3 is not used by the CPU and - * must not be dereferenced. - */ - if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) && - !nested_ept) { - if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) { - *entry_failure_code = ENTRY_FAIL_PDPTE; - return 1; - } - } +/* + * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are + * emulating VM-Entry into a guest with EPT enabled. On failure, the expected + * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to + * @entry_failure_code. + */ +static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, + bool nested_ept, bool reload_pdptrs, + enum vm_entry_failure_code *entry_failure_code) +{ + if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) { + *entry_failure_code = ENTRY_FAIL_DEFAULT; + return -EINVAL; } - if (!nested_ept) - kvm_mmu_new_cr3(vcpu, cr3, false); + /* + * If PAE paging and EPT are both on, CR3 is not used by the CPU and + * must not be dereferenced. + */ + if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) && + CC(!load_pdptrs(vcpu, cr3))) { + *entry_failure_code = ENTRY_FAIL_PDPTE; + return -EINVAL; + } vcpu->arch.cr3 = cr3; - __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); + kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); + + /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */ + kvm_init_mmu(vcpu); - kvm_init_mmu(vcpu, false); + if (!nested_ept) + kvm_mmu_new_pgd(vcpu, cr3); return 0; } @@ -945,7 +1208,9 @@ static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool ne * populated by L2 differently than TLB entries populated * by L1. * - * If L1 uses EPT, then TLB entries are tagged with different EPTP. + * If L0 uses EPT, L1 and L2 run with different EPTP because + * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries + * are tagged with different EPTP. * * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged * with different VPID (L1 entries are tagged with vmx->vpid @@ -955,26 +1220,65 @@ static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - return nested_cpu_has_ept(vmcs12) || + return enable_ept || (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02); } -static u16 nested_get_vpid02(struct kvm_vcpu *vcpu) +static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12, + bool is_vmenter) { struct vcpu_vmx *vmx = to_vmx(vcpu); - return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid; -} + /* Handle pending Hyper-V TLB flush requests */ + kvm_hv_nested_transtion_tlb_flush(vcpu, enable_ept); + /* + * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the + * same VPID as the host, and so architecturally, linear and combined + * mappings for VPID=0 must be flushed at VM-Enter and VM-Exit. KVM + * emulates L2 sharing L1's VPID=0 by using vpid01 while running L2, + * and so KVM must also emulate TLB flush of VPID=0, i.e. vpid01. This + * is required if VPID is disabled in KVM, as a TLB flush (there are no + * VPIDs) still occurs from L1's perspective, and KVM may need to + * synchronize the MMU in response to the guest TLB flush. + * + * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use. + * EPT is a special snowflake, as guest-physical mappings aren't + * flushed on VPID invalidations, including VM-Enter or VM-Exit with + * VPID disabled. As a result, KVM _never_ needs to sync nEPT + * entries on VM-Enter because L1 can't rely on VM-Enter to flush + * those mappings. + */ + if (!nested_cpu_has_vpid(vmcs12)) { + kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); + return; + } -static inline bool vmx_control_verify(u32 control, u32 low, u32 high) -{ - return fixed_bits_valid(control, low, high); -} + /* L2 should never have a VPID if VPID is disabled. */ + WARN_ON(!enable_vpid); -static inline u64 vmx_control_msr(u32 low, u32 high) -{ - return low | ((u64)high << 32); + /* + * VPID is enabled and in use by vmcs12. If vpid12 is changing, then + * emulate a guest TLB flush as KVM does not track vpid12 history nor + * is the VPID incorporated into the MMU context. I.e. KVM must assume + * that the new vpid12 has never been used and thus represents a new + * guest ASID that cannot have entries in the TLB. + */ + if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) { + vmx->nested.last_vpid = vmcs12->virtual_processor_id; + kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); + return; + } + + /* + * If VPID is enabled, used by vmc12, and vpid12 is not changing but + * does not have a unique TLB tag (ASID), i.e. EPT is disabled and + * KVM was unable to allocate a VPID for L2, flush the current context + * as the effective ASID is common to both L1 and L2. + */ + if (!nested_has_guest_tlb_tag(vcpu)) + kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); } static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask) @@ -987,21 +1291,33 @@ static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask) static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data) { - const u64 feature_and_reserved = - /* feature (except bit 48; see below) */ - BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) | - /* reserved */ - BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56); - u64 vmx_basic = vmx->nested.msrs.basic; + const u64 feature_bits = VMX_BASIC_DUAL_MONITOR_TREATMENT | + VMX_BASIC_INOUT | + VMX_BASIC_TRUE_CTLS | + VMX_BASIC_NO_HW_ERROR_CODE_CC; + + const u64 reserved_bits = GENMASK_ULL(63, 57) | + GENMASK_ULL(47, 45) | + BIT_ULL(31); + + u64 vmx_basic = vmcs_config.nested.basic; + + BUILD_BUG_ON(feature_bits & reserved_bits); - if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved)) + /* + * Except for 32BIT_PHYS_ADDR_ONLY, which is an anti-feature bit (has + * inverted polarity), the incoming value must not set feature bits or + * reserved bits that aren't allowed/supported by KVM. Fields, i.e. + * multi-bit values, are explicitly checked below. + */ + if (!is_bitwise_subset(vmx_basic, data, feature_bits | reserved_bits)) return -EINVAL; /* * KVM does not emulate a version of VMX that constrains physical * addresses of VMX structures (e.g. VMCS) to 32-bits. */ - if (data & BIT_ULL(48)) + if (data & VMX_BASIC_32BIT_PHYS_ADDR_ONLY) return -EINVAL; if (vmx_basic_vmcs_revision_id(vmx_basic) != @@ -1015,36 +1331,42 @@ static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data) return 0; } -static int -vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) +static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index, + u32 **low, u32 **high) { - u64 supported; - u32 *lowp, *highp; - switch (msr_index) { case MSR_IA32_VMX_TRUE_PINBASED_CTLS: - lowp = &vmx->nested.msrs.pinbased_ctls_low; - highp = &vmx->nested.msrs.pinbased_ctls_high; + *low = &msrs->pinbased_ctls_low; + *high = &msrs->pinbased_ctls_high; break; case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: - lowp = &vmx->nested.msrs.procbased_ctls_low; - highp = &vmx->nested.msrs.procbased_ctls_high; + *low = &msrs->procbased_ctls_low; + *high = &msrs->procbased_ctls_high; break; case MSR_IA32_VMX_TRUE_EXIT_CTLS: - lowp = &vmx->nested.msrs.exit_ctls_low; - highp = &vmx->nested.msrs.exit_ctls_high; + *low = &msrs->exit_ctls_low; + *high = &msrs->exit_ctls_high; break; case MSR_IA32_VMX_TRUE_ENTRY_CTLS: - lowp = &vmx->nested.msrs.entry_ctls_low; - highp = &vmx->nested.msrs.entry_ctls_high; + *low = &msrs->entry_ctls_low; + *high = &msrs->entry_ctls_high; break; case MSR_IA32_VMX_PROCBASED_CTLS2: - lowp = &vmx->nested.msrs.secondary_ctls_low; - highp = &vmx->nested.msrs.secondary_ctls_high; + *low = &msrs->secondary_ctls_low; + *high = &msrs->secondary_ctls_high; break; default: BUG(); } +} + +static int +vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) +{ + u32 *lowp, *highp; + u64 supported; + + vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp); supported = vmx_control_msr(*lowp, *highp); @@ -1056,6 +1378,7 @@ vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32))) return -EINVAL; + vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp); *lowp = data; *highp = data >> 32; return 0; @@ -1063,18 +1386,29 @@ vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data) { - const u64 feature_and_reserved_bits = - /* feature */ - BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) | - BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) | - /* reserved */ - GENMASK_ULL(13, 9) | BIT_ULL(31); - u64 vmx_misc; + const u64 feature_bits = VMX_MISC_SAVE_EFER_LMA | + VMX_MISC_ACTIVITY_HLT | + VMX_MISC_ACTIVITY_SHUTDOWN | + VMX_MISC_ACTIVITY_WAIT_SIPI | + VMX_MISC_INTEL_PT | + VMX_MISC_RDMSR_IN_SMM | + VMX_MISC_VMWRITE_SHADOW_RO_FIELDS | + VMX_MISC_VMXOFF_BLOCK_SMI | + VMX_MISC_ZERO_LEN_INS; + + const u64 reserved_bits = BIT_ULL(31) | GENMASK_ULL(13, 9); - vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low, - vmx->nested.msrs.misc_high); + u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low, + vmcs_config.nested.misc_high); - if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits)) + BUILD_BUG_ON(feature_bits & reserved_bits); + + /* + * The incoming value must not set feature bits or reserved bits that + * aren't allowed/supported by KVM. Fields, i.e. multi-bit values, are + * explicitly checked below. + */ + if (!is_bitwise_subset(vmx_misc, data, feature_bits | reserved_bits)) return -EINVAL; if ((vmx->nested.msrs.pinbased_ctls_high & @@ -1095,23 +1429,13 @@ static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data) vmx->nested.msrs.misc_low = data; vmx->nested.msrs.misc_high = data >> 32; - /* - * If L1 has read-only VM-exit information fields, use the - * less permissive vmx_vmwrite_bitmap to specify write - * permissions for the shadow VMCS. - */ - if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu)) - vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap)); - return 0; } static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data) { - u64 vmx_ept_vpid_cap; - - vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps, - vmx->nested.msrs.vpid_caps); + u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps, + vmcs_config.nested.vpid_caps); /* Every bit is either reserved or a feature bit. */ if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL)) @@ -1122,20 +1446,21 @@ static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data) return 0; } -static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) +static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index) { - u64 *msr; - switch (msr_index) { case MSR_IA32_VMX_CR0_FIXED0: - msr = &vmx->nested.msrs.cr0_fixed0; - break; + return &msrs->cr0_fixed0; case MSR_IA32_VMX_CR4_FIXED0: - msr = &vmx->nested.msrs.cr4_fixed0; - break; + return &msrs->cr4_fixed0; default: BUG(); } +} + +static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) +{ + const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index); /* * 1 bits (which indicates bits which "must-be-1" during VMX operation) @@ -1144,7 +1469,7 @@ static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) if (!is_bitwise_subset(data, *msr, -1ULL)) return -EINVAL; - *msr = data; + *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data; return 0; } @@ -1204,6 +1529,11 @@ int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) case MSR_IA32_VMX_VMCS_ENUM: vmx->nested.msrs.vmcs_enum = data; return 0; + case MSR_IA32_VMX_VMFUNC: + if (data & ~vmcs_config.nested.vmfunc_controls) + return -EINVAL; + vmx->nested.msrs.vmfunc_controls = data; + return 0; default: /* * The rest of the VMX capability MSRs do not support restore. @@ -1291,41 +1621,32 @@ int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata) } /* - * Copy the writable VMCS shadow fields back to the VMCS12, in case - * they have been modified by the L1 guest. Note that the "read-only" - * VM-exit information fields are actually writable if the vCPU is - * configured to support "VMWRITE to any supported field in the VMCS." + * Copy the writable VMCS shadow fields back to the VMCS12, in case they have + * been modified by the L1 guest. Note, "writable" in this context means + * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of + * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only" + * VM-exit information fields (which are actually writable if the vCPU is + * configured to support "VMWRITE to any supported field in the VMCS"). */ static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx) { - const u16 *fields[] = { - shadow_read_write_fields, - shadow_read_only_fields - }; - const int max_fields[] = { - max_shadow_read_write_fields, - max_shadow_read_only_fields - }; - int i, q; - unsigned long field; - u64 field_value; struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; + struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu); + struct shadow_vmcs_field field; + unsigned long val; + int i; + + if (WARN_ON(!shadow_vmcs)) + return; preempt_disable(); vmcs_load(shadow_vmcs); - for (q = 0; q < ARRAY_SIZE(fields); q++) { - for (i = 0; i < max_fields[q]; i++) { - field = fields[q][i]; - field_value = __vmcs_readl(field); - vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value); - } - /* - * Skip the VM-exit information fields if they are read-only. - */ - if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu)) - break; + for (i = 0; i < max_shadow_read_write_fields; i++) { + field = shadow_read_write_fields[i]; + val = __vmcs_readl(field.encoding); + vmcs12_write_any(vmcs12, field.encoding, field.offset, val); } vmcs_clear(shadow_vmcs); @@ -1336,7 +1657,7 @@ static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx) static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx) { - const u16 *fields[] = { + const struct shadow_vmcs_field *fields[] = { shadow_read_write_fields, shadow_read_only_fields }; @@ -1344,18 +1665,23 @@ static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx) max_shadow_read_write_fields, max_shadow_read_only_fields }; - int i, q; - unsigned long field; - u64 field_value = 0; struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; + struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu); + struct shadow_vmcs_field field; + unsigned long val; + int i, q; + + if (WARN_ON(!shadow_vmcs)) + return; vmcs_load(shadow_vmcs); for (q = 0; q < ARRAY_SIZE(fields); q++) { for (i = 0; i < max_fields[q]; i++) { field = fields[q][i]; - vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value); - __vmcs_writel(field, field_value); + val = vmcs12_read_any(vmcs12, field.encoding, + field.offset); + __vmcs_writel(field.encoding, val); } } @@ -1363,40 +1689,53 @@ static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx) vmcs_load(vmx->loaded_vmcs->vmcs); } -static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx) +static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields) { +#ifdef CONFIG_KVM_HYPERV struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12; - struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs; + struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx); + struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu); /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */ vmcs12->tpr_threshold = evmcs->tpr_threshold; vmcs12->guest_rip = evmcs->guest_rip; - if (unlikely(!(evmcs->hv_clean_fields & + if (unlikely(!(hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) { + hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page; + hv_vcpu->nested.vm_id = evmcs->hv_vm_id; + hv_vcpu->nested.vp_id = evmcs->hv_vp_id; + } + + if (unlikely(!(hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) { vmcs12->guest_rsp = evmcs->guest_rsp; vmcs12->guest_rflags = evmcs->guest_rflags; vmcs12->guest_interruptibility_info = evmcs->guest_interruptibility_info; + /* + * Not present in struct vmcs12: + * vmcs12->guest_ssp = evmcs->guest_ssp; + */ } - if (unlikely(!(evmcs->hv_clean_fields & + if (unlikely(!(hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) { vmcs12->cpu_based_vm_exec_control = evmcs->cpu_based_vm_exec_control; } - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) { + if (unlikely(!(hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) { vmcs12->exception_bitmap = evmcs->exception_bitmap; } - if (unlikely(!(evmcs->hv_clean_fields & + if (unlikely(!(hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) { vmcs12->vm_entry_controls = evmcs->vm_entry_controls; } - if (unlikely(!(evmcs->hv_clean_fields & + if (unlikely(!(hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) { vmcs12->vm_entry_intr_info_field = evmcs->vm_entry_intr_info_field; @@ -1406,7 +1745,7 @@ static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx) evmcs->vm_entry_instruction_len; } - if (unlikely(!(evmcs->hv_clean_fields & + if (unlikely(!(hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) { vmcs12->host_ia32_pat = evmcs->host_ia32_pat; vmcs12->host_ia32_efer = evmcs->host_ia32_efer; @@ -1424,10 +1763,17 @@ static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx) vmcs12->host_fs_selector = evmcs->host_fs_selector; vmcs12->host_gs_selector = evmcs->host_gs_selector; vmcs12->host_tr_selector = evmcs->host_tr_selector; + vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl; + /* + * Not present in struct vmcs12: + * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet; + * vmcs12->host_ssp = evmcs->host_ssp; + * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr; + */ } - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) { + if (unlikely(!(hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) { vmcs12->pin_based_vm_exec_control = evmcs->pin_based_vm_exec_control; vmcs12->vm_exit_controls = evmcs->vm_exit_controls; @@ -1435,18 +1781,18 @@ static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx) evmcs->secondary_vm_exec_control; } - if (unlikely(!(evmcs->hv_clean_fields & + if (unlikely(!(hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) { vmcs12->io_bitmap_a = evmcs->io_bitmap_a; vmcs12->io_bitmap_b = evmcs->io_bitmap_b; } - if (unlikely(!(evmcs->hv_clean_fields & + if (unlikely(!(hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) { vmcs12->msr_bitmap = evmcs->msr_bitmap; } - if (unlikely(!(evmcs->hv_clean_fields & + if (unlikely(!(hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) { vmcs12->guest_es_base = evmcs->guest_es_base; vmcs12->guest_cs_base = evmcs->guest_cs_base; @@ -1486,14 +1832,16 @@ static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx) vmcs12->guest_tr_selector = evmcs->guest_tr_selector; } - if (unlikely(!(evmcs->hv_clean_fields & + if (unlikely(!(hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) { vmcs12->tsc_offset = evmcs->tsc_offset; vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr; vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap; + vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap; + vmcs12->tsc_multiplier = evmcs->tsc_multiplier; } - if (unlikely(!(evmcs->hv_clean_fields & + if (unlikely(!(hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) { vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask; vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask; @@ -1505,7 +1853,7 @@ static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx) vmcs12->guest_dr7 = evmcs->guest_dr7; } - if (unlikely(!(evmcs->hv_clean_fields & + if (unlikely(!(hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) { vmcs12->host_fs_base = evmcs->host_fs_base; vmcs12->host_gs_base = evmcs->host_gs_base; @@ -1515,13 +1863,13 @@ static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx) vmcs12->host_rsp = evmcs->host_rsp; } - if (unlikely(!(evmcs->hv_clean_fields & + if (unlikely(!(hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) { vmcs12->ept_pointer = evmcs->ept_pointer; vmcs12->virtual_processor_id = evmcs->virtual_processor_id; } - if (unlikely(!(evmcs->hv_clean_fields & + if (unlikely(!(hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) { vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer; vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl; @@ -1538,6 +1886,13 @@ static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx) vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs; vmcs12->guest_activity_state = evmcs->guest_activity_state; vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs; + vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl; + /* + * Not present in struct vmcs12: + * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet; + * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl; + * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr; + */ } /* @@ -1545,10 +1900,6 @@ static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx) * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr; * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr; * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr; - * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0; - * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1; - * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2; - * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3; * vmcs12->page_fault_error_code_mask = * evmcs->page_fault_error_code_mask; * vmcs12->page_fault_error_code_match = @@ -1580,13 +1931,17 @@ static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx) * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip; */ - return 0; + return; +#else /* CONFIG_KVM_HYPERV */ + KVM_BUG_ON(1, vmx->vcpu.kvm); +#endif /* CONFIG_KVM_HYPERV */ } -static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx) +static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx) { +#ifdef CONFIG_KVM_HYPERV struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12; - struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs; + struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx); /* * Should not be changed by KVM: @@ -1613,7 +1968,7 @@ static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx) * evmcs->host_gdtr_base = vmcs12->host_gdtr_base; * evmcs->host_idtr_base = vmcs12->host_idtr_base; * evmcs->host_rsp = vmcs12->host_rsp; - * sync_vmcs12() doesn't read these: + * sync_vmcs02_to_vmcs12() doesn't read these: * evmcs->io_bitmap_a = vmcs12->io_bitmap_a; * evmcs->io_bitmap_b = vmcs12->io_bitmap_b; * evmcs->msr_bitmap = vmcs12->msr_bitmap; @@ -1622,10 +1977,6 @@ static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx) * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr; * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr; * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr; - * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0; - * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1; - * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2; - * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3; * evmcs->tpr_threshold = vmcs12->tpr_threshold; * evmcs->virtual_processor_id = vmcs12->virtual_processor_id; * evmcs->exception_bitmap = vmcs12->exception_bitmap; @@ -1648,12 +1999,23 @@ static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx) * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count; * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count; * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count; + * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl; + * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl; + * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap; + * evmcs->tsc_multiplier = vmcs12->tsc_multiplier; * * Not present in struct vmcs12: * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx; * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi; * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi; * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip; + * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet; + * evmcs->host_ssp = vmcs12->host_ssp; + * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr; + * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet; + * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl; + * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr; + * evmcs->guest_ssp = vmcs12->guest_ssp; */ evmcs->guest_es_selector = vmcs12->guest_es_selector; @@ -1747,43 +2109,43 @@ static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx) evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs; - return 0; + return; +#else /* CONFIG_KVM_HYPERV */ + KVM_BUG_ON(1, vmx->vcpu.kvm); +#endif /* CONFIG_KVM_HYPERV */ } /* * This is an equivalent of the nested hypervisor executing the vmptrld * instruction. */ -static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu, - bool from_launch) +static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld( + struct kvm_vcpu *vcpu, bool from_launch) { +#ifdef CONFIG_KVM_HYPERV struct vcpu_vmx *vmx = to_vmx(vcpu); - struct hv_vp_assist_page assist_page; + bool evmcs_gpa_changed = false; + u64 evmcs_gpa; - if (likely(!vmx->nested.enlightened_vmcs_enabled)) - return 1; + if (likely(!guest_cpu_cap_has_evmcs(vcpu))) + return EVMPTRLD_DISABLED; - if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page))) - return 1; - - if (unlikely(!assist_page.enlighten_vmentry)) - return 1; - - if (unlikely(assist_page.current_nested_vmcs != - vmx->nested.hv_evmcs_vmptr)) { + evmcs_gpa = nested_get_evmptr(vcpu); + if (!evmptr_is_valid(evmcs_gpa)) { + nested_release_evmcs(vcpu); + return EVMPTRLD_DISABLED; + } - if (!vmx->nested.hv_evmcs) - vmx->nested.current_vmptr = -1ull; + if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) { + vmx->nested.current_vmptr = INVALID_GPA; nested_release_evmcs(vcpu); - vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page( - vcpu, assist_page.current_nested_vmcs); - - if (unlikely(is_error_page(vmx->nested.hv_evmcs_page))) - return 0; + if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa), + &vmx->nested.hv_evmcs_map)) + return EVMPTRLD_ERROR; - vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page); + vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva; /* * Currently, KVM only supports eVMCS version 1 @@ -1810,19 +2172,12 @@ static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu, if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) && (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) { nested_release_evmcs(vcpu); - return 0; + return EVMPTRLD_VMFAIL; } - vmx->nested.dirty_vmcs12 = true; - /* - * As we keep L2 state for one guest only 'hv_clean_fields' mask - * can't be used when we switch between them. Reset it here for - * simplicity. - */ - vmx->nested.hv_evmcs->hv_clean_fields &= - ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; - vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs; + vmx->nested.hv_evmcs_vmptr = evmcs_gpa; + evmcs_gpa_changed = true; /* * Unlike normal vmcs12, enlightened vmcs12 is not fully * reloaded from guest's memory (read only fields, fields not @@ -1836,31 +2191,34 @@ static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu, } } - return 1; + + /* + * Clean fields data can't be used on VMLAUNCH and when we switch + * between different L2 guests as KVM keeps a single VMCS12 per L1. + */ + if (from_launch || evmcs_gpa_changed) { + vmx->nested.hv_evmcs->hv_clean_fields &= + ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; + + vmx->nested.force_msr_bitmap_recalc = true; + } + + return EVMPTRLD_SUCCEEDED; +#else + return EVMPTRLD_DISABLED; +#endif } -void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu) +void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); - /* - * hv_evmcs may end up being not mapped after migration (when - * L2 was running), map it here to make sure vmcs12 changes are - * properly reflected. - */ - if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) - nested_vmx_handle_enlightened_vmptrld(vcpu, false); - - if (vmx->nested.hv_evmcs) { + if (nested_vmx_is_evmptr12_valid(vmx)) copy_vmcs12_to_enlightened(vmx); - /* All fields are clean */ - vmx->nested.hv_evmcs->hv_clean_fields |= - HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; - } else { + else copy_vmcs12_to_shadow(vmx); - } - vmx->nested.need_vmcs12_sync = false; + vmx->nested.need_vmcs12_to_shadow_sync = false; } static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer) @@ -1875,9 +2233,25 @@ static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer) return HRTIMER_NORESTART; } -static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu) +static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >> + VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; + + if (!vmx->nested.has_preemption_timer_deadline) { + vmx->nested.preemption_timer_deadline = + vmcs12->vmx_preemption_timer_value + l1_scaled_tsc; + vmx->nested.has_preemption_timer_deadline = true; + } + return vmx->nested.preemption_timer_deadline - l1_scaled_tsc; +} + +static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu, + u64 preemption_timeout) { - u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value; struct vcpu_vmx *vmx = to_vmx(vcpu); /* @@ -1896,7 +2270,8 @@ static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu) preemption_timeout *= 1000000; do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz); hrtimer_start(&vmx->nested.preemption_timer, - ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL); + ktime_add_ns(ktime_get(), preemption_timeout), + HRTIMER_MODE_ABS_PINNED); } static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) @@ -1912,6 +2287,8 @@ static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx) { + struct kvm *kvm = vmx->vcpu.kvm; + /* * If vmcs02 hasn't been initialized, set the constant vmcs02 state * according to L0's settings (vmcs12 is irrelevant here). Host @@ -1922,13 +2299,8 @@ static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx) return; vmx->nested.vmcs02_initialized = true; - /* - * We don't care what the EPTP value is we just need to guarantee - * it's valid so we don't get a false positive when doing early - * consistency checks. - */ - if (enable_ept && nested_early_check) - vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0)); + if (vmx->ve_info) + vmcs_write64(VE_INFORMATION_ADDRESS, __pa(vmx->ve_info)); /* All VMFUNCs are currently emulated through L0 vmexits. */ if (cpu_has_vmx_vmfunc()) @@ -1940,28 +2312,52 @@ static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx) if (cpu_has_vmx_msr_bitmap()) vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap)); - if (enable_pml) - vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); + /* + * PML is emulated for L2, but never enabled in hardware as the MMU + * handles A/D emulation. Disabling PML for L2 also avoids having to + * deal with filtering out L2 GPAs from the buffer. + */ + if (enable_pml) { + vmcs_write64(PML_ADDRESS, 0); + vmcs_write16(GUEST_PML_INDEX, -1); + } + + if (cpu_has_vmx_encls_vmexit()) + vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA); + + if (kvm_notify_vmexit_enabled(kvm)) + vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); /* * Set the MSR load/store lists to match L0's settings. Only the * addresses are constant (for vmcs02), the counts can change based * on L2's behavior, e.g. switching to/from long mode. */ - vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); + vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val)); vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); vmx_set_constant_host_state(vmx); } -static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx, +static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) { prepare_vmcs02_constant_state(vmx); - vmcs_write64(VMCS_LINK_POINTER, -1ull); + vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); + /* + * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the + * same VPID as the host. Emulate this behavior by using vpid01 for L2 + * if VPID is disabled in vmcs12. Note, if VPID is disabled, VM-Enter + * and VM-Exit are architecturally required to flush VPID=0, but *only* + * VPID=0. I.e. using vpid02 would be ok (so long as KVM emulates the + * required flushes), but doing so would cause KVM to over-flush. E.g. + * if L1 runs L2 X with VPID12=1, then runs L2 Y with VPID12 disabled, + * and then runs L2 X again, then KVM can and should retain TLB entries + * for VPID12=1. + */ if (enable_vpid) { if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02); @@ -1970,116 +2366,114 @@ static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx, } } -static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) +static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01, + struct vmcs12 *vmcs12) { - u32 exec_control, vmcs12_exec_ctrl; + u32 exec_control; u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12); - if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) - prepare_vmcs02_early_full(vmx, vmcs12); - - /* - * HOST_RSP is normally set correctly in vmx_vcpu_run() just before - * entry, but only if the current (host) sp changed from the value - * we wrote last (vmx->host_rsp). This cache is no longer relevant - * if we switch vmcs, and rather than hold a separate cache per vmcs, - * here we just force the write to happen on entry. host_rsp will - * also be written unconditionally by nested_vmx_check_vmentry_hw() - * if we are doing early consistency checks via hardware. - */ - vmx->host_rsp = 0; + if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) + prepare_vmcs02_early_rare(vmx, vmcs12); /* * PIN CONTROLS */ - exec_control = vmcs12->pin_based_vm_exec_control; - - /* Preemption timer setting is computed directly in vmx_vcpu_run. */ - exec_control |= vmcs_config.pin_based_exec_ctrl; - exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; - vmx->loaded_vmcs->hv_timer_armed = false; + exec_control = __pin_controls_get(vmcs01); + exec_control |= (vmcs12->pin_based_vm_exec_control & + ~PIN_BASED_VMX_PREEMPTION_TIMER); /* Posted interrupts setting is only taken from vmcs12. */ + vmx->nested.pi_pending = false; if (nested_cpu_has_posted_intr(vmcs12)) { vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv; - vmx->nested.pi_pending = false; } else { + vmx->nested.posted_intr_nv = -1; exec_control &= ~PIN_BASED_POSTED_INTR; } - vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control); + pin_controls_set(vmx, exec_control); /* * EXEC CONTROLS */ - exec_control = vmx_exec_control(vmx); /* L0's desires */ - exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; - exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; + exec_control = __exec_controls_get(vmcs01); /* L0's desires */ + exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING; + exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING; exec_control &= ~CPU_BASED_TPR_SHADOW; exec_control |= vmcs12->cpu_based_vm_exec_control; - /* - * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if - * nested_get_vmcs12_pages can't fix it up, the illegal value - * will result in a VM entry failure. - */ - if (exec_control & CPU_BASED_TPR_SHADOW) { - vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull); + vmx->nested.l1_tpr_threshold = -1; + if (exec_control & CPU_BASED_TPR_SHADOW) vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold); - } else { #ifdef CONFIG_X86_64 + else exec_control |= CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING; #endif - } /* * A vmexit (to either L1 hypervisor or L0 userspace) is always needed * for I/O port accesses. */ - exec_control &= ~CPU_BASED_USE_IO_BITMAPS; exec_control |= CPU_BASED_UNCOND_IO_EXITING; - vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control); + exec_control &= ~CPU_BASED_USE_IO_BITMAPS; + + /* + * This bit will be computed in nested_get_vmcs12_pages, because + * we do not have access to L1's MSR bitmap yet. For now, keep + * the same bit as before, hoping to avoid multiple VMWRITEs that + * only set/clear this bit. + */ + exec_control &= ~CPU_BASED_USE_MSR_BITMAPS; + exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS; + + exec_controls_set(vmx, exec_control); /* * SECONDARY EXEC CONTROLS */ if (cpu_has_secondary_exec_ctrls()) { - exec_control = vmx->secondary_exec_control; + exec_control = __secondary_exec_controls_get(vmcs01); /* Take the following fields only from vmcs12 */ exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | SECONDARY_EXEC_ENABLE_INVPCID | - SECONDARY_EXEC_RDTSCP | - SECONDARY_EXEC_XSAVES | + SECONDARY_EXEC_ENABLE_RDTSCP | + SECONDARY_EXEC_ENABLE_XSAVES | + SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | SECONDARY_EXEC_APIC_REGISTER_VIRT | - SECONDARY_EXEC_ENABLE_VMFUNC); + SECONDARY_EXEC_ENABLE_VMFUNC | + SECONDARY_EXEC_DESC); + if (nested_cpu_has(vmcs12, - CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) { - vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control & - ~SECONDARY_EXEC_ENABLE_PML; - exec_control |= vmcs12_exec_ctrl; - } + CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) + exec_control |= vmcs12->secondary_vm_exec_control; + + /* PML is emulated and never enabled in hardware for L2. */ + exec_control &= ~SECONDARY_EXEC_ENABLE_PML; /* VMCS shadowing for L2 is emulated for now */ exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; + /* + * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4() + * will not have to rewrite the controls just for this bit. + */ + if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP)) + exec_control |= SECONDARY_EXEC_DESC; + if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) vmcs_write16(GUEST_INTR_STATUS, vmcs12->guest_intr_status); - /* - * Write an illegal value to APIC_ACCESS_ADDR. Later, - * nested_get_vmcs12_pages will either fix it up or - * remove the VM execution control. - */ - if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) - vmcs_write64(APIC_ACCESS_ADDR, -1ull); + if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST)) + exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; if (exec_control & SECONDARY_EXEC_ENCLS_EXITING) - vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); + vmx_write_encls_bitmap(&vmx->vcpu, vmcs12); - vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); + secondary_exec_controls_set(vmx, exec_control); } /* @@ -2089,16 +2483,22 @@ static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate * on the related bits (if supported by the CPU) in the hope that * we can avoid VMWrites during vmx_set_efer(). + * + * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is + * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to + * do the same for L2. */ - exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) & - ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER; + exec_control = __vm_entry_controls_get(vmcs01); + exec_control |= (vmcs12->vm_entry_controls & + ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL); + exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER); if (cpu_has_load_ia32_efer()) { if (guest_efer & EFER_LMA) exec_control |= VM_ENTRY_IA32E_MODE; - if (guest_efer != host_efer) + if (guest_efer != kvm_host.efer) exec_control |= VM_ENTRY_LOAD_IA32_EFER; } - vm_entry_controls_init(vmx, exec_control); + vm_entry_controls_set(vmx, exec_control); /* * EXIT CONTROLS @@ -2107,20 +2507,12 @@ static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER * bits may be modified by vmx_set_efer() in prepare_vmcs02(). */ - exec_control = vmx_vmexit_ctrl(); - if (cpu_has_load_ia32_efer() && guest_efer != host_efer) + exec_control = __vm_exit_controls_get(vmcs01); + if (cpu_has_load_ia32_efer() && guest_efer != kvm_host.efer) exec_control |= VM_EXIT_LOAD_IA32_EFER; - vm_exit_controls_init(vmx, exec_control); - - /* - * Conceptually we want to copy the PML address and index from - * vmcs01 here, and then back to vmcs01 on nested vmexit. But, - * since we always flush the log on each vmexit and never change - * the PML address (once set), this happens to be equivalent to - * simply resetting the index in vmcs02. - */ - if (enable_pml) - vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); + else + exec_control &= ~VM_EXIT_LOAD_IA32_EFER; + vm_exit_controls_set(vmx, exec_control); /* * Interrupt/Exception Fields @@ -2141,12 +2533,39 @@ static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) } } -static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) +static void vmcs_read_cet_state(struct kvm_vcpu *vcpu, u64 *s_cet, + u64 *ssp, u64 *ssp_tbl) +{ + if (guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) || + guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) + *s_cet = vmcs_readl(GUEST_S_CET); + + if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) { + *ssp = vmcs_readl(GUEST_SSP); + *ssp_tbl = vmcs_readl(GUEST_INTR_SSP_TABLE); + } +} + +static void vmcs_write_cet_state(struct kvm_vcpu *vcpu, u64 s_cet, + u64 ssp, u64 ssp_tbl) { - struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs; + if (guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) || + guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) + vmcs_writel(GUEST_S_CET, s_cet); + + if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) { + vmcs_writel(GUEST_SSP, ssp); + vmcs_writel(GUEST_INTR_SSP_TABLE, ssp_tbl); + } +} + +static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) +{ + struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx); if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) { + vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector); vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector); vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector); @@ -2165,6 +2584,8 @@ static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit); vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit); vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit); + vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes); + vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes); vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes); vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes); vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes); @@ -2181,6 +2602,8 @@ static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base); vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base); vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base); + + vmx_segment_cache_clear(vmx); } if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & @@ -2201,6 +2624,10 @@ static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2); vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3); } + + if (kvm_mpx_supported() && vmx->nested.nested_run_pending && + (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) + vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs); } if (nested_cpu_has_xsaves(vmcs12)) @@ -2208,22 +2635,28 @@ static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) /* * Whether page-faults are trapped is determined by a combination of - * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. - * If enable_ept, L0 doesn't care about page faults and we should - * set all of these to L1's desires. However, if !enable_ept, L0 does - * care about (at least some) page faults, and because it is not easy - * (if at all possible?) to merge L0 and L1's desires, we simply ask - * to exit on each and every L2 page fault. This is done by setting - * MASK=MATCH=0 and (see below) EB.PF=1. + * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0 + * doesn't care about page faults then we should set all of these to + * L1's desires. However, if L0 does care about (some) page faults, it + * is not easy (if at all possible?) to merge L0 and L1's desires, we + * simply ask to exit on each and every L2 page fault. This is done by + * setting MASK=MATCH=0 and (see below) EB.PF=1. * Note that below we don't need special code to set EB.PF beyond the * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept, * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when * !enable_ept, EB.PF is 1, so the "or" will always be 1. */ - vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, - enable_ept ? vmcs12->page_fault_error_code_mask : 0); - vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, - enable_ept ? vmcs12->page_fault_error_code_match : 0); + if (vmx_need_pf_intercept(&vmx->vcpu)) { + /* + * TODO: if both L0 and L1 need the same MASK and MATCH, + * go ahead and use it? + */ + vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); + vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); + } else { + vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask); + vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match); + } if (cpu_has_vmx_apicv()) { vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0); @@ -2232,18 +2665,21 @@ static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3); } + /* + * Make sure the msr_autostore list is up to date before we set the + * count in the vmcs02. + */ + prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC); + + vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr); vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); - set_cr4_guest_host_mask(vmx); + if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE) + vmcs_write_cet_state(&vmx->vcpu, vmcs12->guest_s_cet, + vmcs12->guest_ssp, vmcs12->guest_ssp_tbl); - if (kvm_mpx_supported()) { - if (vmx->nested.nested_run_pending && - (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) - vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs); - else - vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs); - } + set_cr4_guest_host_mask(vmx); } /* @@ -2258,45 +2694,47 @@ static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) * is assigned to entry_failure_code on failure. */ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, - u32 *entry_failure_code) + bool from_vmentry, + enum vm_entry_failure_code *entry_failure_code) { struct vcpu_vmx *vmx = to_vmx(vcpu); - struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs; + struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx); + bool load_guest_pdptrs_vmcs12 = false; - if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) { - prepare_vmcs02_full(vmx, vmcs12); + if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) { + prepare_vmcs02_rare(vmx, vmcs12); vmx->nested.dirty_vmcs12 = false; - } - /* - * First, the fields that are shadowed. This must be kept in sync - * with vmcs_shadow_fields.h. - */ - if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) { - vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes); - vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes); + load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) || + !(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1); } if (vmx->nested.nested_run_pending && (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) { kvm_set_dr(vcpu, 7, vmcs12->guest_dr7); - vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl); + vmx_guest_debugctl_write(vcpu, vmcs12->guest_ia32_debugctl & + vmx_get_supported_debugctl(vcpu, false)); } else { kvm_set_dr(vcpu, 7, vcpu->arch.dr7); - vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl); + vmx_guest_debugctl_write(vcpu, vmx->nested.pre_vmenter_debugctl); } - vmx_set_rflags(vcpu, vmcs12->guest_rflags); - vmx->nested.preemption_timer_expired = false; - if (nested_cpu_has_preemption_timer(vmcs12)) - vmx_start_preemption_timer(vcpu); + if (!vmx->nested.nested_run_pending || + !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE)) + vmcs_write_cet_state(vcpu, vmx->nested.pre_vmenter_s_cet, + vmx->nested.pre_vmenter_ssp, + vmx->nested.pre_vmenter_ssp_tbl); + + if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending || + !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))) + vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs); + vmx_set_rflags(vcpu, vmcs12->guest_rflags); /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the * bitwise-or of what L1 wants to trap for L2, and what we want to * trap. Note that CR0.TS also needs updating - we do this later. */ - update_exception_bitmap(vcpu); + vmx_update_exception_bitmap(vcpu); vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask; vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); @@ -2305,54 +2743,31 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat); vcpu->arch.pat = vmcs12->guest_ia32_pat; } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { - vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); + vmcs_write64(GUEST_IA32_PAT, vcpu->arch.pat); } - vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); + vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( + vcpu->arch.l1_tsc_offset, + vmx_get_l2_tsc_offset(vcpu), + vmx_get_l2_tsc_multiplier(vcpu)); - if (kvm_has_tsc_control) - decache_tsc_multiplier(vmx); + vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( + vcpu->arch.l1_tsc_scaling_ratio, + vmx_get_l2_tsc_multiplier(vcpu)); - if (enable_vpid) { - /* - * There is no direct mapping between vpid02 and vpid12, the - * vpid02 is per-vCPU for L0 and reused while the value of - * vpid12 is changed w/ one invvpid during nested vmentry. - * The vpid12 is allocated by L1 for L2, so it will not - * influence global bitmap(for vpid01 and vpid02 allocation) - * even if spawn a lot of nested vCPUs. - */ - if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) { - if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) { - vmx->nested.last_vpid = vmcs12->virtual_processor_id; - __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false); - } - } else { - /* - * If L1 use EPT, then L0 needs to execute INVEPT on - * EPTP02 instead of EPTP01. Therefore, delay TLB - * flush until vmcs02->eptp is fully updated by - * KVM_REQ_LOAD_CR3. Note that this assumes - * KVM_REQ_TLB_FLUSH is evaluated after - * KVM_REQ_LOAD_CR3 in vcpu_enter_guest(). - */ - kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); - } - } + vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); + if (kvm_caps.has_tsc_control) + vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); + + nested_vmx_transition_tlb_flush(vcpu, vmcs12, true); if (nested_cpu_has_ept(vmcs12)) nested_ept_init_mmu_context(vcpu); - else if (nested_cpu_has2(vmcs12, - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) - vmx_flush_tlb(vcpu, true); /* - * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those - * bits which we consider mandatory enabled. - * The CR0_READ_SHADOW is what L2 should have expected to read given - * the specifications by L1; It's not enough to take - * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we - * have more bits than L1 expected. + * Override the CR0/CR4 read shadows after setting the effective guest + * CR0/CR4. The common helpers also set the shadows, but they don't + * account for vmcs12's cr0/4_guest_host_mask. */ vmx_set_cr0(vcpu, vmcs12->guest_cr0); vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); @@ -2368,68 +2783,116 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, * Guest state is invalid and unrestricted guest is disabled, * which means L1 attempted VMEntry to L2 with invalid state. * Fail the VMEntry. + * + * However when force loading the guest state (SMM exit or + * loading nested state after migration, it is possible to + * have invalid guest state now, which will be later fixed by + * restoring L2 register state */ - if (vmx->emulation_required) { + if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) { *entry_failure_code = ENTRY_FAIL_DEFAULT; - return 1; + return -EINVAL; } /* Shadow page tables on either EPT or shadow page tables. */ if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12), - entry_failure_code)) - return 1; + from_vmentry, entry_failure_code)) + return -EINVAL; - if (!enable_ept) - vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested; + /* + * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12 + * on nested VM-Exit, which can occur without actually running L2 and + * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with + * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the + * transition to HLT instead of running L2. + */ + if (enable_ept) + vmcs_writel(GUEST_CR3, vmcs12->guest_cr3); + + /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */ + if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) && + is_pae_paging(vcpu)) { + vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0); + vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1); + vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2); + vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3); + } + + if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) && + kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) && + WARN_ON_ONCE(__kvm_emulate_msr_write(vcpu, MSR_CORE_PERF_GLOBAL_CTRL, + vmcs12->guest_ia32_perf_global_ctrl))) { + *entry_failure_code = ENTRY_FAIL_DEFAULT; + return -EINVAL; + } + + kvm_rsp_write(vcpu, vmcs12->guest_rsp); + kvm_rip_write(vcpu, vmcs12->guest_rip); + + /* + * It was observed that genuine Hyper-V running in L1 doesn't reset + * 'hv_clean_fields' by itself, it only sets the corresponding dirty + * bits when it changes a field in eVMCS. Mark all fields as clean + * here. + */ + if (nested_vmx_is_evmptr12_valid(vmx)) + evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; - kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp); - kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip); return 0; } static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12) { - if (!nested_cpu_has_nmi_exiting(vmcs12) && - nested_cpu_has_virtual_nmis(vmcs12)) + if (CC(!nested_cpu_has_nmi_exiting(vmcs12) && + nested_cpu_has_virtual_nmis(vmcs12))) return -EINVAL; - if (!nested_cpu_has_virtual_nmis(vmcs12) && - nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING)) + if (CC(!nested_cpu_has_virtual_nmis(vmcs12) && + nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING))) return -EINVAL; return 0; } -static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address) +static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp) { struct vcpu_vmx *vmx = to_vmx(vcpu); - int maxphyaddr = cpuid_maxphyaddr(vcpu); /* Check for memory type validity */ - switch (address & VMX_EPTP_MT_MASK) { + switch (new_eptp & VMX_EPTP_MT_MASK) { case VMX_EPTP_MT_UC: - if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)) + if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))) return false; break; case VMX_EPTP_MT_WB: - if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)) + if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))) return false; break; default: return false; } - /* only 4 levels page-walk length are valid */ - if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4) + /* Page-walk levels validity. */ + switch (new_eptp & VMX_EPTP_PWL_MASK) { + case VMX_EPTP_PWL_5: + if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT))) + return false; + break; + case VMX_EPTP_PWL_4: + if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT))) + return false; + break; + default: return false; + } /* Reserved bits should not be set */ - if (address >> maxphyaddr || ((address >> 7) & 0x1f)) + if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f))) return false; /* AD, if set, should be supported */ - if (address & VMX_EPTP_AD_ENABLE_BIT) { - if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)) + if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) { + if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))) return false; } @@ -2444,21 +2907,21 @@ static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu, { struct vcpu_vmx *vmx = to_vmx(vcpu); - if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control, - vmx->nested.msrs.pinbased_ctls_low, - vmx->nested.msrs.pinbased_ctls_high) || - !vmx_control_verify(vmcs12->cpu_based_vm_exec_control, - vmx->nested.msrs.procbased_ctls_low, - vmx->nested.msrs.procbased_ctls_high)) + if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control, + vmx->nested.msrs.pinbased_ctls_low, + vmx->nested.msrs.pinbased_ctls_high)) || + CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control, + vmx->nested.msrs.procbased_ctls_low, + vmx->nested.msrs.procbased_ctls_high))) return -EINVAL; if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && - !vmx_control_verify(vmcs12->secondary_vm_exec_control, - vmx->nested.msrs.secondary_ctls_low, - vmx->nested.msrs.secondary_ctls_high)) + CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control, + vmx->nested.msrs.secondary_ctls_low, + vmx->nested.msrs.secondary_ctls_high))) return -EINVAL; - if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) || + if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) || nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) || nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) || nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) || @@ -2469,25 +2932,33 @@ static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu, nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) || nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) || nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) || - (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id)) + CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id)) + return -EINVAL; + + if (!nested_cpu_has_preemption_timer(vmcs12) && + nested_cpu_has_save_preemption_timer(vmcs12)) return -EINVAL; if (nested_cpu_has_ept(vmcs12) && - !valid_ept_address(vcpu, vmcs12->ept_pointer)) + CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer))) return -EINVAL; if (nested_cpu_has_vmfunc(vmcs12)) { - if (vmcs12->vm_function_control & - ~vmx->nested.msrs.vmfunc_controls) + if (CC(vmcs12->vm_function_control & + ~vmx->nested.msrs.vmfunc_controls)) return -EINVAL; if (nested_cpu_has_eptp_switching(vmcs12)) { - if (!nested_cpu_has_ept(vmcs12) || - !page_address_valid(vcpu, vmcs12->eptp_list_address)) + if (CC(!nested_cpu_has_ept(vmcs12)) || + CC(!page_address_valid(vcpu, vmcs12->eptp_list_address))) return -EINVAL; } } + if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING) && + CC(!vmcs12->tsc_multiplier)) + return -EINVAL; + return 0; } @@ -2499,10 +2970,10 @@ static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu, { struct vcpu_vmx *vmx = to_vmx(vcpu); - if (!vmx_control_verify(vmcs12->vm_exit_controls, - vmx->nested.msrs.exit_ctls_low, - vmx->nested.msrs.exit_ctls_high) || - nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)) + if (CC(!vmx_control_verify(vmcs12->vm_exit_controls, + vmx->nested.msrs.exit_ctls_low, + vmx->nested.msrs.exit_ctls_high)) || + CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))) return -EINVAL; return 0; @@ -2516,9 +2987,9 @@ static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu, { struct vcpu_vmx *vmx = to_vmx(vcpu); - if (!vmx_control_verify(vmcs12->vm_entry_controls, - vmx->nested.msrs.entry_ctls_low, - vmx->nested.msrs.entry_ctls_high)) + if (CC(!vmx_control_verify(vmcs12->vm_entry_controls, + vmx->nested.msrs.entry_ctls_low, + vmx->nested.msrs.entry_ctls_high))) return -EINVAL; /* @@ -2532,37 +3003,43 @@ static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu, u8 vector = intr_info & INTR_INFO_VECTOR_MASK; u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK; bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK; - bool should_have_error_code; bool urg = nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST); bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE; /* VM-entry interruption-info field: interruption type */ - if (intr_type == INTR_TYPE_RESERVED || - (intr_type == INTR_TYPE_OTHER_EVENT && - !nested_cpu_supports_monitor_trap_flag(vcpu))) + if (CC(intr_type == INTR_TYPE_RESERVED) || + CC(intr_type == INTR_TYPE_OTHER_EVENT && + !nested_cpu_supports_monitor_trap_flag(vcpu))) return -EINVAL; /* VM-entry interruption-info field: vector */ - if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) || - (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) || - (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0)) + if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) || + CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) || + CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0)) return -EINVAL; - /* VM-entry interruption-info field: deliver error code */ - should_have_error_code = - intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode && - x86_exception_has_error_code(vector); - if (has_error_code != should_have_error_code) - return -EINVAL; + /* + * Cannot deliver error code in real mode or if the interrupt + * type is not hardware exception. For other cases, do the + * consistency check only if the vCPU doesn't enumerate + * VMX_BASIC_NO_HW_ERROR_CODE_CC. + */ + if (!prot_mode || intr_type != INTR_TYPE_HARD_EXCEPTION) { + if (CC(has_error_code)) + return -EINVAL; + } else if (!nested_cpu_has_no_hw_errcode_cc(vcpu)) { + if (CC(has_error_code != x86_exception_has_error_code(vector))) + return -EINVAL; + } /* VM-entry exception error code */ - if (has_error_code && - vmcs12->vm_entry_exception_error_code & GENMASK(31, 15)) + if (CC(has_error_code && + vmcs12->vm_entry_exception_error_code & GENMASK(31, 16))) return -EINVAL; /* VM-entry interruption-info field: reserved bits */ - if (intr_info & INTR_INFO_RESVD_BITS_MASK) + if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK)) return -EINVAL; /* VM-entry instruction length */ @@ -2570,9 +3047,9 @@ static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu, case INTR_TYPE_SOFT_EXCEPTION: case INTR_TYPE_SOFT_INTR: case INTR_TYPE_PRIV_SW_EXCEPTION: - if ((vmcs12->vm_entry_instruction_len > 15) || - (vmcs12->vm_entry_instruction_len == 0 && - !nested_cpu_has_zero_length_injection(vcpu))) + if (CC(vmcs12->vm_entry_instruction_len > X86_MAX_INSTRUCTION_LENGTH) || + CC(vmcs12->vm_entry_instruction_len == 0 && + CC(!nested_cpu_has_zero_length_injection(vcpu)))) return -EINVAL; } } @@ -2583,327 +3060,489 @@ static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu, return 0; } -/* - * Checks related to Host Control Registers and MSRs - */ -static int nested_check_host_control_regs(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) +static int nested_vmx_check_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) { - bool ia32e; - - if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) || - !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) || - !nested_cr3_valid(vcpu, vmcs12->host_cr3)) + if (nested_check_vm_execution_controls(vcpu, vmcs12) || + nested_check_vm_exit_controls(vcpu, vmcs12) || + nested_check_vm_entry_controls(vcpu, vmcs12)) return -EINVAL; + +#ifdef CONFIG_KVM_HYPERV + if (guest_cpu_cap_has_evmcs(vcpu)) + return nested_evmcs_check_controls(vmcs12); +#endif + + return 0; +} + +static int nested_vmx_check_controls_late(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + void *vapic = to_vmx(vcpu)->nested.virtual_apic_map.hva; + u32 vtpr = vapic ? (*(u32 *)(vapic + APIC_TASKPRI)) >> 4 : 0; + /* - * If the load IA32_EFER VM-exit control is 1, bits reserved in the - * IA32_EFER MSR must be 0 in the field for that register. In addition, - * the values of the LMA and LME bits in the field must each be that of - * the host address-space size VM-exit control. + * Don't bother with the consistency checks if KVM isn't configured to + * WARN on missed consistency checks, as KVM needs to rely on hardware + * to fully detect an illegal vTPR vs. TRP Threshold combination due to + * the vTPR being writable by L1 at all times (it's an in-memory value, + * not a VMCS field). I.e. even if the check passes now, it might fail + * at the actual VM-Enter. + * + * Keying off the module param also allows treating an invalid vAPIC + * mapping as a consistency check failure without increasing the risk + * of breaking a "real" VM. */ - if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) { - ia32e = (vmcs12->vm_exit_controls & - VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0; - if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) || - ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) || - ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) - return -EINVAL; - } + if (!warn_on_missed_cc) + return 0; + + if ((exec_controls_get(to_vmx(vcpu)) & CPU_BASED_TPR_SHADOW) && + nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW) && + !nested_cpu_has_vid(vmcs12) && + !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) && + (CC(!vapic) || + CC((vmcs12->tpr_threshold & GENMASK(3, 0)) > (vtpr & GENMASK(3, 0))))) + return -EINVAL; return 0; } -/* - * Checks related to Guest Non-register State - */ -static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12) +static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) { - if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE && - vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) +#ifdef CONFIG_X86_64 + if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) != + !!(vcpu->arch.efer & EFER_LMA))) return -EINVAL; - +#endif return 0; } -static int nested_vmx_check_vmentry_prereqs(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) +static bool is_l1_noncanonical_address_on_vmexit(u64 la, struct vmcs12 *vmcs12) { - if (nested_check_vm_execution_controls(vcpu, vmcs12) || - nested_check_vm_exit_controls(vcpu, vmcs12) || - nested_check_vm_entry_controls(vcpu, vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; + /* + * Check that the given linear address is canonical after a VM exit + * from L2, based on HOST_CR4.LA57 value that will be loaded for L1. + */ + u8 l1_address_bits_on_exit = (vmcs12->host_cr4 & X86_CR4_LA57) ? 57 : 48; - if (nested_check_host_control_regs(vcpu, vmcs12)) - return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD; + return !__is_canonical_address(la, l1_address_bits_on_exit); +} - if (nested_check_guest_non_reg_state(vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; +static int nested_vmx_check_cet_state_common(struct kvm_vcpu *vcpu, u64 s_cet, + u64 ssp, u64 ssp_tbl) +{ + if (CC(!kvm_is_valid_u_s_cet(vcpu, s_cet)) || CC(!IS_ALIGNED(ssp, 4)) || + CC(is_noncanonical_msr_address(ssp_tbl, vcpu))) + return -EINVAL; return 0; } -static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) +static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) { - int r; - struct page *page; - struct vmcs12 *shadow; + bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE); - if (vmcs12->vmcs_link_pointer == -1ull) - return 0; + if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) || + CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) || + CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3))) + return -EINVAL; - if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)) + if (CC(vmcs12->host_cr4 & X86_CR4_CET && !(vmcs12->host_cr0 & X86_CR0_WP))) return -EINVAL; - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer); - if (is_error_page(page)) + if (CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_esp, vcpu)) || + CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_eip, vcpu))) return -EINVAL; - r = 0; - shadow = kmap(page); - if (shadow->hdr.revision_id != VMCS12_REVISION || - shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)) - r = -EINVAL; - kunmap(page); - kvm_release_page_clean(page); - return r; -} + if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) && + CC(!kvm_pat_valid(vmcs12->host_ia32_pat))) + return -EINVAL; -static int nested_vmx_check_vmentry_postreqs(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12, - u32 *exit_qual) -{ - bool ia32e; + if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) && + CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu), + vmcs12->host_ia32_perf_global_ctrl))) + return -EINVAL; - *exit_qual = ENTRY_FAIL_DEFAULT; + if (ia32e) { + if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE))) + return -EINVAL; + } else { + if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) || + CC(vmcs12->host_cr4 & X86_CR4_PCIDE) || + CC((vmcs12->host_rip) >> 32)) + return -EINVAL; + } - if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) || - !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)) - return 1; + if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || + CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || + CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || + CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || + CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || + CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || + CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || + CC(vmcs12->host_cs_selector == 0) || + CC(vmcs12->host_tr_selector == 0) || + CC(vmcs12->host_ss_selector == 0 && !ia32e)) + return -EINVAL; - if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) { - *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR; - return 1; - } + if (CC(is_noncanonical_base_address(vmcs12->host_fs_base, vcpu)) || + CC(is_noncanonical_base_address(vmcs12->host_gs_base, vcpu)) || + CC(is_noncanonical_base_address(vmcs12->host_gdtr_base, vcpu)) || + CC(is_noncanonical_base_address(vmcs12->host_idtr_base, vcpu)) || + CC(is_noncanonical_base_address(vmcs12->host_tr_base, vcpu)) || + CC(is_l1_noncanonical_address_on_vmexit(vmcs12->host_rip, vmcs12))) + return -EINVAL; /* - * If the load IA32_EFER VM-entry control is 1, the following checks - * are performed on the field for the IA32_EFER MSR: - * - Bits reserved in the IA32_EFER MSR must be 0. - * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of - * the IA-32e mode guest VM-exit control. It must also be identical - * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to - * CR0.PG) is 1. + * If the load IA32_EFER VM-exit control is 1, bits reserved in the + * IA32_EFER MSR must be 0 in the field for that register. In addition, + * the values of the LMA and LME bits in the field must each be that of + * the host address-space size VM-exit control. */ - if (to_vmx(vcpu)->nested.nested_run_pending && - (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) { - ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0; - if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) || - ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) || - ((vmcs12->guest_cr0 & X86_CR0_PG) && - ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) - return 1; + if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) { + if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) || + CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) || + CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))) + return -EINVAL; } - if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) && - (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) || - (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))) - return 1; + if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_CET_STATE) { + if (nested_vmx_check_cet_state_common(vcpu, vmcs12->host_s_cet, + vmcs12->host_ssp, + vmcs12->host_ssp_tbl)) + return -EINVAL; + + /* + * IA32_S_CET and SSP must be canonical if the host will + * enter 64-bit mode after VM-exit; otherwise, higher + * 32-bits must be all 0s. + */ + if (ia32e) { + if (CC(is_noncanonical_msr_address(vmcs12->host_s_cet, vcpu)) || + CC(is_noncanonical_msr_address(vmcs12->host_ssp, vcpu))) + return -EINVAL; + } else { + if (CC(vmcs12->host_s_cet >> 32) || CC(vmcs12->host_ssp >> 32)) + return -EINVAL; + } + } return 0; } -static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu) +static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) { struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned long cr3, cr4; + struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache; + struct vmcs_hdr hdr; - if (!nested_early_check) + if (vmcs12->vmcs_link_pointer == INVALID_GPA) return 0; - if (vmx->msr_autoload.host.nr) - vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); - if (vmx->msr_autoload.guest.nr) - vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); + if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))) + return -EINVAL; - preempt_disable(); + if (ghc->gpa != vmcs12->vmcs_link_pointer && + CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, + vmcs12->vmcs_link_pointer, VMCS12_SIZE))) + return -EINVAL; - vmx_prepare_switch_to_guest(vcpu); + if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr, + offsetof(struct vmcs12, hdr), + sizeof(hdr)))) + return -EINVAL; - /* - * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS, - * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to - * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e. - * there is no need to preserve other bits or save/restore the field. - */ - vmcs_writel(GUEST_RFLAGS, 0); + if (CC(hdr.revision_id != VMCS12_REVISION) || + CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))) + return -EINVAL; - cr3 = __get_current_cr3_fast(); - if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { - vmcs_writel(HOST_CR3, cr3); - vmx->loaded_vmcs->host_state.cr3 = cr3; - } + return 0; +} - cr4 = cr4_read_shadow(); - if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { - vmcs_writel(HOST_CR4, cr4); - vmx->loaded_vmcs->host_state.cr4 = cr4; - } +/* + * Checks related to Guest Non-register State + */ +static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12) +{ + if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE && + vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT && + vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI)) + return -EINVAL; - vmx->__launched = vmx->loaded_vmcs->launched; + return 0; +} - asm( - /* Set HOST_RSP */ - "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */ - __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t" - "mov %%" _ASM_SP ", %c[host_rsp](%1)\n\t" - "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */ +static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12, + enum vm_entry_failure_code *entry_failure_code) +{ + bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE); - /* Check if vmlaunch or vmresume is needed */ - "cmpl $0, %c[launched](%% " _ASM_CX")\n\t" + *entry_failure_code = ENTRY_FAIL_DEFAULT; - "call vmx_vmenter\n\t" + if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) || + CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))) + return -EINVAL; - /* Set vmx->fail accordingly */ - "setbe %c[fail](%% " _ASM_CX")\n\t" - : ASM_CALL_CONSTRAINT - : "c"(vmx), "d"((unsigned long)HOST_RSP), - [launched]"i"(offsetof(struct vcpu_vmx, __launched)), - [fail]"i"(offsetof(struct vcpu_vmx, fail)), - [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)), - [wordsize]"i"(sizeof(ulong)) - : "rax", "cc", "memory" - ); + if (CC(vmcs12->guest_cr4 & X86_CR4_CET && !(vmcs12->guest_cr0 & X86_CR0_WP))) + return -EINVAL; - preempt_enable(); + if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) && + (CC(!kvm_dr7_valid(vmcs12->guest_dr7)) || + CC(!vmx_is_valid_debugctl(vcpu, vmcs12->guest_ia32_debugctl, false)))) + return -EINVAL; - if (vmx->msr_autoload.host.nr) - vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); - if (vmx->msr_autoload.guest.nr) - vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); + if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) && + CC(!kvm_pat_valid(vmcs12->guest_ia32_pat))) + return -EINVAL; - if (vmx->fail) { - WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) != - VMXERR_ENTRY_INVALID_CONTROL_FIELD); - vmx->fail = 0; - return 1; + if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) { + *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR; + return -EINVAL; } - /* - * VMExit clears RFLAGS.IF and DR7, even on a consistency check. - */ - local_irq_enable(); - if (hw_breakpoint_active()) - set_debugreg(__this_cpu_read(cpu_dr7), 7); + if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) && + CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu), + vmcs12->guest_ia32_perf_global_ctrl))) + return -EINVAL; + + if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG)) + return -EINVAL; + + if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) || + CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG))) + return -EINVAL; /* - * A non-failing VMEntry means we somehow entered guest mode with - * an illegal RIP, and that's just the tip of the iceberg. There - * is no telling what memory has been modified or what state has - * been exposed to unknown code. Hitting this all but guarantees - * a (very critical) hardware issue. + * If the load IA32_EFER VM-entry control is 1, the following checks + * are performed on the field for the IA32_EFER MSR: + * - Bits reserved in the IA32_EFER MSR must be 0. + * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of + * the IA-32e mode guest VM-exit control. It must also be identical + * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to + * CR0.PG) is 1. */ - WARN_ON(!(vmcs_read32(VM_EXIT_REASON) & - VMX_EXIT_REASONS_FAILED_VMENTRY)); + if (to_vmx(vcpu)->nested.nested_run_pending && + (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) { + if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) || + CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) || + CC(((vmcs12->guest_cr0 & X86_CR0_PG) && + ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))) + return -EINVAL; + } + + if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) && + (CC(is_noncanonical_msr_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) || + CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))) + return -EINVAL; + + if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE) { + if (nested_vmx_check_cet_state_common(vcpu, vmcs12->guest_s_cet, + vmcs12->guest_ssp, + vmcs12->guest_ssp_tbl)) + return -EINVAL; + + /* + * Guest SSP must have 63:N bits identical, rather than + * be canonical (i.e., 63:N-1 bits identical), where N is + * the CPU's maximum linear-address width. Similar to + * is_noncanonical_msr_address(), use the host's + * linear-address width. + */ + if (CC(!__is_canonical_address(vmcs12->guest_ssp, max_host_virt_addr_bits() + 1))) + return -EINVAL; + } + + if (nested_check_guest_non_reg_state(vmcs12)) + return -EINVAL; return 0; } -STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw); +#ifdef CONFIG_KVM_HYPERV +static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); -static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12); + /* + * hv_evmcs may end up being not mapped after migration (when + * L2 was running), map it here to make sure vmcs12 changes are + * properly reflected. + */ + if (guest_cpu_cap_has_evmcs(vcpu) && + vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) { + enum nested_evmptrld_status evmptrld_status = + nested_vmx_handle_enlightened_vmptrld(vcpu, false); + + if (evmptrld_status == EVMPTRLD_VMFAIL || + evmptrld_status == EVMPTRLD_ERROR) + return false; + + /* + * Post migration VMCS12 always provides the most actual + * information, copy it to eVMCS upon entry. + */ + vmx->nested.need_vmcs12_to_shadow_sync = true; + } -static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu) + return true; +} +#endif + +static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); struct vcpu_vmx *vmx = to_vmx(vcpu); - struct page *page; - u64 hpa; + struct kvm_host_map *map; - if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { + if (!vcpu->arch.pdptrs_from_userspace && + !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) { /* - * Translate L1 physical address to host physical - * address for vmcs02. Keep the page pinned, so this - * physical address remains valid. We keep a reference - * to it so we can release it later. + * Reload the guest's PDPTRs since after a migration + * the guest CR3 might be restored prior to setting the nested + * state which can lead to a load of wrong PDPTRs. */ - if (vmx->nested.apic_access_page) { /* shouldn't happen */ - kvm_release_page_dirty(vmx->nested.apic_access_page); - vmx->nested.apic_access_page = NULL; - } - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr); - /* - * If translation failed, no matter: This feature asks - * to exit when accessing the given address, and if it - * can never be accessed, this feature won't do - * anything anyway. - */ - if (!is_error_page(page)) { - vmx->nested.apic_access_page = page; - hpa = page_to_phys(vmx->nested.apic_access_page); - vmcs_write64(APIC_ACCESS_ADDR, hpa); + if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3))) + return false; + } + + + if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { + map = &vmx->nested.apic_access_page_map; + + if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) { + vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn)); } else { - vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); + pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n", + __func__); + vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + vcpu->run->internal.suberror = + KVM_INTERNAL_ERROR_EMULATION; + vcpu->run->internal.ndata = 0; + return false; } } if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { - if (vmx->nested.virtual_apic_page) { /* shouldn't happen */ - kvm_release_page_dirty(vmx->nested.virtual_apic_page); - vmx->nested.virtual_apic_page = NULL; - } - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr); + map = &vmx->nested.virtual_apic_map; - /* - * If translation failed, VM entry will fail because - * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull. - * Failing the vm entry is _not_ what the processor - * does but it's basically the only possibility we - * have. We could still enter the guest if CR8 load - * exits are enabled, CR8 store exits are enabled, and - * virtualize APIC access is disabled; in this case - * the processor would never use the TPR shadow and we - * could simply clear the bit from the execution - * control. But such a configuration is useless, so - * let's keep the code simple. - */ - if (!is_error_page(page)) { - vmx->nested.virtual_apic_page = page; - hpa = page_to_phys(vmx->nested.virtual_apic_page); - vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa); + if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) { + vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn)); + } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) && + nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) && + !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { + /* + * The processor will never use the TPR shadow, simply + * clear the bit from the execution control. Such a + * configuration is useless, but it happens in tests. + * For any other configuration, failing the vm entry is + * _not_ what the processor does but it's basically the + * only possibility we have. + */ + exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW); + } else { + /* + * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to + * force VM-Entry to fail. + */ + vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA); } } if (nested_cpu_has_posted_intr(vmcs12)) { - if (vmx->nested.pi_desc_page) { /* shouldn't happen */ - kunmap(vmx->nested.pi_desc_page); - kvm_release_page_dirty(vmx->nested.pi_desc_page); - vmx->nested.pi_desc_page = NULL; + map = &vmx->nested.pi_desc_map; + + if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) { + vmx->nested.pi_desc = + (struct pi_desc *)(((void *)map->hva) + + offset_in_page(vmcs12->posted_intr_desc_addr)); + vmcs_write64(POSTED_INTR_DESC_ADDR, + pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr)); + } else { + /* + * Defer the KVM_INTERNAL_EXIT until KVM tries to + * access the contents of the VMCS12 posted interrupt + * descriptor. (Note that KVM may do this when it + * should not, per the architectural specification.) + */ vmx->nested.pi_desc = NULL; - vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull); + pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR); } - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr); - if (is_error_page(page)) - return; - vmx->nested.pi_desc_page = page; - vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page); - vmx->nested.pi_desc = - (struct pi_desc *)((void *)vmx->nested.pi_desc + - (unsigned long)(vmcs12->posted_intr_desc_addr & - (PAGE_SIZE - 1))); - vmcs_write64(POSTED_INTR_DESC_ADDR, - page_to_phys(vmx->nested.pi_desc_page) + - (unsigned long)(vmcs12->posted_intr_desc_addr & - (PAGE_SIZE - 1))); } if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12)) - vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, - CPU_BASED_USE_MSR_BITMAPS); + exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS); else - vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, - CPU_BASED_USE_MSR_BITMAPS); + exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS); + + return true; +} + +static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu) +{ +#ifdef CONFIG_KVM_HYPERV + /* + * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy + * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory + * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post + * migration. + */ + if (!nested_get_evmcs_page(vcpu)) { + pr_debug_ratelimited("%s: enlightened vmptrld failed\n", + __func__); + vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + vcpu->run->internal.suberror = + KVM_INTERNAL_ERROR_EMULATION; + vcpu->run->internal.ndata = 0; + + return false; + } +#endif + + if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu)) + return false; + + return true; +} + +static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa) +{ + struct vmcs12 *vmcs12; + struct vcpu_vmx *vmx = to_vmx(vcpu); + gpa_t dst; + + if (WARN_ON_ONCE(!is_guest_mode(vcpu))) + return 0; + + if (WARN_ON_ONCE(vmx->nested.pml_full)) + return 1; + + /* + * Check if PML is enabled for the nested guest. Whether eptp bit 6 is + * set is already checked as part of A/D emulation. + */ + vmcs12 = get_vmcs12(vcpu); + if (!nested_cpu_has_pml(vmcs12)) + return 0; + + if (vmcs12->guest_pml_index >= PML_LOG_NR_ENTRIES) { + vmx->nested.pml_full = true; + return 1; + } + + gpa &= ~0xFFFull; + dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index; + + if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa, + offset_in_page(dst), sizeof(gpa))) + return 0; + + vmcs12->guest_pml_index--; + + return 0; } /* @@ -2928,75 +3567,112 @@ static int nested_vmx_check_permission(struct kvm_vcpu *vcpu) return 1; } -static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu) -{ - u8 rvi = vmx_get_rvi(); - u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI); - - return ((rvi & 0xf0) > (vppr & 0xf0)); -} - static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12); /* * If from_vmentry is false, this is being called from state restore (either RSM * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume. -+ * -+ * Returns: -+ * 0 - success, i.e. proceed with actual VMEnter -+ * 1 - consistency check VMExit -+ * -1 - consistency check VMFail + * + * Returns: + * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode + * NVMX_VMENTRY_VMFAIL: Consistency check VMFail + * NVMX_VMENTRY_VMEXIT: Consistency check VMExit + * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error */ -int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry) +enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, + bool from_vmentry) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - bool evaluate_pending_interrupts; - u32 exit_reason = EXIT_REASON_INVALID_STATE; - u32 exit_qual; + enum vm_entry_failure_code entry_failure_code; + union vmx_exit_reason exit_reason = { + .basic = EXIT_REASON_INVALID_STATE, + .failed_vmentry = 1, + }; + u32 failed_index; + + trace_kvm_nested_vmenter(kvm_rip_read(vcpu), + vmx->nested.current_vmptr, + vmcs12->guest_rip, + vmcs12->guest_intr_status, + vmcs12->vm_entry_intr_info_field, + vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT, + vmcs12->ept_pointer, + vmcs12->guest_cr3, + KVM_ISA_VMX); + + kvm_service_local_tlb_flush_requests(vcpu); + + if (!vmx->nested.nested_run_pending || + !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) + vmx->nested.pre_vmenter_debugctl = vmx_guest_debugctl_read(); + if (kvm_mpx_supported() && + (!vmx->nested.nested_run_pending || + !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))) + vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS); - evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & - (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING); - if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu)) - evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu); + if (!vmx->nested.nested_run_pending || + !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE)) + vmcs_read_cet_state(vcpu, &vmx->nested.pre_vmenter_s_cet, + &vmx->nested.pre_vmenter_ssp, + &vmx->nested.pre_vmenter_ssp_tbl); - if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) - vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); - if (kvm_mpx_supported() && - !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) - vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); + /* + * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled. In the + * event of a "late" VM-Fail, i.e. a VM-Fail detected by hardware but + * not KVM, KVM must unwind its software model to the pre-VM-Entry host + * state. When EPT is disabled, GUEST_CR3 holds KVM's shadow CR3, not + * L1's "real" CR3, which causes nested_vmx_restore_host_state() to + * corrupt vcpu->arch.cr3. Stuffing vmcs01.GUEST_CR3 results in the + * unwind naturally setting arch.cr3 to the correct value. Smashing + * vmcs01.GUEST_CR3 is safe because nested VM-Exits, and the unwind, + * reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is guaranteed to be + * overwritten with a shadow CR3 prior to re-entering L1. + */ + if (!enable_ept) + vmcs_writel(GUEST_CR3, vcpu->arch.cr3); vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02); - prepare_vmcs02_early(vmx, vmcs12); + prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12); if (from_vmentry) { - nested_get_vmcs12_pages(vcpu); + if (unlikely(!nested_get_vmcs12_pages(vcpu))) { + vmx_switch_vmcs(vcpu, &vmx->vmcs01); + return NVMX_VMENTRY_KVM_INTERNAL_ERROR; + } - if (nested_vmx_check_vmentry_hw(vcpu)) { + if (nested_vmx_check_controls_late(vcpu, vmcs12)) { vmx_switch_vmcs(vcpu, &vmx->vmcs01); - return -1; + return NVMX_VMENTRY_VMFAIL; } - if (nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual)) + if (nested_vmx_check_guest_state(vcpu, vmcs12, + &entry_failure_code)) { + exit_reason.basic = EXIT_REASON_INVALID_STATE; + vmcs12->exit_qualification = entry_failure_code; goto vmentry_fail_vmexit; + } } enter_guest_mode(vcpu); - if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) - vcpu->arch.tsc_offset += vmcs12->tsc_offset; - if (prepare_vmcs02(vcpu, vmcs12, &exit_qual)) + if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) { + exit_reason.basic = EXIT_REASON_INVALID_STATE; + vmcs12->exit_qualification = entry_failure_code; goto vmentry_fail_vmexit_guest_mode; + } if (from_vmentry) { - exit_reason = EXIT_REASON_MSR_LOAD_FAIL; - exit_qual = nested_vmx_load_msr(vcpu, - vmcs12->vm_entry_msr_load_addr, - vmcs12->vm_entry_msr_load_count); - if (exit_qual) + failed_index = nested_vmx_load_msr(vcpu, + vmcs12->vm_entry_msr_load_addr, + vmcs12->vm_entry_msr_load_count); + if (failed_index) { + exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL; + vmcs12->exit_qualification = failed_index; goto vmentry_fail_vmexit_guest_mode; + } } else { /* * The MMU is not initialized to point at the right entities yet and @@ -3005,33 +3681,40 @@ int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry) * to nested_get_vmcs12_pages before the next VM-entry. The MSRs * have already been set at vmentry time and should not be reset. */ - kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu); + kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); } /* - * If L1 had a pending IRQ/NMI until it executed - * VMLAUNCH/VMRESUME which wasn't delivered because it was - * disallowed (e.g. interrupts disabled), L0 needs to - * evaluate if this pending event should cause an exit from L2 - * to L1 or delivered directly to L2 (e.g. In case L1 don't - * intercept EXTERNAL_INTERRUPT). - * - * Usually this would be handled by the processor noticing an - * IRQ/NMI window request, or checking RVI during evaluation of - * pending virtual interrupts. However, this setting was done - * on VMCS01 and now VMCS02 is active instead. Thus, we force L0 - * to perform pending event evaluation by requesting a KVM_REQ_EVENT. + * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI + * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can + * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit + * unconditionally. Take care to pull data from vmcs01 as appropriate, + * e.g. when checking for interrupt windows, as vmcs02 is now loaded. */ - if (unlikely(evaluate_pending_interrupts)) + if ((__exec_controls_get(&vmx->vmcs01) & (CPU_BASED_INTR_WINDOW_EXITING | + CPU_BASED_NMI_WINDOW_EXITING)) || + kvm_apic_has_pending_init_or_sipi(vcpu) || + kvm_apic_has_interrupt(vcpu)) kvm_make_request(KVM_REQ_EVENT, vcpu); /* + * Do not start the preemption timer hrtimer until after we know + * we are successful, so that only nested_vmx_vmexit needs to cancel + * the timer. + */ + vmx->nested.preemption_timer_expired = false; + if (nested_cpu_has_preemption_timer(vmcs12)) { + u64 timer_value = vmx_calc_preemption_timer_value(vcpu); + vmx_start_preemption_timer(vcpu, timer_value); + } + + /* * Note no nested_vmx_succeed or nested_vmx_fail here. At this point * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet * returned as far as L1 is concerned. It will only return (and set * the success flag) when L2 exits (see nested_vmx_vmexit()). */ - return 0; + return NVMX_VMENTRY_SUCCESS; /* * A failed consistency check that leads to a VMExit during L1's @@ -3039,7 +3722,7 @@ int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry) * 26.7 "VM-entry failures during or after loading guest state". */ vmentry_fail_vmexit_guest_mode: - if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) + if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING) vcpu->arch.tsc_offset -= vmcs12->tsc_offset; leave_guest_mode(vcpu); @@ -3047,14 +3730,13 @@ vmentry_fail_vmexit: vmx_switch_vmcs(vcpu, &vmx->vmcs01); if (!from_vmentry) - return 1; + return NVMX_VMENTRY_VMEXIT; load_vmcs12_host_state(vcpu, vmcs12); - vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY; - vmcs12->exit_qualification = exit_qual; - if (enable_shadow_vmcs || vmx->nested.hv_evmcs) - vmx->nested.need_vmcs12_sync = true; - return 1; + vmcs12->vm_exit_reason = exit_reason.full; + if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)) + vmx->nested.need_vmcs12_to_shadow_sync = true; + return NVMX_VMENTRY_VMEXIT; } /* @@ -3064,17 +3746,27 @@ vmentry_fail_vmexit: static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) { struct vmcs12 *vmcs12; + enum nvmx_vmentry_status status; struct vcpu_vmx *vmx = to_vmx(vcpu); u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu); - int ret; + enum nested_evmptrld_status evmptrld_status; if (!nested_vmx_check_permission(vcpu)) return 1; - if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true)) + evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch); + if (evmptrld_status == EVMPTRLD_ERROR) { + kvm_queue_exception(vcpu, UD_VECTOR); return 1; + } + + kvm_pmu_branch_retired(vcpu); - if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull) + if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) + return nested_vmx_failInvalid(vcpu); + + if (CC(!nested_vmx_is_evmptr12_valid(vmx) && + vmx->nested.current_vmptr == INVALID_GPA)) return nested_vmx_failInvalid(vcpu); vmcs12 = get_vmcs12(vcpu); @@ -3085,11 +3777,13 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) * rather than RFLAGS.ZF, and no error number is stored to the * VM-instruction error field. */ - if (vmcs12->hdr.shadow_vmcs) + if (CC(vmcs12->hdr.shadow_vmcs)) return nested_vmx_failInvalid(vcpu); - if (vmx->nested.hv_evmcs) { - copy_enlightened_to_vmcs12(vmx); + if (nested_vmx_is_evmptr12_valid(vmx)) { + struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx); + + copy_enlightened_to_vmcs12(vmx, evmcs->hv_clean_fields); /* Enlightened VMCS doesn't have launch state */ vmcs12->launch_state = !launch; } else if (enable_shadow_vmcs) { @@ -3106,34 +3800,35 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) * for misconfigurations which will anyway be caught by the processor * when using the merged vmcs02. */ - if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) - return nested_vmx_failValid(vcpu, - VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS); + if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)) + return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS); - if (vmcs12->launch_state == launch) - return nested_vmx_failValid(vcpu, + if (CC(vmcs12->launch_state == launch)) + return nested_vmx_fail(vcpu, launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS : VMXERR_VMRESUME_NONLAUNCHED_VMCS); - ret = nested_vmx_check_vmentry_prereqs(vcpu, vmcs12); - if (ret) - return nested_vmx_failValid(vcpu, ret); + if (nested_vmx_check_controls(vcpu, vmcs12)) + return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); + + if (nested_vmx_check_address_space_size(vcpu, vmcs12)) + return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); + + if (nested_vmx_check_host_state(vcpu, vmcs12)) + return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); /* * We're finally done with prerequisite checking, and can start with * the nested entry. */ vmx->nested.nested_run_pending = 1; - ret = nested_vmx_enter_non_root_mode(vcpu, true); - vmx->nested.nested_run_pending = !ret; - if (ret > 0) - return 1; - else if (ret) - return nested_vmx_failValid(vcpu, - VMXERR_ENTRY_INVALID_CONTROL_FIELD); + vmx->nested.has_preemption_timer_deadline = false; + status = nested_vmx_enter_non_root_mode(vcpu, true); + if (unlikely(status != NVMX_VMENTRY_SUCCESS)) + goto vmentry_failed; /* Hide L1D cache contents from the nested guest. */ - vmx->vcpu.arch.l1tf_flush_l1d = true; + kvm_request_l1tf_flush_l1d(); /* * Must happen outside of nested_vmx_enter_non_root_mode() as it will @@ -3141,31 +3836,50 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) * snapshot restore (migration). * * In this flow, it is assumed that vmcs12 cache was - * trasferred as part of captured nVMX state and should + * transferred as part of captured nVMX state and should * therefore not be read from guest memory (which may not * exist on destination host yet). */ nested_cache_shadow_vmcs12(vcpu, vmcs12); - /* - * If we're entering a halted L2 vcpu and the L2 vcpu won't be - * awakened by event injection or by an NMI-window VM-exit or - * by an interrupt-window VM-exit, halt the vcpu. - */ - if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) && - !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) && - !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) && - !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) && - (vmcs12->guest_rflags & X86_EFLAGS_IF))) { + switch (vmcs12->guest_activity_state) { + case GUEST_ACTIVITY_HLT: + /* + * If we're entering a halted L2 vcpu and the L2 vcpu won't be + * awakened by event injection or by an NMI-window VM-exit or + * by an interrupt-window VM-exit, halt the vcpu. + */ + if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) && + !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) && + !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) && + (vmcs12->guest_rflags & X86_EFLAGS_IF))) { + vmx->nested.nested_run_pending = 0; + return kvm_emulate_halt_noskip(vcpu); + } + break; + case GUEST_ACTIVITY_WAIT_SIPI: vmx->nested.nested_run_pending = 0; - return kvm_vcpu_halt(vcpu); + kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED); + break; + default: + break; } + return 1; + +vmentry_failed: + vmx->nested.nested_run_pending = 0; + if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR) + return 0; + if (status == NVMX_VMENTRY_VMEXIT) + return 1; + WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL); + return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); } /* * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date - * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK). + * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK). * This function returns the new value we should put in vmcs12.guest_cr0. * It's not enough to just return the vmcs02 GUEST_CR0. Rather, * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now @@ -3201,13 +3915,35 @@ vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) } static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) + struct vmcs12 *vmcs12, + u32 vm_exit_reason, u32 exit_intr_info) { u32 idt_vectoring; unsigned int nr; - if (vcpu->arch.exception.injected) { - nr = vcpu->arch.exception.nr; + /* + * Per the SDM, VM-Exits due to double and triple faults are never + * considered to occur during event delivery, even if the double/triple + * fault is the result of an escalating vectoring issue. + * + * Note, the SDM qualifies the double fault behavior with "The original + * event results in a double-fault exception". It's unclear why the + * qualification exists since exits due to double fault can occur only + * while vectoring a different exception (injected events are never + * subject to interception), i.e. there's _always_ an original event. + * + * The SDM also uses NMI as a confusing example for the "original event + * causes the VM exit directly" clause. NMI isn't special in any way, + * the same rule applies to all events that cause an exit directly. + * NMI is an odd choice for the example because NMIs can only occur on + * instruction boundaries, i.e. they _can't_ occur during vectoring. + */ + if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT || + ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI && + is_double_fault(exit_intr_info))) { + vmcs12->idt_vectoring_info_field = 0; + } else if (vcpu->arch.exception.injected) { + nr = vcpu->arch.exception.vector; idt_vectoring = nr | VECTORING_INFO_VALID_MASK; if (kvm_exception_is_soft(nr)) { @@ -3239,11 +3975,13 @@ static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu, idt_vectoring |= INTR_TYPE_EXT_INTR; vmcs12->idt_vectoring_info_field = idt_vectoring; + } else { + vmcs12->idt_vectoring_info_field = 0; } } -static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu) +void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); gfn_t gfn; @@ -3264,27 +4002,32 @@ static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu) } } -static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) +static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); int max_irr; void *vapic_page; u16 status; - if (!vmx->nested.pi_desc || !vmx->nested.pi_pending) - return; + if (!vmx->nested.pi_pending) + return 0; + + if (!vmx->nested.pi_desc) + goto mmio_needed; vmx->nested.pi_pending = false; + if (!pi_test_and_clear_on(vmx->nested.pi_desc)) - return; + return 0; + + max_irr = pi_find_highest_vector(vmx->nested.pi_desc); + if (max_irr > 0) { + vapic_page = vmx->nested.virtual_apic_map.hva; + if (!vapic_page) + goto mmio_needed; - max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256); - if (max_irr != 256) { - vapic_page = kmap(vmx->nested.virtual_apic_page); __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page, &max_irr); - kunmap(vmx->nested.virtual_apic_page); - status = vmcs_read16(GUEST_INTR_STATUS); if ((u8)max_irr > ((u8)status & 0xff)) { status &= ~0xff; @@ -3294,21 +4037,52 @@ static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) } nested_mark_vmcs12_pages_dirty(vcpu); + return 0; + +mmio_needed: + kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL); + return -ENXIO; } -static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu, - unsigned long exit_qual) +static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu) { + struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; + u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - unsigned int nr = vcpu->arch.exception.nr; - u32 intr_info = nr | INTR_INFO_VALID_MASK; + unsigned long exit_qual; - if (vcpu->arch.exception.has_error_code) { - vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code; + if (ex->has_payload) { + exit_qual = ex->payload; + } else if (ex->vector == PF_VECTOR) { + exit_qual = vcpu->arch.cr2; + } else if (ex->vector == DB_VECTOR) { + exit_qual = vcpu->arch.dr6; + exit_qual &= ~DR6_BT; + exit_qual ^= DR6_ACTIVE_LOW; + } else { + exit_qual = 0; + } + + /* + * Unlike AMD's Paged Real Mode, which reports an error code on #PF + * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the + * "has error code" flags on VM-Exit if the CPU is in Real Mode. + */ + if (ex->has_error_code && is_protmode(vcpu)) { + /* + * Intel CPUs do not generate error codes with bits 31:16 set, + * and more importantly VMX disallows setting bits 31:16 in the + * injected error code for VM-Entry. Drop the bits to mimic + * hardware and avoid inducing failure on nested VM-Entry if L1 + * chooses to inject the exception back to L2. AMD CPUs _do_ + * generate "full" 32-bit error codes, so KVM allows userspace + * to inject exception error codes with bits 31:16 set. + */ + vmcs12->vm_exit_intr_error_code = (u16)ex->error_code; intr_info |= INTR_INFO_DELIVER_CODE_MASK; } - if (kvm_exception_is_soft(nr)) + if (kvm_exception_is_soft(ex->vector)) intr_info |= INTR_TYPE_SOFT_EXCEPTION; else intr_info |= INTR_TYPE_HARD_EXCEPTION; @@ -3320,32 +4094,315 @@ static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu, nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual); } -static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr) +/* + * Returns true if a debug trap is (likely) pending delivery. Infer the class + * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6). + * Using the payload is flawed because code breakpoints (fault-like) and data + * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e. + * this will return false positives if a to-be-injected code breakpoint #DB is + * pending (from KVM's perspective, but not "pending" across an instruction + * boundary). ICEBP, a.k.a. INT1, is also not reflected here even though it + * too is trap-like. + * + * KVM "works" despite these flaws as ICEBP isn't currently supported by the + * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the + * #DB has already happened), and MTF isn't marked pending on code breakpoints + * from the emulator (because such #DBs are fault-like and thus don't trigger + * actions that fire on instruction retire). + */ +static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex) +{ + if (!ex->pending || ex->vector != DB_VECTOR) + return 0; + + /* General Detect #DBs are always fault-like. */ + return ex->payload & ~DR6_BD; +} + +/* + * Returns true if there's a pending #DB exception that is lower priority than + * a pending Monitor Trap Flag VM-Exit. TSS T-flag #DBs are not emulated by + * KVM, but could theoretically be injected by userspace. Note, this code is + * imperfect, see above. + */ +static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex) +{ + return vmx_get_pending_dbg_trap(ex) & ~DR6_BT; +} + +/* + * Certain VM-exits set the 'pending debug exceptions' field to indicate a + * recognized #DB (data or single-step) that has yet to be delivered. Since KVM + * represents these debug traps with a payload that is said to be compatible + * with the 'pending debug exceptions' field, write the payload to the VMCS + * field if a VM-exit is delivered before the debug trap. + */ +static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu) +{ + unsigned long pending_dbg; + + pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception); + if (pending_dbg) + vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg); +} + +static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu) +{ + return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) && + to_vmx(vcpu)->nested.preemption_timer_expired; +} + +static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection) { struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned long exit_qual; - bool block_nested_events = - vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu); + void *vapic = vmx->nested.virtual_apic_map.hva; + int max_irr, vppr; + + if (nested_vmx_preemption_timer_pending(vcpu) || + vmx->nested.mtf_pending) + return true; + + /* + * Virtual Interrupt Delivery doesn't require manual injection. Either + * the interrupt is already in GUEST_RVI and will be recognized by CPU + * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move + * the interrupt from the PIR to RVI prior to entering the guest. + */ + if (for_injection) + return false; + + if (!nested_cpu_has_vid(get_vmcs12(vcpu)) || + __vmx_interrupt_blocked(vcpu)) + return false; + + if (!vapic) + return false; + + vppr = *((u32 *)(vapic + APIC_PROCPRI)); + + max_irr = vmx_get_rvi(); + if ((max_irr & 0xf0) > (vppr & 0xf0)) + return true; + + if (vmx->nested.pi_pending && vmx->nested.pi_desc && + pi_test_on(vmx->nested.pi_desc)) { + max_irr = pi_find_highest_vector(vmx->nested.pi_desc); + if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0)) + return true; + } + + return false; +} + +/* + * Per the Intel SDM's table "Priority Among Concurrent Events", with minor + * edits to fill in missing examples, e.g. #DB due to split-lock accesses, + * and less minor edits to splice in the priority of VMX Non-Root specific + * events, e.g. MTF and NMI/INTR-window exiting. + * + * 1 Hardware Reset and Machine Checks + * - RESET + * - Machine Check + * + * 2 Trap on Task Switch + * - T flag in TSS is set (on task switch) + * + * 3 External Hardware Interventions + * - FLUSH + * - STOPCLK + * - SMI + * - INIT + * + * 3.5 Monitor Trap Flag (MTF) VM-exit[1] + * + * 4 Traps on Previous Instruction + * - Breakpoints + * - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O + * breakpoint, or #DB due to a split-lock access) + * + * 4.3 VMX-preemption timer expired VM-exit + * + * 4.6 NMI-window exiting VM-exit[2] + * + * 5 Nonmaskable Interrupts (NMI) + * + * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery + * + * 6 Maskable Hardware Interrupts + * + * 7 Code Breakpoint Fault + * + * 8 Faults from Fetching Next Instruction + * - Code-Segment Limit Violation + * - Code Page Fault + * - Control protection exception (missing ENDBRANCH at target of indirect + * call or jump) + * + * 9 Faults from Decoding Next Instruction + * - Instruction length > 15 bytes + * - Invalid Opcode + * - Coprocessor Not Available + * + *10 Faults on Executing Instruction + * - Overflow + * - Bound error + * - Invalid TSS + * - Segment Not Present + * - Stack fault + * - General Protection + * - Data Page Fault + * - Alignment Check + * - x86 FPU Floating-point exception + * - SIMD floating-point exception + * - Virtualization exception + * - Control protection exception + * + * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs), + * INIT signals, and higher priority events take priority over MTF VM exits. + * MTF VM exits take priority over debug-trap exceptions and lower priority + * events. + * + * [2] Debug-trap exceptions and higher priority events take priority over VM exits + * caused by the VMX-preemption timer. VM exits caused by the VMX-preemption + * timer take priority over VM exits caused by the "NMI-window exiting" + * VM-execution control and lower priority events. + * + * [3] Debug-trap exceptions and higher priority events take priority over VM exits + * caused by "NMI-window exiting". VM exits caused by this control take + * priority over non-maskable interrupts (NMIs) and lower priority events. + * + * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to + * the 1-setting of the "interrupt-window exiting" VM-execution control. Thus, + * non-maskable interrupts (NMIs) and higher priority events take priority over + * delivery of a virtual interrupt; delivery of a virtual interrupt takes + * priority over external interrupts and lower priority events. + */ +static int vmx_check_nested_events(struct kvm_vcpu *vcpu) +{ + struct kvm_lapic *apic = vcpu->arch.apic; + struct vcpu_vmx *vmx = to_vmx(vcpu); + /* + * Only a pending nested run blocks a pending exception. If there is a + * previously injected event, the pending exception occurred while said + * event was being delivered and thus needs to be handled. + */ + bool block_nested_exceptions = vmx->nested.nested_run_pending; + /* + * Events that don't require injection, i.e. that are virtualized by + * hardware, aren't blocked by a pending VM-Enter as KVM doesn't need + * to regain control in order to deliver the event, and hardware will + * handle event ordering, e.g. with respect to injected exceptions. + * + * But, new events (not exceptions) are only recognized at instruction + * boundaries. If an event needs reinjection, then KVM is handling a + * VM-Exit that occurred _during_ instruction execution; new events, + * irrespective of whether or not they're injected, are blocked until + * the instruction completes. + */ + bool block_non_injected_events = kvm_event_needs_reinjection(vcpu); + /* + * Inject events are blocked by nested VM-Enter, as KVM is responsible + * for managing priority between concurrent events, i.e. KVM needs to + * wait until after VM-Enter completes to deliver injected events. + */ + bool block_nested_events = block_nested_exceptions || + block_non_injected_events; + + if (lapic_in_kernel(vcpu) && + test_bit(KVM_APIC_INIT, &apic->pending_events)) { + if (block_nested_events) + return -EBUSY; + nested_vmx_update_pending_dbg(vcpu); + clear_bit(KVM_APIC_INIT, &apic->pending_events); + if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED) + nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0); + + /* MTF is discarded if the vCPU is in WFS. */ + vmx->nested.mtf_pending = false; + return 0; + } + + if (lapic_in_kernel(vcpu) && + test_bit(KVM_APIC_SIPI, &apic->pending_events)) { + if (block_nested_events) + return -EBUSY; + + clear_bit(KVM_APIC_SIPI, &apic->pending_events); + if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { + nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0, + apic->sipi_vector & 0xFFUL); + return 0; + } + /* Fallthrough, the SIPI is completely ignored. */ + } + + /* + * Process exceptions that are higher priority than Monitor Trap Flag: + * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but + * could theoretically come in from userspace), and ICEBP (INT1). + * + * TODO: SMIs have higher priority than MTF and trap-like #DBs (except + * for TSS T flag #DBs). KVM also doesn't save/restore pending MTF + * across SMI/RSM as it should; that needs to be addressed in order to + * prioritize SMI over MTF and trap-like #DBs. + */ + if (vcpu->arch.exception_vmexit.pending && + !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) { + if (block_nested_exceptions) + return -EBUSY; + + nested_vmx_inject_exception_vmexit(vcpu); + return 0; + } if (vcpu->arch.exception.pending && - nested_vmx_check_exception(vcpu, &exit_qual)) { + !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) { + if (block_nested_exceptions) + return -EBUSY; + goto no_vmexit; + } + + if (vmx->nested.mtf_pending) { if (block_nested_events) return -EBUSY; - nested_vmx_inject_exception_vmexit(vcpu, exit_qual); + nested_vmx_update_pending_dbg(vcpu); + nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0); return 0; } - if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) && - vmx->nested.preemption_timer_expired) { + if (vcpu->arch.exception_vmexit.pending) { + if (block_nested_exceptions) + return -EBUSY; + + nested_vmx_inject_exception_vmexit(vcpu); + return 0; + } + + if (vcpu->arch.exception.pending) { + if (block_nested_exceptions) + return -EBUSY; + goto no_vmexit; + } + + if (nested_vmx_preemption_timer_pending(vcpu)) { if (block_nested_events) return -EBUSY; nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0); return 0; } - if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) { + if (vcpu->arch.smi_pending && !is_smm(vcpu)) { + if (block_nested_events) + return -EBUSY; + goto no_vmexit; + } + + if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) { if (block_nested_events) return -EBUSY; + if (!nested_exit_on_nmi(vcpu)) + goto no_vmexit; + nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, NMI_VECTOR | INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK, 0); @@ -3358,16 +4415,77 @@ static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr) return 0; } - if ((kvm_cpu_has_interrupt(vcpu) || external_intr) && - nested_exit_on_intr(vcpu)) { + if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) { + int irq; + + if (!nested_exit_on_intr(vcpu)) { + if (block_nested_events) + return -EBUSY; + + goto no_vmexit; + } + + if (!nested_exit_intr_ack_set(vcpu)) { + if (block_nested_events) + return -EBUSY; + + nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0); + return 0; + } + + irq = kvm_cpu_get_extint(vcpu); + if (irq != -1) { + if (block_nested_events) + return -EBUSY; + + nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, + INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0); + return 0; + } + + irq = kvm_apic_has_interrupt(vcpu); + if (WARN_ON_ONCE(irq < 0)) + goto no_vmexit; + + /* + * If the IRQ is L2's PI notification vector, process posted + * interrupts for L2 instead of injecting VM-Exit, as the + * detection/morphing architecturally occurs when the IRQ is + * delivered to the CPU. Note, only interrupts that are routed + * through the local APIC trigger posted interrupt processing, + * and enabling posted interrupts requires ACK-on-exit. + */ + if (irq == vmx->nested.posted_intr_nv) { + /* + * Nested posted interrupts are delivered via RVI, i.e. + * aren't injected by KVM, and so can be queued even if + * manual event injection is disallowed. + */ + if (block_non_injected_events) + return -EBUSY; + + vmx->nested.pi_pending = true; + kvm_apic_clear_irr(vcpu, irq); + goto no_vmexit; + } + if (block_nested_events) return -EBUSY; - nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0); + + nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, + INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0); + + /* + * ACK the interrupt _after_ emulating VM-Exit, as the IRQ must + * be marked as in-service in vmcs01.GUEST_INTERRUPT_STATUS.SVI + * if APICv is active. + */ + kvm_apic_ack_interrupt(vcpu, irq); return 0; } - vmx_complete_nested_posted_interrupt(vcpu); - return 0; +no_vmexit: + return vmx_complete_nested_posted_interrupt(vcpu); } static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu) @@ -3384,20 +4502,57 @@ static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu) return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; } -/* - * Update the guest state fields of vmcs12 to reflect changes that - * occurred while L2 was running. (The "IA-32e mode guest" bit of the - * VM-entry controls is also updated, since this is really a guest - * state bit.) - */ -static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) -{ - vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12); - vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12); +static bool is_vmcs12_ext_field(unsigned long field) +{ + switch (field) { + case GUEST_ES_SELECTOR: + case GUEST_CS_SELECTOR: + case GUEST_SS_SELECTOR: + case GUEST_DS_SELECTOR: + case GUEST_FS_SELECTOR: + case GUEST_GS_SELECTOR: + case GUEST_LDTR_SELECTOR: + case GUEST_TR_SELECTOR: + case GUEST_ES_LIMIT: + case GUEST_CS_LIMIT: + case GUEST_SS_LIMIT: + case GUEST_DS_LIMIT: + case GUEST_FS_LIMIT: + case GUEST_GS_LIMIT: + case GUEST_LDTR_LIMIT: + case GUEST_TR_LIMIT: + case GUEST_GDTR_LIMIT: + case GUEST_IDTR_LIMIT: + case GUEST_ES_AR_BYTES: + case GUEST_DS_AR_BYTES: + case GUEST_FS_AR_BYTES: + case GUEST_GS_AR_BYTES: + case GUEST_LDTR_AR_BYTES: + case GUEST_TR_AR_BYTES: + case GUEST_ES_BASE: + case GUEST_CS_BASE: + case GUEST_SS_BASE: + case GUEST_DS_BASE: + case GUEST_FS_BASE: + case GUEST_GS_BASE: + case GUEST_LDTR_BASE: + case GUEST_TR_BASE: + case GUEST_GDTR_BASE: + case GUEST_IDTR_BASE: + case GUEST_PENDING_DBG_EXCEPTIONS: + case GUEST_BNDCFGS: + return true; + default: + break; + } - vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); - vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP); - vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS); + return false; +} + +static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR); vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR); @@ -3418,8 +4573,6 @@ static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT); vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT); vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES); - vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES); - vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES); vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES); vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES); vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES); @@ -3435,23 +4588,76 @@ static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE); vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE); vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE); + vmcs12->guest_pending_dbg_exceptions = + vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS); + + vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false; +} + +static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int cpu; + + if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare) + return; + + + WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01); + + cpu = get_cpu(); + vmx->loaded_vmcs = &vmx->nested.vmcs02; + vmx_vcpu_load_vmcs(vcpu, cpu); + + sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12); + + vmx->loaded_vmcs = &vmx->vmcs01; + vmx_vcpu_load_vmcs(vcpu, cpu); + put_cpu(); +} + +/* + * Update the guest state fields of vmcs12 to reflect changes that + * occurred while L2 was running. (The "IA-32e mode guest" bit of the + * VM-entry controls is also updated, since this is really a guest + * state bit.) + */ +static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (nested_vmx_is_evmptr12_valid(vmx)) + sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12); + + vmx->nested.need_sync_vmcs02_to_vmcs12_rare = + !nested_vmx_is_evmptr12_valid(vmx); + + vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12); + vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12); + + vmcs12->guest_rsp = kvm_rsp_read(vcpu); + vmcs12->guest_rip = kvm_rip_read(vcpu); + vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS); + + vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES); + vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES); vmcs12->guest_interruptibility_info = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); - vmcs12->guest_pending_dbg_exceptions = - vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS); + if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT; + else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) + vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI; else vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE; - if (nested_cpu_has_preemption_timer(vmcs12)) { - if (vmcs12->vm_exit_controls & - VM_EXIT_SAVE_VMX_PREEMPTION_TIMER) - vmcs12->vmx_preemption_timer_value = - vmx_get_preemption_timer_value(vcpu); - hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer); - } + if (nested_cpu_has_preemption_timer(vmcs12) && + vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER && + !vmx->nested.nested_run_pending) + vmcs12->vmx_preemption_timer_value = + vmx_get_preemption_timer_value(vcpu); /* * In some cases (usually, nested EPT), L2 is allowed to change its @@ -3463,10 +4669,12 @@ static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) */ if (enable_ept) { vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3); - vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0); - vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1); - vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2); - vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3); + if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) { + vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0); + vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1); + vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2); + vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3); + } } vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS); @@ -3478,22 +4686,21 @@ static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) | (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE); - if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) { - kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7); - vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); - } + /* + * Note! Save DR7, but intentionally don't grab DEBUGCTL from vmcs02. + * Writes to DEBUGCTL that aren't intercepted by L1 are immediately + * propagated to vmcs12 (see vmx_set_msr()), as the value loaded into + * vmcs02 doesn't strictly track vmcs12. + */ + if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) + vmcs12->guest_dr7 = vcpu->arch.dr7; - /* TODO: These cannot have changed unless we have MSR bitmaps and - * the relevant bit asks not to trap the change */ - if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) - vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT); if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER) vmcs12->guest_ia32_efer = vcpu->arch.efer; - vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS); - vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP); - vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP); - if (kvm_mpx_supported()) - vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); + + vmcs_read_cet_state(&vmx->vcpu, &vmcs12->guest_s_cet, + &vmcs12->guest_ssp, + &vmcs12->guest_ssp_tbl); } /* @@ -3508,22 +4715,20 @@ static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) * which already writes to vmcs12 directly. */ static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, - u32 exit_reason, u32 exit_intr_info, - unsigned long exit_qualification) + u32 vm_exit_reason, u32 exit_intr_info, + unsigned long exit_qualification, u32 exit_insn_len) { - /* update guest state fields: */ - sync_vmcs12(vcpu, vmcs12); - /* update exit information fields: */ - - vmcs12->vm_exit_reason = exit_reason; + vmcs12->vm_exit_reason = vm_exit_reason; + if (vmx_get_exit_reason(vcpu).enclave_mode) + vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE; vmcs12->exit_qualification = exit_qualification; - vmcs12->vm_exit_intr_info = exit_intr_info; - - vmcs12->idt_vectoring_info_field = 0; - vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); - vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + /* + * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched + * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other + * exit info fields are unmodified. + */ if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) { vmcs12->launch_state = 1; @@ -3535,7 +4740,12 @@ static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, * Transfer the event that L0 or L1 may wanted to inject into * L2 to IDT_VECTORING_INFO_FIELD. */ - vmcs12_save_pending_event(vcpu, vmcs12); + vmcs12_save_pending_event(vcpu, vmcs12, + vm_exit_reason, exit_intr_info); + + vmcs12->vm_exit_intr_info = exit_intr_info; + vmcs12->vm_exit_instruction_len = exit_insn_len; + vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); /* * According to spec, there's no need to store the guest's @@ -3549,14 +4759,6 @@ static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL); } - - /* - * Drop what we picked up for L2 via vmx_complete_interrupts. It is - * preserved above and would only end up incorrectly in L1. - */ - vcpu->arch.nmi_injected = false; - kvm_clear_exception_queue(vcpu); - kvm_clear_interrupt_queue(vcpu); } /* @@ -3571,8 +4773,8 @@ static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { + enum vm_entry_failure_code ignored; struct kvm_segment seg; - u32 entry_failure_code; if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) vcpu->arch.efer = vmcs12->host_ia32_efer; @@ -3582,8 +4784,8 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); vmx_set_efer(vcpu, vcpu->arch.efer); - kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp); - kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip); + kvm_rsp_write(vcpu, vmcs12->host_rsp); + kvm_rip_write(vcpu, vmcs12->host_rip); vmx_set_rflags(vcpu, X86_EFLAGS_FIXED); vmx_set_interrupt_shadow(vcpu, 0); @@ -3594,7 +4796,7 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, * CR0_GUEST_HOST_MASK is already set in the original vmcs01 * (KVM doesn't change it); */ - vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; + vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); vmx_set_cr0(vcpu, vmcs12->host_cr0); /* Same as above - no reason to call set_cr4_guest_host_mask(). */ @@ -3607,30 +4809,10 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, * Only PDPTE load can fail as the value of cr3 was checked on entry and * couldn't have changed. */ - if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code)) + if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored)) nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL); - if (!enable_ept) - vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault; - - /* - * If vmcs01 doesn't use VPID, CPU flushes TLB on every - * VMEntry/VMExit. Thus, no need to flush TLB. - * - * If vmcs12 doesn't use VPID, L1 expects TLB to be - * flushed on every VMEntry/VMExit. - * - * Otherwise, we can preserve TLB entries as long as we are - * able to tag L1 TLB entries differently than L2 TLB entries. - * - * If vmcs12 uses EPT, we need to execute this flush on EPTP01 - * and therefore we request the TLB flush to happen only after VMCS EPTP - * has been set by KVM_REQ_LOAD_CR3. - */ - if (enable_vpid && - (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) { - kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); - } + nested_vmx_transition_tlb_flush(vcpu, vmcs12, false); vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs); vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp); @@ -3644,13 +4826,26 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS) vmcs_write64(GUEST_BNDCFGS, 0); + /* + * Load CET state from host state if VM_EXIT_LOAD_CET_STATE is set. + * otherwise CET state should be retained across VM-exit, i.e., + * guest values should be propagated from vmcs12 to vmcs01. + */ + if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_CET_STATE) + vmcs_write_cet_state(vcpu, vmcs12->host_s_cet, vmcs12->host_ssp, + vmcs12->host_ssp_tbl); + else + vmcs_write_cet_state(vcpu, vmcs12->guest_s_cet, vmcs12->guest_ssp, + vmcs12->guest_ssp_tbl); + if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) { vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat); vcpu->arch.pat = vmcs12->host_ia32_pat; } - if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) - vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL, - vmcs12->host_ia32_perf_global_ctrl); + if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) && + kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu))) + WARN_ON_ONCE(__kvm_emulate_msr_write(vcpu, MSR_CORE_PERF_GLOBAL_CTRL, + vmcs12->host_ia32_perf_global_ctrl)); /* Set L1 segment info according to Intel SDM 27.5.2 Loading Host Segment and Descriptor-Table Registers */ @@ -3667,7 +4862,7 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, seg.l = 1; else seg.db = 1; - vmx_set_segment(vcpu, &seg, VCPU_SREG_CS); + __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS); seg = (struct kvm_segment) { .base = 0, .limit = 0xFFFFFFFF, @@ -3678,17 +4873,17 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, .g = 1 }; seg.selector = vmcs12->host_ds_selector; - vmx_set_segment(vcpu, &seg, VCPU_SREG_DS); + __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS); seg.selector = vmcs12->host_es_selector; - vmx_set_segment(vcpu, &seg, VCPU_SREG_ES); + __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES); seg.selector = vmcs12->host_ss_selector; - vmx_set_segment(vcpu, &seg, VCPU_SREG_SS); + __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS); seg.selector = vmcs12->host_fs_selector; seg.base = vmcs12->host_fs_base; - vmx_set_segment(vcpu, &seg, VCPU_SREG_FS); + __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS); seg.selector = vmcs12->host_gs_selector; seg.base = vmcs12->host_gs_base; - vmx_set_segment(vcpu, &seg, VCPU_SREG_GS); + __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS); seg = (struct kvm_segment) { .base = vmcs12->host_tr_base, .limit = 0x67, @@ -3696,40 +4891,43 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, .type = 11, .present = 1 }; - vmx_set_segment(vcpu, &seg, VCPU_SREG_TR); + __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR); - kvm_set_dr(vcpu, 7, 0x400); - vmcs_write64(GUEST_IA32_DEBUGCTL, 0); + memset(&seg, 0, sizeof(seg)); + seg.unusable = 1; + __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR); - if (cpu_has_vmx_msr_bitmap()) - vmx_update_msr_bitmap(vcpu); + kvm_set_dr(vcpu, 7, 0x400); + vmx_guest_debugctl_write(vcpu, 0); if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr, vmcs12->vm_exit_msr_load_count)) nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); + + to_vt(vcpu)->emulation_required = vmx_emulation_required(vcpu); } static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx) { - struct shared_msr_entry *efer_msr; + struct vmx_uret_msr *efer_msr; unsigned int i; if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER) return vmcs_read64(GUEST_IA32_EFER); if (cpu_has_load_ia32_efer()) - return host_efer; + return kvm_host.efer; for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) { if (vmx->msr_autoload.guest.val[i].index == MSR_EFER) return vmx->msr_autoload.guest.val[i].value; } - efer_msr = find_msr_entry(vmx, MSR_EFER); + efer_msr = vmx_find_uret_msr(vmx, MSR_EFER); if (efer_msr) return efer_msr->data; - return host_efer; + return kvm_host.efer; } static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu) @@ -3737,7 +4935,6 @@ static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu) struct vmcs12 *vmcs12 = get_vmcs12(vcpu); struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmx_msr_entry g, h; - struct msr_data msr; gpa_t gpa; u32 i, j; @@ -3756,13 +4953,16 @@ static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu) WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7))); } + /* Reload DEBUGCTL to ensure vmcs01 has a fresh FREEZE_IN_SMM value. */ + vmx_reload_guest_debugctl(vcpu); + /* * Note that calling vmx_set_{efer,cr0,cr4} is important as they * handle a variety of side effects to KVM's software model. */ vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx)); - vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; + vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW)); vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); @@ -3770,7 +4970,7 @@ static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu) nested_ept_uninit_mmu_context(vcpu); vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); - __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); + kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); /* * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs @@ -3778,13 +4978,11 @@ static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu) * VMFail, like everything else we just need to ensure our * software model is up-to-date. */ - ept_save_pdptrs(vcpu); + if (enable_ept && is_pae_paging(vcpu)) + ept_save_pdptrs(vcpu); kvm_mmu_reset_context(vcpu); - if (cpu_has_vmx_msr_bitmap()) - vmx_update_msr_bitmap(vcpu); - /* * This nasty bit of open coding is a compromise between blindly * loading L1's MSRs using the exit load lists (incorrect emulation @@ -3796,7 +4994,6 @@ static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu) * from the guest value. The intent is to stuff host state as * silently as possible, not to fully process the exit load list. */ - msr.host_initiated = false; for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) { gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g)); if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) { @@ -3826,9 +5023,7 @@ static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu) goto vmabort; } - msr.index = h.index; - msr.data = h.value; - if (kvm_set_msr(vcpu, &msr)) { + if (kvm_emulate_msr_write(vcpu, h.index, h.value)) { pr_debug_ratelimited( "%s WRMSR failed (%u, 0x%x, 0x%llx)\n", __func__, j, h.index, h.value); @@ -3848,29 +5043,63 @@ vmabort: * and modify vmcs12 to make it see what it would expect to see there if * L2 was its real guest. Must only be called when in L2 (is_guest_mode()) */ -void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, - u32 exit_intr_info, unsigned long exit_qualification) +void __nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason, + u32 exit_intr_info, unsigned long exit_qualification, + u32 exit_insn_len) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + /* Pending MTF traps are discarded on VM-Exit. */ + vmx->nested.mtf_pending = false; + /* trying to cancel vmlaunch/vmresume is a bug */ WARN_ON_ONCE(vmx->nested.nested_run_pending); +#ifdef CONFIG_KVM_HYPERV + if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { + /* + * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map + * Enlightened VMCS after migration and we still need to + * do that when something is forcing L2->L1 exit prior to + * the first L2 run. + */ + (void)nested_get_evmcs_page(vcpu); + } +#endif + + /* Service pending TLB flush requests for L2 before switching to L1. */ + kvm_service_local_tlb_flush_requests(vcpu); + + /* + * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between + * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are + * up-to-date before switching to L1. + */ + if (enable_ept && is_pae_paging(vcpu)) + vmx_ept_load_pdptrs(vcpu); + leave_guest_mode(vcpu); - if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) - vcpu->arch.tsc_offset -= vmcs12->tsc_offset; + if (nested_cpu_has_preemption_timer(vmcs12)) + hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer); + + if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) { + vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset; + if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) + vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio; + } if (likely(!vmx->fail)) { - if (exit_reason == -1) - sync_vmcs12(vcpu, vmcs12); - else - prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info, - exit_qualification); + sync_vmcs02_to_vmcs12(vcpu, vmcs12); + + if (vm_exit_reason != -1) + prepare_vmcs12(vcpu, vmcs12, vm_exit_reason, + exit_intr_info, exit_qualification, + exit_insn_len); /* - * Must happen outside of sync_vmcs12() as it will + * Must happen outside of sync_vmcs02_to_vmcs12() as it will * also be used to capture vmcs12 cache as part of * capturing nVMX state for snapshot (migration). * @@ -3883,83 +5112,76 @@ void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, /* * The only expected VM-instruction error is "VM entry with * invalid control field(s)." Anything else indicates a - * problem with L0. And we should never get here with a - * VMFail of any type if early consistency checks are enabled. + * problem with L0. */ WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) != VMXERR_ENTRY_INVALID_CONTROL_FIELD); - WARN_ON_ONCE(nested_early_check); + + /* VM-Fail at VM-Entry means KVM missed a consistency check. */ + WARN_ON_ONCE(warn_on_missed_cc); } + /* + * Drop events/exceptions that were queued for re-injection to L2 + * (picked up via vmx_complete_interrupts()), as well as exceptions + * that were pending for L2. Note, this must NOT be hoisted above + * prepare_vmcs12(), events/exceptions queued for re-injection need to + * be captured in vmcs12 (see vmcs12_save_pending_event()). + */ + vcpu->arch.nmi_injected = false; + kvm_clear_exception_queue(vcpu); + kvm_clear_interrupt_queue(vcpu); + vmx_switch_vmcs(vcpu, &vmx->vmcs01); + kvm_nested_vmexit_handle_ibrs(vcpu); + /* Update any VMCS fields that might have changed while L2 ran */ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); + if (kvm_caps.has_tsc_control) + vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); - if (kvm_has_tsc_control) - decache_tsc_multiplier(vmx); + if (vmx->nested.l1_tpr_threshold != -1) + vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold); if (vmx->nested.change_vmcs01_virtual_apic_mode) { vmx->nested.change_vmcs01_virtual_apic_mode = false; vmx_set_virtual_apic_mode(vcpu); - } else if (!nested_cpu_has_ept(vmcs12) && - nested_cpu_has2(vmcs12, - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { - vmx_flush_tlb(vcpu, true); } - /* This is needed for same reason as it was needed in prepare_vmcs02 */ - vmx->host_rsp = 0; - - /* Unpin physical memory we referred to in vmcs02 */ - if (vmx->nested.apic_access_page) { - kvm_release_page_dirty(vmx->nested.apic_access_page); - vmx->nested.apic_access_page = NULL; + if (vmx->nested.update_vmcs01_cpu_dirty_logging) { + vmx->nested.update_vmcs01_cpu_dirty_logging = false; + vmx_update_cpu_dirty_logging(vcpu); } - if (vmx->nested.virtual_apic_page) { - kvm_release_page_dirty(vmx->nested.virtual_apic_page); - vmx->nested.virtual_apic_page = NULL; + + nested_put_vmcs12_pages(vcpu); + + if (vmx->nested.reload_vmcs01_apic_access_page) { + vmx->nested.reload_vmcs01_apic_access_page = false; + kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); } - if (vmx->nested.pi_desc_page) { - kunmap(vmx->nested.pi_desc_page); - kvm_release_page_dirty(vmx->nested.pi_desc_page); - vmx->nested.pi_desc_page = NULL; - vmx->nested.pi_desc = NULL; + + if (vmx->nested.update_vmcs01_apicv_status) { + vmx->nested.update_vmcs01_apicv_status = false; + kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); } - /* - * We are now running in L2, mmu_notifier will force to reload the - * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1. - */ - kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); + if (vmx->nested.update_vmcs01_hwapic_isr) { + vmx->nested.update_vmcs01_hwapic_isr = false; + kvm_apic_update_hwapic_isr(vcpu); + } - if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs)) - vmx->nested.need_vmcs12_sync = true; + if ((vm_exit_reason != -1) && + (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))) + vmx->nested.need_vmcs12_to_shadow_sync = true; /* in case we halted in L2 */ - vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; + kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); if (likely(!vmx->fail)) { - /* - * TODO: SDM says that with acknowledge interrupt on - * exit, bit 31 of the VM-exit interrupt information - * (valid interrupt) is always set to 1 on - * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't - * need kvm_cpu_has_interrupt(). See the commit - * message for details. - */ - if (nested_exit_intr_ack_set(vcpu) && - exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT && - kvm_cpu_has_interrupt(vcpu)) { - int irq = kvm_cpu_get_interrupt(vcpu); - WARN_ON(irq < 0); - vmcs12->vm_exit_intr_info = irq | - INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR; - } - - if (exit_reason != -1) + if (vm_exit_reason != -1) trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason, vmcs12->exit_qualification, vmcs12->idt_vectoring_info_field, @@ -3969,6 +5191,17 @@ void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, load_vmcs12_host_state(vcpu, vmcs12); + /* + * Process events if an injectable IRQ or NMI is pending, even + * if the event is blocked (RFLAGS.IF is cleared on VM-Exit). + * If an event became pending while L2 was active, KVM needs to + * either inject the event or request an IRQ/NMI window. SMIs + * don't need to be processed as SMM is mutually exclusive with + * non-root mode. INIT/SIPI don't need to be checked as INIT + * is blocked post-VMXON, and SIPIs are ignored. + */ + if (kvm_cpu_has_injectable_intr(vcpu) || vcpu->arch.nmi_pending) + kvm_make_request(KVM_REQ_EVENT, vcpu); return; } @@ -3979,7 +5212,7 @@ void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, * flag and the VM-instruction error field of the VMCS * accordingly, and skip the emulated instruction. */ - (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); + (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); /* * Restore L1's host state to KVM's software model. We're here @@ -3992,14 +5225,20 @@ void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, vmx->fail = 0; } +static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu) +{ + kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); + nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); +} + /* * Decode the memory-address operand of a vmx instruction, as recorded on an * exit caused by such an instruction (run by a guest hypervisor). * On success, returns 0. When the operand is invalid, returns 1 and throws - * #UD or #GP. + * #UD, #GP, or #SS. */ int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification, - u32 vmx_instruction_info, bool wr, gva_t *ret) + u32 vmx_instruction_info, bool wr, int len, gva_t *ret) { gva_t off; bool exn; @@ -4030,25 +5269,54 @@ int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification, /* Addr = segment_base + offset */ /* offset = base + [index * scale] + displacement */ off = exit_qualification; /* holds the displacement */ + if (addr_size == 1) + off = (gva_t)sign_extend64(off, 31); + else if (addr_size == 0) + off = (gva_t)sign_extend64(off, 15); if (base_is_valid) off += kvm_register_read(vcpu, base_reg); if (index_is_valid) - off += kvm_register_read(vcpu, index_reg)<<scaling; + off += kvm_register_read(vcpu, index_reg) << scaling; vmx_get_segment(vcpu, &s, seg_reg); - *ret = s.base + off; + /* + * The effective address, i.e. @off, of a memory operand is truncated + * based on the address size of the instruction. Note that this is + * the *effective address*, i.e. the address prior to accounting for + * the segment's base. + */ if (addr_size == 1) /* 32 bit */ - *ret &= 0xffffffff; + off &= 0xffffffff; + else if (addr_size == 0) /* 16 bit */ + off &= 0xffff; /* Checks for #GP/#SS exceptions. */ exn = false; if (is_long_mode(vcpu)) { + /* + * The virtual/linear address is never truncated in 64-bit + * mode, e.g. a 32-bit address size can yield a 64-bit virtual + * address when using FS/GS with a non-zero base. + */ + if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS) + *ret = s.base + off; + else + *ret = off; + + *ret = vmx_get_untagged_addr(vcpu, *ret, 0); /* Long mode: #GP(0)/#SS(0) if the memory address is in a * non-canonical form. This is the only check on the memory * destination for long mode! */ - exn = is_noncanonical_address(*ret, vcpu); - } else if (is_protmode(vcpu)) { + exn = is_noncanonical_address(*ret, vcpu, 0); + } else { + /* + * When not in long mode, the virtual/linear address is + * unconditionally truncated to 32 bits regardless of the + * address size. + */ + *ret = (s.base + off) & 0xffffffff; + /* Protected mode: apply checks for segment validity in the * following order: * - segment type check (#GP(0) may be thrown) @@ -4072,10 +5340,16 @@ int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification, /* Protected mode: #GP(0)/#SS(0) if the segment is unusable. */ exn = (s.unusable != 0); - /* Protected mode: #GP(0)/#SS(0) if the memory - * operand is outside the segment limit. + + /* + * Protected mode: #GP(0)/#SS(0) if the memory operand is + * outside the segment limit. All CPUs that support VMX ignore + * limit checks for flat segments, i.e. segments with base==0, + * limit==0xffffffff and of type expand-up data or code. */ - exn = exn || (off + sizeof(u64) > s.limit); + if (!(s.base == 0 && s.limit == 0xffffffff && + ((s.type & 8) || !(s.type & 4)))) + exn = exn || ((u64)off + len - 1 > s.limit); } if (exn) { kvm_queue_exception_e(vcpu, @@ -4088,18 +5362,24 @@ int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification, return 0; } -static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer) +static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer, + int *ret) { gva_t gva; struct x86_exception e; + int r; - if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), - vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva)) - return 1; + if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), + vmcs_read32(VMX_INSTRUCTION_INFO), false, + sizeof(*vmpointer), &gva)) { + *ret = 1; + return -EINVAL; + } - if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) { - kvm_inject_page_fault(vcpu, &e); - return 1; + r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e); + if (r != X86EMUL_CONTINUE) { + *ret = kvm_handle_memory_failure(vcpu, r, &e); + return -EINVAL; } return 0; @@ -4116,18 +5396,20 @@ static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu) struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs; /* - * We should allocate a shadow vmcs for vmcs01 only when L1 - * executes VMXON and free it when L1 executes VMXOFF. - * As it is invalid to execute VMXON twice, we shouldn't reach - * here when vmcs01 already have an allocated shadow vmcs. + * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it + * when L1 executes VMXOFF or the vCPU is forced out of nested + * operation. VMXON faults if the CPU is already post-VMXON, so it + * should be impossible to already have an allocated shadow VMCS. KVM + * doesn't support virtualization of VMCS shadowing, so vmcs01 should + * always be the loaded VMCS. */ - WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs); + if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs)) + return loaded_vmcs->shadow_vmcs; + + loaded_vmcs->shadow_vmcs = alloc_vmcs(true); + if (loaded_vmcs->shadow_vmcs) + vmcs_clear(loaded_vmcs->shadow_vmcs); - if (!loaded_vmcs->shadow_vmcs) { - loaded_vmcs->shadow_vmcs = alloc_vmcs(true); - if (loaded_vmcs->shadow_vmcs) - vmcs_clear(loaded_vmcs->shadow_vmcs); - } return loaded_vmcs->shadow_vmcs; } @@ -4140,29 +5422,29 @@ static int enter_vmx_operation(struct kvm_vcpu *vcpu) if (r < 0) goto out_vmcs02; - vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL); + vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT); if (!vmx->nested.cached_vmcs12) goto out_cached_vmcs12; - vmx->nested.cached_shadow_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL); + vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA; + vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT); if (!vmx->nested.cached_shadow_vmcs12) goto out_cached_shadow_vmcs12; if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu)) goto out_shadow_vmcs; - hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC, - HRTIMER_MODE_REL_PINNED); - vmx->nested.preemption_timer.function = vmx_preemption_timer_fn; + hrtimer_setup(&vmx->nested.preemption_timer, vmx_preemption_timer_fn, CLOCK_MONOTONIC, + HRTIMER_MODE_ABS_PINNED); vmx->nested.vpid02 = allocate_vpid(); vmx->nested.vmcs02_initialized = false; vmx->nested.vmxon = true; - if (pt_mode == PT_MODE_HOST_GUEST) { + if (vmx_pt_mode_is_host_guest()) { vmx->pt_desc.guest.ctl = 0; - pt_update_intercept_for_msr(vmx); + pt_update_intercept_for_msr(vcpu); } return 0; @@ -4180,46 +5462,65 @@ out_vmcs02: return -ENOMEM; } -/* - * Emulate the VMXON instruction. - * Currently, we just remember that VMX is active, and do not save or even - * inspect the argument to VMXON (the so-called "VMXON pointer") because we - * do not currently need to store anything in that guest-allocated memory - * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their - * argument is different from the VMXON pointer (which the spec says they do). - */ -static int handle_vmon(struct kvm_vcpu *vcpu) +/* Emulate the VMXON instruction. */ +static int handle_vmxon(struct kvm_vcpu *vcpu) { int ret; gpa_t vmptr; - struct page *page; + uint32_t revision; struct vcpu_vmx *vmx = to_vmx(vcpu); - const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED - | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; + const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED + | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; /* - * The Intel VMX Instruction Reference lists a bunch of bits that are - * prerequisite to running VMXON, most notably cr4.VMXE must be set to - * 1 (see vmx_set_cr4() for when we allow the guest to set this). - * Otherwise, we should fail with #UD. But most faulting conditions - * have already been checked by hardware, prior to the VM-exit for - * VMXON. We do test guest cr4.VMXE because processor CR4 always has - * that bit set to 1 in non-root mode. + * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter + * the guest and so cannot rely on hardware to perform the check, + * which has higher priority than VM-Exit (see Intel SDM's pseudocode + * for VMXON). + * + * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86 + * and !COMPATIBILITY modes. For an unrestricted guest, KVM doesn't + * force any of the relevant guest state. For a restricted guest, KVM + * does force CR0.PE=1, but only to also force VM86 in order to emulate + * Real Mode, and so there's no need to check CR0.PE manually. */ - if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) { + if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } - /* CPL=0 must be checked manually. */ + /* + * The CPL is checked for "not in VMX operation" and for "in VMX root", + * and has higher priority than the VM-Fail due to being post-VMXON, + * i.e. VMXON #GPs outside of VMX non-root if CPL!=0. In VMX non-root, + * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits + * from L2 to L1, i.e. there's no need to check for the vCPU being in + * VMX non-root. + * + * Forwarding the VM-Exit unconditionally, i.e. without performing the + * #UD checks (see above), is functionally ok because KVM doesn't allow + * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's + * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are + * missed by hardware due to shadowing CR0 and/or CR4. + */ if (vmx_get_cpl(vcpu)) { kvm_inject_gp(vcpu, 0); return 1; } if (vmx->nested.vmxon) - return nested_vmx_failValid(vcpu, - VMXERR_VMXON_IN_VMX_ROOT_OPERATION); + return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION); + + /* + * Invalid CR0/CR4 generates #GP. These checks are performed if and + * only if the vCPU isn't already in VMX operation, i.e. effectively + * have lower priority than the VM-Fail above. + */ + if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) || + !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) { + kvm_inject_gp(vcpu, 0); + return 1; + } if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES) != VMXON_NEEDED_FEATURES) { @@ -4227,8 +5528,8 @@ static int handle_vmon(struct kvm_vcpu *vcpu) return 1; } - if (nested_vmx_get_vmptr(vcpu, &vmptr)) - return 1; + if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret)) + return ret; /* * SDM 3: 24.11.5 @@ -4238,20 +5539,12 @@ static int handle_vmon(struct kvm_vcpu *vcpu) * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case; * which replaces physical address width with 32 */ - if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) - return nested_vmx_failInvalid(vcpu); - - page = kvm_vcpu_gpa_to_page(vcpu, vmptr); - if (is_error_page(page)) + if (!page_address_valid(vcpu, vmptr)) return nested_vmx_failInvalid(vcpu); - if (*(u32 *)kmap(page) != VMCS12_REVISION) { - kunmap(page); - kvm_release_page_clean(page); + if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) || + revision != VMCS12_REVISION) return nested_vmx_failInvalid(vcpu); - } - kunmap(page); - kvm_release_page_clean(page); vmx->nested.vmxon_ptr = vmptr; ret = enter_vmx_operation(vcpu); @@ -4265,14 +5558,15 @@ static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); - if (vmx->nested.current_vmptr == -1ull) + if (vmx->nested.current_vmptr == INVALID_GPA) return; + copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu)); + if (enable_shadow_vmcs) { /* copy to memory all shadowed fields in case they were modified */ copy_shadow_to_vmcs12(vmx); - vmx->nested.need_vmcs12_sync = false; vmx_disable_shadow_vmcs(vmx); } vmx->nested.posted_intr_nv = -1; @@ -4282,17 +5576,22 @@ static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu) vmx->nested.current_vmptr >> PAGE_SHIFT, vmx->nested.cached_vmcs12, 0, VMCS12_SIZE); - kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); + kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); - vmx->nested.current_vmptr = -1ull; + vmx->nested.current_vmptr = INVALID_GPA; } /* Emulate the VMXOFF instruction */ -static int handle_vmoff(struct kvm_vcpu *vcpu) +static int handle_vmxoff(struct kvm_vcpu *vcpu) { if (!nested_vmx_check_permission(vcpu)) return 1; + free_nested(vcpu); + + if (kvm_apic_has_pending_init_or_sipi(vcpu)) + kvm_make_request(KVM_REQ_EVENT, vcpu); + return nested_vmx_succeed(vcpu); } @@ -4302,39 +5601,42 @@ static int handle_vmclear(struct kvm_vcpu *vcpu) struct vcpu_vmx *vmx = to_vmx(vcpu); u32 zero = 0; gpa_t vmptr; + int r; if (!nested_vmx_check_permission(vcpu)) return 1; - if (nested_vmx_get_vmptr(vcpu, &vmptr)) - return 1; + if (nested_vmx_get_vmptr(vcpu, &vmptr, &r)) + return r; - if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) - return nested_vmx_failValid(vcpu, - VMXERR_VMCLEAR_INVALID_ADDRESS); + if (!page_address_valid(vcpu, vmptr)) + return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS); if (vmptr == vmx->nested.vmxon_ptr) - return nested_vmx_failValid(vcpu, - VMXERR_VMCLEAR_VMXON_POINTER); + return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER); - if (vmx->nested.hv_evmcs_page) { - if (vmptr == vmx->nested.hv_evmcs_vmptr) - nested_release_evmcs(vcpu); - } else { + if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) { if (vmptr == vmx->nested.current_vmptr) nested_release_vmcs12(vcpu); - kvm_vcpu_write_guest(vcpu, - vmptr + offsetof(struct vmcs12, - launch_state), - &zero, sizeof(zero)); + /* + * Silently ignore memory errors on VMCLEAR, Intel's pseudocode + * for VMCLEAR includes a "ensure that data for VMCS referenced + * by the operand is in memory" clause that guards writes to + * memory, i.e. doing nothing for I/O is architecturally valid. + * + * FIXME: Suppress failures if and only if no memslot is found, + * i.e. exit to userspace if __copy_to_user() fails. + */ + (void)kvm_vcpu_write_guest(vcpu, + vmptr + offsetof(struct vmcs12, + launch_state), + &zero, sizeof(zero)); } return nested_vmx_succeed(vcpu); } -static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch); - /* Emulate the VMLAUNCH instruction */ static int handle_vmlaunch(struct kvm_vcpu *vcpu) { @@ -4350,142 +5652,212 @@ static int handle_vmresume(struct kvm_vcpu *vcpu) static int handle_vmread(struct kvm_vcpu *vcpu) { + struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu) + : get_vmcs12(vcpu); + unsigned long exit_qualification = vmx_get_exit_qual(vcpu); + u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct x86_exception e; unsigned long field; - u64 field_value; - unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + u64 value; gva_t gva = 0; - struct vmcs12 *vmcs12; + short offset; + int len, r; if (!nested_vmx_check_permission(vcpu)) return 1; - if (to_vmx(vcpu)->nested.current_vmptr == -1ull) - return nested_vmx_failInvalid(vcpu); + /* Decode instruction info and find the field to read */ + field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf)); - if (!is_guest_mode(vcpu)) - vmcs12 = get_vmcs12(vcpu); - else { + if (!nested_vmx_is_evmptr12_valid(vmx)) { /* - * When vmcs->vmcs_link_pointer is -1ull, any VMREAD - * to shadowed-field sets the ALU flags for VMfailInvalid. + * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA, + * any VMREAD sets the ALU flags for VMfailInvalid. */ - if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) + if (vmx->nested.current_vmptr == INVALID_GPA || + (is_guest_mode(vcpu) && + get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA)) return nested_vmx_failInvalid(vcpu); - vmcs12 = get_shadow_vmcs12(vcpu); - } - /* Decode instruction info and find the field to read */ - field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); - /* Read the field, zero-extended to a u64 field_value */ - if (vmcs12_read_any(vmcs12, field, &field_value) < 0) - return nested_vmx_failValid(vcpu, - VMXERR_UNSUPPORTED_VMCS_COMPONENT); + offset = get_vmcs12_field_offset(field); + if (offset < 0) + return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); + + if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field)) + copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12); + + /* Read the field, zero-extended to a u64 value */ + value = vmcs12_read_any(vmcs12, field, offset); + } else { + /* + * Hyper-V TLFS (as of 6.0b) explicitly states, that while an + * enlightened VMCS is active VMREAD/VMWRITE instructions are + * unsupported. Unfortunately, certain versions of Windows 11 + * don't comply with this requirement which is not enforced in + * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a + * workaround, as misbehaving guests will panic on VM-Fail. + * Note, enlightened VMCS is incompatible with shadow VMCS so + * all VMREADs from L2 should go to L1. + */ + if (WARN_ON_ONCE(is_guest_mode(vcpu))) + return nested_vmx_failInvalid(vcpu); + + offset = evmcs_field_offset(field, NULL); + if (offset < 0) + return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); + + /* Read the field, zero-extended to a u64 value */ + value = evmcs_read_any(nested_vmx_evmcs(vmx), field, offset); + } /* * Now copy part of this value to register or memory, as requested. * Note that the number of bits actually copied is 32 or 64 depending * on the guest's mode (32 or 64 bit), not on the given field's length. */ - if (vmx_instruction_info & (1u << 10)) { - kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf), - field_value); + if (instr_info & BIT(10)) { + kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value); } else { + len = is_64_bit_mode(vcpu) ? 8 : 4; if (get_vmx_mem_address(vcpu, exit_qualification, - vmx_instruction_info, true, &gva)) + instr_info, true, len, &gva)) return 1; /* _system ok, nested_vmx_check_permission has verified cpl=0 */ - kvm_write_guest_virt_system(vcpu, gva, &field_value, - (is_long_mode(vcpu) ? 8 : 4), NULL); + r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e); + if (r != X86EMUL_CONTINUE) + return kvm_handle_memory_failure(vcpu, r, &e); } return nested_vmx_succeed(vcpu); } +static bool is_shadow_field_rw(unsigned long field) +{ + switch (field) { +#define SHADOW_FIELD_RW(x, y) case x: +#include "vmcs_shadow_fields.h" + return true; + default: + break; + } + return false; +} + +static bool is_shadow_field_ro(unsigned long field) +{ + switch (field) { +#define SHADOW_FIELD_RO(x, y) case x: +#include "vmcs_shadow_fields.h" + return true; + default: + break; + } + return false; +} static int handle_vmwrite(struct kvm_vcpu *vcpu) { + struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu) + : get_vmcs12(vcpu); + unsigned long exit_qualification = vmx_get_exit_qual(vcpu); + u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct x86_exception e; unsigned long field; + short offset; gva_t gva; - struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + int len, r; - /* The value to write might be 32 or 64 bits, depending on L1's long + /* + * The value to write might be 32 or 64 bits, depending on L1's long * mode, and eventually we need to write that into a field of several * possible lengths. The code below first zero-extends the value to 64 - * bit (field_value), and then copies only the appropriate number of + * bit (value), and then copies only the appropriate number of * bits into the vmcs12 field. */ - u64 field_value = 0; - struct x86_exception e; - struct vmcs12 *vmcs12; + u64 value = 0; if (!nested_vmx_check_permission(vcpu)) return 1; - if (vmx->nested.current_vmptr == -1ull) + /* + * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA, + * any VMWRITE sets the ALU flags for VMfailInvalid. + */ + if (vmx->nested.current_vmptr == INVALID_GPA || + (is_guest_mode(vcpu) && + get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA)) return nested_vmx_failInvalid(vcpu); - if (vmx_instruction_info & (1u << 10)) - field_value = kvm_register_readl(vcpu, - (((vmx_instruction_info) >> 3) & 0xf)); + if (instr_info & BIT(10)) + value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf)); else { + len = is_64_bit_mode(vcpu) ? 8 : 4; if (get_vmx_mem_address(vcpu, exit_qualification, - vmx_instruction_info, false, &gva)) - return 1; - if (kvm_read_guest_virt(vcpu, gva, &field_value, - (is_64_bit_mode(vcpu) ? 8 : 4), &e)) { - kvm_inject_page_fault(vcpu, &e); + instr_info, false, len, &gva)) return 1; - } + r = kvm_read_guest_virt(vcpu, gva, &value, len, &e); + if (r != X86EMUL_CONTINUE) + return kvm_handle_memory_failure(vcpu, r, &e); } + field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf)); + + offset = get_vmcs12_field_offset(field); + if (offset < 0) + return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); - field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); /* * If the vCPU supports "VMWRITE to any supported field in the * VMCS," then the "read-only" fields are actually read/write. */ if (vmcs_field_readonly(field) && !nested_cpu_has_vmwrite_any_field(vcpu)) - return nested_vmx_failValid(vcpu, - VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT); + return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT); - if (!is_guest_mode(vcpu)) - vmcs12 = get_vmcs12(vcpu); - else { - /* - * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE - * to shadowed-field sets the ALU flags for VMfailInvalid. - */ - if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) - return nested_vmx_failInvalid(vcpu); - vmcs12 = get_shadow_vmcs12(vcpu); - } + /* + * Ensure vmcs12 is up-to-date before any VMWRITE that dirties + * vmcs12, else we may crush a field or consume a stale value. + */ + if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) + copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12); - if (vmcs12_write_any(vmcs12, field, field_value) < 0) - return nested_vmx_failValid(vcpu, - VMXERR_UNSUPPORTED_VMCS_COMPONENT); + /* + * Some Intel CPUs intentionally drop the reserved bits of the AR byte + * fields on VMWRITE. Emulate this behavior to ensure consistent KVM + * behavior regardless of the underlying hardware, e.g. if an AR_BYTE + * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD + * from L1 will return a different value than VMREAD from L2 (L1 sees + * the stripped down value, L2 sees the full value as stored by KVM). + */ + if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES) + value &= 0x1f0ff; + + vmcs12_write_any(vmcs12, field, offset, value); /* - * Do not track vmcs12 dirty-state if in guest-mode - * as we actually dirty shadow vmcs12 instead of vmcs12. + * Do not track vmcs12 dirty-state if in guest-mode as we actually + * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated + * by L1 without a vmexit are always updated in the vmcs02, i.e. don't + * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path. */ - if (!is_guest_mode(vcpu)) { - switch (field) { -#define SHADOW_FIELD_RW(x) case x: -#include "vmcs_shadow_fields.h" - /* - * The fields that can be updated by L1 without a vmexit are - * always updated in the vmcs02, the others go down the slow - * path of prepare_vmcs02. - */ - break; - default: - vmx->nested.dirty_vmcs12 = true; - break; + if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) { + /* + * L1 can read these fields without exiting, ensure the + * shadow VMCS is up-to-date. + */ + if (enable_shadow_vmcs && is_shadow_field_ro(field)) { + preempt_disable(); + vmcs_load(vmx->vmcs01.shadow_vmcs); + + __vmcs_writel(field, value); + + vmcs_clear(vmx->vmcs01.shadow_vmcs); + vmcs_load(vmx->loaded_vmcs->vmcs); + preempt_enable(); } + vmx->nested.dirty_vmcs12 = true; } return nested_vmx_succeed(vcpu); @@ -4495,13 +5867,13 @@ static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr) { vmx->nested.current_vmptr = vmptr; if (enable_shadow_vmcs) { - vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, - SECONDARY_EXEC_SHADOW_VMCS); + secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS); vmcs_write64(VMCS_LINK_POINTER, __pa(vmx->vmcs01.shadow_vmcs)); - vmx->nested.need_vmcs12_sync = true; + vmx->nested.need_vmcs12_to_shadow_sync = true; } vmx->nested.dirty_vmcs12 = true; + vmx->nested.force_msr_bitmap_recalc = true; } /* Emulate the VMPTRLD instruction */ @@ -4509,47 +5881,50 @@ static int handle_vmptrld(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); gpa_t vmptr; + int r; if (!nested_vmx_check_permission(vcpu)) return 1; - if (nested_vmx_get_vmptr(vcpu, &vmptr)) - return 1; + if (nested_vmx_get_vmptr(vcpu, &vmptr, &r)) + return r; - if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) - return nested_vmx_failValid(vcpu, - VMXERR_VMPTRLD_INVALID_ADDRESS); + if (!page_address_valid(vcpu, vmptr)) + return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS); if (vmptr == vmx->nested.vmxon_ptr) - return nested_vmx_failValid(vcpu, - VMXERR_VMPTRLD_VMXON_POINTER); + return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER); /* Forbid normal VMPTRLD if Enlightened version was used */ - if (vmx->nested.hv_evmcs) + if (nested_vmx_is_evmptr12_valid(vmx)) return 1; if (vmx->nested.current_vmptr != vmptr) { - struct vmcs12 *new_vmcs12; - struct page *page; + struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache; + struct vmcs_hdr hdr; - page = kvm_vcpu_gpa_to_page(vcpu, vmptr); - if (is_error_page(page)) { + if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) { /* * Reads from an unbacked page return all 1s, * which means that the 32 bits located at the * given physical address won't match the required * VMCS12_REVISION identifier. */ - return nested_vmx_failValid(vcpu, + return nested_vmx_fail(vcpu, + VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); + } + + if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr, + offsetof(struct vmcs12, hdr), + sizeof(hdr))) { + return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); } - new_vmcs12 = kmap(page); - if (new_vmcs12->hdr.revision_id != VMCS12_REVISION || - (new_vmcs12->hdr.shadow_vmcs && + + if (hdr.revision_id != VMCS12_REVISION || + (hdr.shadow_vmcs && !nested_cpu_has_vmx_shadow_vmcs(vcpu))) { - kunmap(page); - kvm_release_page_clean(page); - return nested_vmx_failValid(vcpu, + return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); } @@ -4559,9 +5934,11 @@ static int handle_vmptrld(struct kvm_vcpu *vcpu) * Load VMCS12 from guest memory since it is not already * cached. */ - memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE); - kunmap(page); - kvm_release_page_clean(page); + if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12, + VMCS12_SIZE)) { + return nested_vmx_fail(vcpu, + VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); + } set_current_vmptr(vmx, vmptr); } @@ -4572,26 +5949,28 @@ static int handle_vmptrld(struct kvm_vcpu *vcpu) /* Emulate the VMPTRST instruction */ static int handle_vmptrst(struct kvm_vcpu *vcpu) { - unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION); + unsigned long exit_qual = vmx_get_exit_qual(vcpu); u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr; struct x86_exception e; gva_t gva; + int r; if (!nested_vmx_check_permission(vcpu)) return 1; - if (unlikely(to_vmx(vcpu)->nested.hv_evmcs)) + if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu)))) return 1; - if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva)) + if (get_vmx_mem_address(vcpu, exit_qual, instr_info, + true, sizeof(gpa_t), &gva)) return 1; /* *_system ok, nested_vmx_check_permission has verified cpl=0 */ - if (kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr, - sizeof(gpa_t), &e)) { - kvm_inject_page_fault(vcpu, &e); - return 1; - } + r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr, + sizeof(gpa_t), &e); + if (r != X86EMUL_CONTINUE) + return kvm_handle_memory_failure(vcpu, r, &e); + return nested_vmx_succeed(vcpu); } @@ -4600,12 +5979,14 @@ static int handle_invept(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 vmx_instruction_info, types; - unsigned long type; + unsigned long type, roots_to_free; + struct kvm_mmu *mmu; gva_t gva; struct x86_exception e; struct { u64 eptp, gpa; } operand; + int i, r, gpr_index; if (!(vmx->nested.msrs.secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) || @@ -4618,40 +5999,59 @@ static int handle_invept(struct kvm_vcpu *vcpu) return 1; vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); - type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); + gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); + type = kvm_register_read(vcpu, gpr_index); types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6; if (type >= 32 || !(types & (1 << type))) - return nested_vmx_failValid(vcpu, - VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); + return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); /* According to the Intel VMX instruction reference, the memory * operand is read even if it isn't needed (e.g., for type==global) */ - if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), - vmx_instruction_info, false, &gva)) - return 1; - if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { - kvm_inject_page_fault(vcpu, &e); + if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), + vmx_instruction_info, false, sizeof(operand), &gva)) return 1; - } + r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); + if (r != X86EMUL_CONTINUE) + return kvm_handle_memory_failure(vcpu, r, &e); - switch (type) { - case VMX_EPT_EXTENT_GLOBAL: /* - * TODO: track mappings and invalidate - * single context requests appropriately + * Nested EPT roots are always held through guest_mmu, + * not root_mmu. */ + mmu = &vcpu->arch.guest_mmu; + + switch (type) { case VMX_EPT_EXTENT_CONTEXT: - kvm_mmu_sync_roots(vcpu); - kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); + if (!nested_vmx_check_eptp(vcpu, operand.eptp)) + return nested_vmx_fail(vcpu, + VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); + + roots_to_free = 0; + if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd, + operand.eptp)) + roots_to_free |= KVM_MMU_ROOT_CURRENT; + + for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { + if (nested_ept_root_matches(mmu->prev_roots[i].hpa, + mmu->prev_roots[i].pgd, + operand.eptp)) + roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); + } + break; + case VMX_EPT_EXTENT_GLOBAL: + roots_to_free = KVM_MMU_ROOTS_ALL; break; default: - BUG_ON(1); + BUG(); break; } + if (roots_to_free) + kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); + return nested_vmx_succeed(vcpu); } @@ -4667,6 +6067,7 @@ static int handle_invvpid(struct kvm_vcpu *vcpu) u64 gla; } operand; u16 vpid02; + int r, gpr_index; if (!(vmx->nested.msrs.secondary_ctls_high & SECONDARY_EXEC_ENABLE_VPID) || @@ -4679,100 +6080,108 @@ static int handle_invvpid(struct kvm_vcpu *vcpu) return 1; vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); - type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); + gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); + type = kvm_register_read(vcpu, gpr_index); types = (vmx->nested.msrs.vpid_caps & VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8; if (type >= 32 || !(types & (1 << type))) - return nested_vmx_failValid(vcpu, + return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); /* according to the intel vmx instruction reference, the memory * operand is read even if it isn't needed (e.g., for type==global) */ - if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), - vmx_instruction_info, false, &gva)) - return 1; - if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { - kvm_inject_page_fault(vcpu, &e); + if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), + vmx_instruction_info, false, sizeof(operand), &gva)) return 1; - } + r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); + if (r != X86EMUL_CONTINUE) + return kvm_handle_memory_failure(vcpu, r, &e); + if (operand.vpid >> 16) - return nested_vmx_failValid(vcpu, + return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); + /* + * Always flush the effective vpid02, i.e. never flush the current VPID + * and never explicitly flush vpid01. INVVPID targets a VPID, not a + * VMCS, and so whether or not the current vmcs12 has VPID enabled is + * irrelevant (and there may not be a loaded vmcs12). + */ vpid02 = nested_get_vpid02(vcpu); switch (type) { case VMX_VPID_EXTENT_INDIVIDUAL_ADDR: + /* + * LAM doesn't apply to addresses that are inputs to TLB + * invalidation. + */ if (!operand.vpid || - is_noncanonical_address(operand.gla, vcpu)) - return nested_vmx_failValid(vcpu, + is_noncanonical_invlpg_address(operand.gla, vcpu)) + return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); - if (cpu_has_vmx_invvpid_individual_addr()) { - __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, - vpid02, operand.gla); - } else - __vmx_flush_tlb(vcpu, vpid02, false); + vpid_sync_vcpu_addr(vpid02, operand.gla); break; case VMX_VPID_EXTENT_SINGLE_CONTEXT: case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL: if (!operand.vpid) - return nested_vmx_failValid(vcpu, + return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); - __vmx_flush_tlb(vcpu, vpid02, false); + vpid_sync_context(vpid02); break; case VMX_VPID_EXTENT_ALL_CONTEXT: - __vmx_flush_tlb(vcpu, vpid02, false); + vpid_sync_context(vpid02); break; default: WARN_ON_ONCE(1); return kvm_skip_emulated_instruction(vcpu); } + /* + * Sync the shadow page tables if EPT is disabled, L1 is invalidating + * linear mappings for L2 (tagged with L2's VPID). Free all guest + * roots as VPIDs are not tracked in the MMU role. + * + * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share + * an MMU when EPT is disabled. + * + * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR. + */ + if (!enable_ept) + kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu); + return nested_vmx_succeed(vcpu); } static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { - u32 index = vcpu->arch.regs[VCPU_REGS_RCX]; - u64 address; - bool accessed_dirty; - struct kvm_mmu *mmu = vcpu->arch.walk_mmu; + u32 index = kvm_rcx_read(vcpu); + u64 new_eptp; - if (!nested_cpu_has_eptp_switching(vmcs12) || - !nested_cpu_has_ept(vmcs12)) + if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12))) return 1; - if (index >= VMFUNC_EPTP_ENTRIES) return 1; - if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT, - &address, index * 8, 8)) + &new_eptp, index * 8, 8)) return 1; - accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT); - /* * If the (L2) guest does a vmfunc to the currently * active ept pointer, we don't have to do anything else */ - if (vmcs12->ept_pointer != address) { - if (!valid_ept_address(vcpu, address)) + if (vmcs12->ept_pointer != new_eptp) { + if (!nested_vmx_check_eptp(vcpu, new_eptp)) return 1; - kvm_mmu_unload(vcpu); - mmu->ept_ad = accessed_dirty; - mmu->mmu_role.base.ad_disabled = !accessed_dirty; - vmcs12->ept_pointer = address; - /* - * TODO: Check what's the correct approach in case - * mmu reload fails. Currently, we just let the next - * reload potentially fail - */ - kvm_mmu_reload(vcpu); + vmcs12->ept_pointer = new_eptp; + nested_ept_new_eptp(vcpu); + + if (!nested_cpu_has_vpid(vmcs12)) + kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); } return 0; @@ -4782,20 +6191,29 @@ static int handle_vmfunc(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmcs12 *vmcs12; - u32 function = vcpu->arch.regs[VCPU_REGS_RAX]; + u32 function = kvm_rax_read(vcpu); /* - * VMFUNC is only supported for nested guests, but we always enable the - * secondary control for simplicity; for non-nested mode, fake that we - * didn't by injecting #UD. + * VMFUNC should never execute cleanly while L1 is active; KVM supports + * VMFUNC for nested VMs, but not for L1. */ - if (!is_guest_mode(vcpu)) { + if (WARN_ON_ONCE(!is_guest_mode(vcpu))) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } vmcs12 = get_vmcs12(vcpu); - if ((vmcs12->vm_function_control & (1 << function)) == 0) + + /* + * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC + * is enabled in vmcs02 if and only if it's enabled in vmcs12. + */ + if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + if (!(vmcs12->vm_function_control & BIT_ULL(function))) goto fail; switch (function) { @@ -4809,31 +6227,29 @@ static int handle_vmfunc(struct kvm_vcpu *vcpu) return kvm_skip_emulated_instruction(vcpu); fail: - nested_vmx_vmexit(vcpu, vmx->exit_reason, - vmcs_read32(VM_EXIT_INTR_INFO), - vmcs_readl(EXIT_QUALIFICATION)); + /* + * This is effectively a reflected VM-Exit, as opposed to a synthesized + * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode + * EXIT_REASON_VMFUNC as the exit reason. + */ + nested_vmx_vmexit(vcpu, vmx->vt.exit_reason.full, + vmx_get_intr_info(vcpu), + vmx_get_exit_qual(vcpu)); return 1; } - -static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) +/* + * Return true if an IO instruction with the specified port and size should cause + * a VM-exit into L1. + */ +bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port, + int size) { - unsigned long exit_qualification; + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); gpa_t bitmap, last_bitmap; - unsigned int port; - int size; u8 b; - if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) - return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING); - - exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - - port = exit_qualification >> 16; - size = (exit_qualification & 7) + 1; - - last_bitmap = (gpa_t)-1; + last_bitmap = INVALID_GPA; b = -1; while (size > 0) { @@ -4859,28 +6275,54 @@ static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu, return false; } +static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + unsigned long exit_qualification; + unsigned short port; + int size; + + if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) + return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING); + + exit_qualification = vmx_get_exit_qual(vcpu); + + port = exit_qualification >> 16; + size = (exit_qualification & 7) + 1; + + return nested_vmx_check_io_bitmaps(vcpu, port, size); +} + /* - * Return 1 if we should exit from L2 to L1 to handle an MSR access access, + * Return 1 if we should exit from L2 to L1 to handle an MSR access, * rather than handle it ourselves in L0. I.e., check whether L1 expressed * disinterest in the current event (read or write a specific MSR) by using an * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps. */ static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12, u32 exit_reason) + struct vmcs12 *vmcs12, + union vmx_exit_reason exit_reason) { - u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX]; + u32 msr_index; gpa_t bitmap; if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) return true; + if (exit_reason.basic == EXIT_REASON_MSR_READ_IMM || + exit_reason.basic == EXIT_REASON_MSR_WRITE_IMM) + msr_index = vmx_get_exit_qual(vcpu); + else + msr_index = kvm_rcx_read(vcpu); + /* * The MSR_BITMAP page is divided into four 1024-byte bitmaps, * for the four combinations of read/write and low/high MSR numbers. * First we need to figure out which of the four to use: */ bitmap = vmcs12->msr_bitmap; - if (exit_reason == EXIT_REASON_MSR_WRITE) + if (exit_reason.basic == EXIT_REASON_MSR_WRITE || + exit_reason.basic == EXIT_REASON_MSR_WRITE_IMM) bitmap += 2048; if (msr_index >= 0xc0000000) { msr_index -= 0xc0000000; @@ -4905,7 +6347,7 @@ static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu, static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { - unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + unsigned long exit_qualification = vmx_get_exit_qual(vcpu); int cr = exit_qualification & 15; int reg; unsigned long val; @@ -4913,7 +6355,7 @@ static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, switch ((exit_qualification >> 4) & 3) { case 0: /* mov to cr */ reg = (exit_qualification >> 8) & 15; - val = kvm_register_readl(vcpu, reg); + val = kvm_register_read(vcpu, reg); switch (cr) { case 0: if (vmcs12->cr0_guest_host_mask & @@ -4921,15 +6363,6 @@ static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, return true; break; case 3: - if ((vmcs12->cr3_target_count >= 1 && - vmcs12->cr3_target_value0 == val) || - (vmcs12->cr3_target_count >= 2 && - vmcs12->cr3_target_value1 == val) || - (vmcs12->cr3_target_count >= 3 && - vmcs12->cr3_target_value2 == val) || - (vmcs12->cr3_target_count >= 4 && - vmcs12->cr3_target_value3 == val)) - return false; if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING)) return true; break; @@ -4981,6 +6414,21 @@ static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, return false; } +static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + u32 encls_leaf; + + if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX) || + !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING)) + return false; + + encls_leaf = kvm_rax_read(vcpu); + if (encls_leaf > 62) + encls_leaf = 63; + return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf); +} + static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, gpa_t bitmap) { @@ -5005,69 +6453,130 @@ static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu, return 1 & (b >> (field & 7)); } -/* - * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we - * should handle it ourselves in L0 (and then continue L2). Only call this - * when in is_guest_mode (L2). - */ -bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason) +static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12) { - u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO); - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + u32 entry_intr_info = vmcs12->vm_entry_intr_info_field; - if (vmx->nested.nested_run_pending) - return false; - - if (unlikely(vmx->fail)) { - pr_info_ratelimited("%s failed vm entry %x\n", __func__, - vmcs_read32(VM_INSTRUCTION_ERROR)); + if (nested_cpu_has_mtf(vmcs12)) return true; - } /* - * The host physical addresses of some pages of guest memory - * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC - * Page). The CPU may write to these pages via their host - * physical address while L2 is running, bypassing any - * address-translation-based dirty tracking (e.g. EPT write - * protection). - * - * Mark them dirty on every exit from L2 to prevent them from - * getting out of sync with dirty tracking. + * An MTF VM-exit may be injected into the guest by setting the + * interruption-type to 7 (other event) and the vector field to 0. Such + * is the case regardless of the 'monitor trap flag' VM-execution + * control. */ - nested_mark_vmcs12_pages_dirty(vcpu); + return entry_intr_info == (INTR_INFO_VALID_MASK + | INTR_TYPE_OTHER_EVENT); +} - trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason, - vmcs_readl(EXIT_QUALIFICATION), - vmx->idt_vectoring_info, - intr_info, - vmcs_read32(VM_EXIT_INTR_ERROR_CODE), - KVM_ISA_VMX); +/* + * Return true if L0 wants to handle an exit from L2 regardless of whether or not + * L1 wants the exit. Only call this when in is_guest_mode (L2). + */ +static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu, + union vmx_exit_reason exit_reason) +{ + u32 intr_info; - switch (exit_reason) { + switch ((u16)exit_reason.basic) { case EXIT_REASON_EXCEPTION_NMI: + intr_info = vmx_get_intr_info(vcpu); if (is_nmi(intr_info)) - return false; + return true; else if (is_page_fault(intr_info)) - return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept; + return vcpu->arch.apf.host_apf_flags || + vmx_need_pf_intercept(vcpu); else if (is_debug(intr_info) && vcpu->guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) - return false; + return true; else if (is_breakpoint(intr_info) && vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) - return false; + return true; + else if (is_alignment_check(intr_info) && + !vmx_guest_inject_ac(vcpu)) + return true; + else if (is_ve_fault(intr_info)) + return true; + return false; + case EXIT_REASON_EXTERNAL_INTERRUPT: + return true; + case EXIT_REASON_MCE_DURING_VMENTRY: + return true; + case EXIT_REASON_EPT_VIOLATION: + /* + * L0 always deals with the EPT violation. If nested EPT is + * used, and the nested mmu code discovers that the address is + * missing in the guest EPT table (EPT12), the EPT violation + * will be injected with nested_ept_inject_page_fault() + */ + return true; + case EXIT_REASON_EPT_MISCONFIG: + /* + * L2 never uses directly L1's EPT, but rather L0's own EPT + * table (shadow on EPT) or a merged EPT table that L0 built + * (EPT on EPT). So any problems with the structure of the + * table is L0's fault. + */ + return true; + case EXIT_REASON_PREEMPTION_TIMER: + return true; + case EXIT_REASON_PML_FULL: + /* + * PML is emulated for an L1 VMM and should never be enabled in + * vmcs02, always "handle" PML_FULL by exiting to userspace. + */ + return true; + case EXIT_REASON_VMFUNC: + /* VM functions are emulated through L2->L0 vmexits. */ + return true; + case EXIT_REASON_BUS_LOCK: + /* + * At present, bus lock VM exit is never exposed to L1. + * Handle L2's bus locks in L0 directly. + */ + return true; +#ifdef CONFIG_KVM_HYPERV + case EXIT_REASON_VMCALL: + /* Hyper-V L2 TLB flush hypercall is handled by L0 */ + return guest_hv_cpuid_has_l2_tlb_flush(vcpu) && + nested_evmcs_l2_tlb_flush_enabled(vcpu) && + kvm_hv_is_tlb_flush_hcall(vcpu); +#endif + default: + break; + } + return false; +} + +/* + * Return 1 if L1 wants to intercept an exit from L2. Only call this when in + * is_guest_mode (L2). + */ +static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu, + union vmx_exit_reason exit_reason) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + u32 intr_info; + + switch ((u16)exit_reason.basic) { + case EXIT_REASON_EXCEPTION_NMI: + intr_info = vmx_get_intr_info(vcpu); + if (is_nmi(intr_info)) + return true; + else if (is_page_fault(intr_info)) + return true; return vmcs12->exception_bitmap & (1u << (intr_info & INTR_INFO_VECTOR_MASK)); case EXIT_REASON_EXTERNAL_INTERRUPT: - return false; + return nested_exit_on_intr(vcpu); case EXIT_REASON_TRIPLE_FAULT: return true; - case EXIT_REASON_PENDING_INTERRUPT: - return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING); + case EXIT_REASON_INTERRUPT_WINDOW: + return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING); case EXIT_REASON_NMI_WINDOW: - return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING); + return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING); case EXIT_REASON_TASK_SWITCH: return true; case EXIT_REASON_CPUID: @@ -5112,13 +6621,15 @@ bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason) return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC); case EXIT_REASON_MSR_READ: case EXIT_REASON_MSR_WRITE: + case EXIT_REASON_MSR_READ_IMM: + case EXIT_REASON_MSR_WRITE_IMM: return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason); case EXIT_REASON_INVALID_STATE: return true; case EXIT_REASON_MWAIT_INSTRUCTION: return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING); case EXIT_REASON_MONITOR_TRAP_FLAG: - return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG); + return nested_vmx_exit_handled_mtf(vmcs12); case EXIT_REASON_MONITOR_INSTRUCTION: return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING); case EXIT_REASON_PAUSE_INSTRUCTION: @@ -5126,7 +6637,7 @@ bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason) nested_cpu_has2(vmcs12, SECONDARY_EXEC_PAUSE_LOOP_EXITING); case EXIT_REASON_MCE_DURING_VMENTRY: - return false; + return true; case EXIT_REASON_TPR_BELOW_THRESHOLD: return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW); case EXIT_REASON_APIC_ACCESS: @@ -5138,22 +6649,6 @@ bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason) * delivery" only come from vmcs12. */ return true; - case EXIT_REASON_EPT_VIOLATION: - /* - * L0 always deals with the EPT violation. If nested EPT is - * used, and the nested mmu code discovers that the address is - * missing in the guest EPT table (EPT12), the EPT violation - * will be injected with nested_ept_inject_page_fault() - */ - return false; - case EXIT_REASON_EPT_MISCONFIG: - /* - * L2 never uses directly L1's EPT, but rather L0's own EPT - * table (shadow on EPT) or a merged EPT table that L0 built - * (EPT on EPT). So any problems with the structure of the - * table is L0's fault. - */ - return false; case EXIT_REASON_INVPCID: return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) && @@ -5162,30 +6657,94 @@ bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason) return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING); case EXIT_REASON_XSETBV: return true; - case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS: + case EXIT_REASON_XSAVES: + case EXIT_REASON_XRSTORS: /* - * This should never happen, since it is not possible to - * set XSS to a non-zero value---neither in L1 nor in L2. - * If if it were, XSS would have to be checked against - * the XSS exit bitmap in vmcs12. + * Always forward XSAVES/XRSTORS to L1 as KVM doesn't utilize + * XSS-bitmap, and always loads vmcs02 with vmcs12's XSS-bitmap + * verbatim, i.e. any exit is due to L1's bitmap. WARN if + * XSAVES isn't enabled, as the CPU is supposed to inject #UD + * in that case, before consulting the XSS-bitmap. */ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES); - case EXIT_REASON_PREEMPTION_TIMER: - return false; - case EXIT_REASON_PML_FULL: - /* We emulate PML support to L1. */ - return false; - case EXIT_REASON_VMFUNC: - /* VM functions are emulated through L2->L0 vmexits. */ - return false; + WARN_ON_ONCE(!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES)); + return true; + case EXIT_REASON_UMWAIT: + case EXIT_REASON_TPAUSE: + return nested_cpu_has2(vmcs12, + SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE); case EXIT_REASON_ENCLS: - /* SGX is never exposed to L1 */ + return nested_vmx_exit_handled_encls(vcpu, vmcs12); + case EXIT_REASON_NOTIFY: + /* Notify VM exit is not exposed to L1 */ + return false; + case EXIT_REASON_SEAMCALL: + case EXIT_REASON_TDCALL: + /* + * SEAMCALL and TDCALL unconditionally VM-Exit, but aren't + * virtualized by KVM for L1 hypervisors, i.e. L1 should + * never want or expect such an exit. + */ return false; default: return true; } } +/* + * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was + * reflected into L1. + */ +bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + union vmx_exit_reason exit_reason = vmx->vt.exit_reason; + unsigned long exit_qual; + u32 exit_intr_info; + + WARN_ON_ONCE(vmx->nested.nested_run_pending); + + /* + * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM + * has already loaded L2's state. + */ + if (unlikely(vmx->fail)) { + trace_kvm_nested_vmenter_failed( + "hardware VM-instruction error: ", + vmcs_read32(VM_INSTRUCTION_ERROR)); + exit_intr_info = 0; + exit_qual = 0; + goto reflect_vmexit; + } + + trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX); + + /* If L0 (KVM) wants the exit, it trumps L1's desires. */ + if (nested_vmx_l0_wants_exit(vcpu, exit_reason)) + return false; + + /* If L1 doesn't want the exit, handle it in L0. */ + if (!nested_vmx_l1_wants_exit(vcpu, exit_reason)) + return false; + + /* + * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For + * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would + * need to be synthesized by querying the in-kernel LAPIC, but external + * interrupts are never reflected to L1 so it's a non-issue. + */ + exit_intr_info = vmx_get_intr_info(vcpu); + if (is_exception_with_error_code(exit_intr_info)) { + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + vmcs12->vm_exit_intr_error_code = + vmcs_read32(VM_EXIT_INTR_ERROR_CODE); + } + exit_qual = vmx_get_exit_qual(vcpu); + +reflect_vmexit: + nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual); + return true; +} static int vmx_get_nested_state(struct kvm_vcpu *vcpu, struct kvm_nested_state __user *user_kvm_nested_state, @@ -5195,46 +6754,62 @@ static int vmx_get_nested_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12; struct kvm_nested_state kvm_state = { .flags = 0, - .format = 0, + .format = KVM_STATE_NESTED_FORMAT_VMX, .size = sizeof(kvm_state), - .vmx.vmxon_pa = -1ull, - .vmx.vmcs_pa = -1ull, + .hdr.vmx.flags = 0, + .hdr.vmx.vmxon_pa = INVALID_GPA, + .hdr.vmx.vmcs12_pa = INVALID_GPA, + .hdr.vmx.preemption_timer_deadline = 0, }; + struct kvm_vmx_nested_state_data __user *user_vmx_nested_state = + &user_kvm_nested_state->data.vmx[0]; if (!vcpu) - return kvm_state.size + 2 * VMCS12_SIZE; + return kvm_state.size + sizeof(*user_vmx_nested_state); vmx = to_vmx(vcpu); vmcs12 = get_vmcs12(vcpu); - if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled) - kvm_state.flags |= KVM_STATE_NESTED_EVMCS; - - if (nested_vmx_allowed(vcpu) && + if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX) && (vmx->nested.vmxon || vmx->nested.smm.vmxon)) { - kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr; - kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr; + kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr; + kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr; if (vmx_has_valid_vmcs12(vcpu)) { - kvm_state.size += VMCS12_SIZE; + kvm_state.size += sizeof(user_vmx_nested_state->vmcs12); + + /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */ + if (nested_vmx_is_evmptr12_set(vmx)) + kvm_state.flags |= KVM_STATE_NESTED_EVMCS; if (is_guest_mode(vcpu) && nested_cpu_has_shadow_vmcs(vmcs12) && - vmcs12->vmcs_link_pointer != -1ull) - kvm_state.size += VMCS12_SIZE; + vmcs12->vmcs_link_pointer != INVALID_GPA) + kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12); } if (vmx->nested.smm.vmxon) - kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON; + kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON; if (vmx->nested.smm.guest_mode) - kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE; + kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE; if (is_guest_mode(vcpu)) { kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE; if (vmx->nested.nested_run_pending) kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING; + + if (vmx->nested.mtf_pending) + kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING; + + if (nested_cpu_has_preemption_timer(vmcs12) && + vmx->nested.has_preemption_timer_deadline) { + kvm_state.hdr.vmx.flags |= + KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE; + kvm_state.hdr.vmx.preemption_timer_deadline = + vmx->nested.preemption_timer_deadline; + } } } @@ -5251,35 +6826,49 @@ static int vmx_get_nested_state(struct kvm_vcpu *vcpu, * When running L2, the authoritative vmcs12 state is in the * vmcs02. When running L1, the authoritative vmcs12 state is * in the shadow or enlightened vmcs linked to vmcs01, unless - * need_vmcs12_sync is set, in which case, the authoritative + * need_vmcs12_to_shadow_sync is set, in which case, the authoritative * vmcs12 state is in the vmcs12 already. */ if (is_guest_mode(vcpu)) { - sync_vmcs12(vcpu, vmcs12); - } else if (!vmx->nested.need_vmcs12_sync) { - if (vmx->nested.hv_evmcs) - copy_enlightened_to_vmcs12(vmx); - else if (enable_shadow_vmcs) - copy_shadow_to_vmcs12(vmx); + sync_vmcs02_to_vmcs12(vcpu, vmcs12); + sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12); + } else { + copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu)); + if (!vmx->nested.need_vmcs12_to_shadow_sync) { + if (nested_vmx_is_evmptr12_valid(vmx)) + /* + * L1 hypervisor is not obliged to keep eVMCS + * clean fields data always up-to-date while + * not in guest mode, 'hv_clean_fields' is only + * supposed to be actual upon vmentry so we need + * to ignore it here and do full copy. + */ + copy_enlightened_to_vmcs12(vmx, 0); + else if (enable_shadow_vmcs) + copy_shadow_to_vmcs12(vmx); + } } - if (copy_to_user(user_kvm_nested_state->data, vmcs12, sizeof(*vmcs12))) + BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE); + BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE); + + /* + * Copy over the full allocated size of vmcs12 rather than just the size + * of the struct. + */ + if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE)) return -EFAULT; if (nested_cpu_has_shadow_vmcs(vmcs12) && - vmcs12->vmcs_link_pointer != -1ull) { - if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE, - get_shadow_vmcs12(vcpu), sizeof(*vmcs12))) + vmcs12->vmcs_link_pointer != INVALID_GPA) { + if (copy_to_user(user_vmx_nested_state->shadow_vmcs12, + get_shadow_vmcs12(vcpu), VMCS12_SIZE)) return -EFAULT; } - out: return kvm_state.size; } -/* - * Forcibly leave nested mode in order to be able to reset the VCPU later on. - */ void vmx_leave_nested(struct kvm_vcpu *vcpu) { if (is_guest_mode(vcpu)) { @@ -5295,91 +6884,123 @@ static int vmx_set_nested_state(struct kvm_vcpu *vcpu, { struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmcs12 *vmcs12; - u32 exit_qual; + enum vm_entry_failure_code ignored; + struct kvm_vmx_nested_state_data __user *user_vmx_nested_state = + &user_kvm_nested_state->data.vmx[0]; int ret; - if (kvm_state->format != 0) + if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX) return -EINVAL; - if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) - nested_enable_evmcs(vcpu, NULL); - - if (!nested_vmx_allowed(vcpu)) - return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL; + if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) { + if (kvm_state->hdr.vmx.smm.flags) + return -EINVAL; - if (kvm_state->vmx.vmxon_pa == -1ull) { - if (kvm_state->vmx.smm.flags) + if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) return -EINVAL; - if (kvm_state->vmx.vmcs_pa != -1ull) + /* + * KVM_STATE_NESTED_EVMCS used to signal that KVM should + * enable eVMCS capability on vCPU. However, since then + * code was changed such that flag signals vmcs12 should + * be copied into eVMCS in guest memory. + * + * To preserve backwards compatibility, allow user + * to set this flag even when there is no VMXON region. + */ + if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS) + return -EINVAL; + } else { + if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX)) return -EINVAL; - vmx_leave_nested(vcpu); - return 0; + if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa)) + return -EINVAL; } - if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa)) - return -EINVAL; - - if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && + if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) return -EINVAL; - if (kvm_state->vmx.smm.flags & + if (kvm_state->hdr.vmx.smm.flags & ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON)) return -EINVAL; + if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) + return -EINVAL; + /* * SMM temporarily disables VMX, so we cannot be in guest mode, * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags * must be zero. */ - if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags) + if (is_smm(vcpu) ? + (kvm_state->flags & + (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING)) + : kvm_state->hdr.vmx.smm.flags) return -EINVAL; - if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && - !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON)) + if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && + !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON)) return -EINVAL; + if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) && + (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX) || + !vmx->nested.enlightened_vmcs_enabled)) + return -EINVAL; + vmx_leave_nested(vcpu); - if (kvm_state->vmx.vmxon_pa == -1ull) + + if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) return 0; - vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa; + vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa; ret = enter_vmx_operation(vcpu); if (ret) return ret; - /* Empty 'VMXON' state is permitted */ - if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12)) - return 0; + /* Empty 'VMXON' state is permitted if no VMCS loaded */ + if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) { + /* See vmx_has_valid_vmcs12. */ + if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) || + (kvm_state->flags & KVM_STATE_NESTED_EVMCS) || + (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)) + return -EINVAL; + else + return 0; + } - if (kvm_state->vmx.vmcs_pa != -1ull) { - if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa || - !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa)) + if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) { + if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa || + !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa)) return -EINVAL; - set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa); + set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa); +#ifdef CONFIG_KVM_HYPERV } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) { /* - * Sync eVMCS upon entry as we may not have - * HV_X64_MSR_VP_ASSIST_PAGE set up yet. + * nested_vmx_handle_enlightened_vmptrld() cannot be called + * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be + * restored yet. EVMCS will be mapped from + * nested_get_vmcs12_pages(). */ - vmx->nested.need_vmcs12_sync = true; + vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING; + kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); +#endif } else { return -EINVAL; } - if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) { + if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) { vmx->nested.smm.vmxon = true; vmx->nested.vmxon = false; - if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) + if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) vmx->nested.smm.guest_mode = true; } vmcs12 = get_vmcs12(vcpu); - if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12))) + if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12))) return -EFAULT; if (vmcs12->hdr.revision_id != VMCS12_REVISION) @@ -5391,138 +7012,180 @@ static int vmx_set_nested_state(struct kvm_vcpu *vcpu, vmx->nested.nested_run_pending = !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING); + vmx->nested.mtf_pending = + !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING); + + ret = -EINVAL; if (nested_cpu_has_shadow_vmcs(vmcs12) && - vmcs12->vmcs_link_pointer != -1ull) { + vmcs12->vmcs_link_pointer != INVALID_GPA) { struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu); - if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12)) - return -EINVAL; + if (kvm_state->size < + sizeof(*kvm_state) + + sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12)) + goto error_guest_mode; if (copy_from_user(shadow_vmcs12, - user_kvm_nested_state->data + VMCS12_SIZE, - sizeof(*vmcs12))) - return -EFAULT; + user_vmx_nested_state->shadow_vmcs12, + sizeof(*shadow_vmcs12))) { + ret = -EFAULT; + goto error_guest_mode; + } if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION || !shadow_vmcs12->hdr.shadow_vmcs) - return -EINVAL; + goto error_guest_mode; } - if (nested_vmx_check_vmentry_prereqs(vcpu, vmcs12) || - nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual)) - return -EINVAL; + vmx->nested.has_preemption_timer_deadline = false; + if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) { + vmx->nested.has_preemption_timer_deadline = true; + vmx->nested.preemption_timer_deadline = + kvm_state->hdr.vmx.preemption_timer_deadline; + } + + if (nested_vmx_check_controls(vcpu, vmcs12) || + nested_vmx_check_host_state(vcpu, vmcs12) || + nested_vmx_check_guest_state(vcpu, vmcs12, &ignored)) + goto error_guest_mode; vmx->nested.dirty_vmcs12 = true; + vmx->nested.force_msr_bitmap_recalc = true; ret = nested_vmx_enter_non_root_mode(vcpu, false); if (ret) - return -EINVAL; + goto error_guest_mode; + + if (vmx->nested.mtf_pending) + kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; + +error_guest_mode: + vmx->nested.nested_run_pending = 0; + return ret; } -void nested_vmx_vcpu_setup(void) +void nested_vmx_set_vmcs_shadowing_bitmap(void) { if (enable_shadow_vmcs) { - /* - * At vCPU creation, "VMWRITE to any supported field - * in the VMCS" is supported, so use the more - * permissive vmx_vmread_bitmap to specify both read - * and write permissions for the shadow VMCS. - */ vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap)); - vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap)); + vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap)); } } /* - * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be - * returned for the various VMX controls MSRs when nested VMX is enabled. - * The same values should also be used to verify that vmcs12 control fields are - * valid during nested entry from L1 to L2. - * Each of these control msrs has a low and high 32-bit half: A low bit is on - * if the corresponding bit in the (32-bit) control field *must* be on, and a - * bit in the high half is on if the corresponding bit in the control field - * may be on. See also vmx_control_verify(). + * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo + * that madness to get the encoding for comparison. */ -void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps, - bool apicv) +#define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10))) + +static u64 nested_vmx_calc_vmcs_enum_msr(void) { /* - * Note that as a general rule, the high half of the MSRs (bits in - * the control fields which may be 1) should be initialized by the - * intersection of the underlying hardware's MSR (i.e., features which - * can be supported) and the list of features we want to expose - - * because they are known to be properly supported in our code. - * Also, usually, the low half of the MSRs (bits which must be 1) can - * be set to 0, meaning that L1 may turn off any of these bits. The - * reason is that if one of these bits is necessary, it will appear - * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control - * fields of vmcs01 and vmcs02, will turn these bits off - and - * nested_vmx_exit_reflected() will not pass related exits to L1. - * These rules have exceptions below. + * Note these are the so called "index" of the VMCS field encoding, not + * the index into vmcs12. */ + unsigned int max_idx, idx; + int i; - /* pin-based controls */ - rdmsr(MSR_IA32_VMX_PINBASED_CTLS, - msrs->pinbased_ctls_low, - msrs->pinbased_ctls_high); - msrs->pinbased_ctls_low |= + /* + * For better or worse, KVM allows VMREAD/VMWRITE to all fields in + * vmcs12, regardless of whether or not the associated feature is + * exposed to L1. Simply find the field with the highest index. + */ + max_idx = 0; + for (i = 0; i < nr_vmcs12_fields; i++) { + /* The vmcs12 table is very, very sparsely populated. */ + if (!vmcs12_field_offsets[i]) + continue; + + idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i)); + if (idx > max_idx) + max_idx = idx; + } + + return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT; +} + +static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf, + struct nested_vmx_msrs *msrs) +{ + msrs->pinbased_ctls_low = PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; + + msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl; msrs->pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS | - (apicv ? PIN_BASED_POSTED_INTR : 0); + (enable_apicv ? PIN_BASED_POSTED_INTR : 0); msrs->pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR | PIN_BASED_VMX_PREEMPTION_TIMER; +} - /* exit controls */ - rdmsr(MSR_IA32_VMX_EXIT_CTLS, - msrs->exit_ctls_low, - msrs->exit_ctls_high); +static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf, + struct nested_vmx_msrs *msrs) +{ msrs->exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; + msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl; msrs->exit_ctls_high &= #ifdef CONFIG_X86_64 VM_EXIT_HOST_ADDR_SPACE_SIZE | #endif - VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT; + VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT | + VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_CET_STATE; msrs->exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR | VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER | - VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT; + VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT | + VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; + + if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) && + !kvm_cpu_cap_has(X86_FEATURE_IBT)) + msrs->exit_ctls_high &= ~VM_EXIT_LOAD_CET_STATE; /* We support free control of debug control saving. */ msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS; +} - /* entry controls */ - rdmsr(MSR_IA32_VMX_ENTRY_CTLS, - msrs->entry_ctls_low, - msrs->entry_ctls_high); +static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf, + struct nested_vmx_msrs *msrs) +{ msrs->entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; + + msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl; msrs->entry_ctls_high &= #ifdef CONFIG_X86_64 VM_ENTRY_IA32E_MODE | #endif - VM_ENTRY_LOAD_IA32_PAT; + VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS | + VM_ENTRY_LOAD_CET_STATE; msrs->entry_ctls_high |= - (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER); + (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER | + VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL); + + if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) && + !kvm_cpu_cap_has(X86_FEATURE_IBT)) + msrs->entry_ctls_high &= ~VM_ENTRY_LOAD_CET_STATE; /* We support free control of debug control loading. */ msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS; +} - /* cpu-based controls */ - rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, - msrs->procbased_ctls_low, - msrs->procbased_ctls_high); +static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf, + struct nested_vmx_msrs *msrs) +{ msrs->procbased_ctls_low = CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; + + msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl; msrs->procbased_ctls_high &= - CPU_BASED_VIRTUAL_INTR_PENDING | - CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING | + CPU_BASED_INTR_WINDOW_EXITING | + CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING | CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING | CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING | @@ -5547,21 +7210,29 @@ void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps, /* We support free control of CR3 access interception. */ msrs->procbased_ctls_low &= ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING); +} - /* - * secondary cpu-based controls. Do not include those that - * depend on CPUID bits, they are added later by vmx_cpuid_update. - */ - rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2, - msrs->secondary_ctls_low, - msrs->secondary_ctls_high); +static void nested_vmx_setup_secondary_ctls(u32 ept_caps, + struct vmcs_config *vmcs_conf, + struct nested_vmx_msrs *msrs) +{ msrs->secondary_ctls_low = 0; + + msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl; msrs->secondary_ctls_high &= SECONDARY_EXEC_DESC | + SECONDARY_EXEC_ENABLE_RDTSCP | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | + SECONDARY_EXEC_WBINVD_EXITING | SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | - SECONDARY_EXEC_WBINVD_EXITING; + SECONDARY_EXEC_RDRAND_EXITING | + SECONDARY_EXEC_ENABLE_INVPCID | + SECONDARY_EXEC_ENABLE_VMFUNC | + SECONDARY_EXEC_RDSEED_EXITING | + SECONDARY_EXEC_ENABLE_XSAVES | + SECONDARY_EXEC_TSC_SCALING | + SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE; /* * We can emulate "VMCS shadowing," even if the hardware @@ -5574,11 +7245,13 @@ void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps, /* nested EPT: emulate EPT also to L1 */ msrs->secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT; - msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT | - VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT; - if (cpu_has_vmx_ept_execute_only()) - msrs->ept_caps |= - VMX_EPT_EXECUTE_ONLY_BIT; + msrs->ept_caps = + VMX_EPT_PAGE_WALK_4_BIT | + VMX_EPT_PAGE_WALK_5_BIT | + VMX_EPTP_WB_BIT | + VMX_EPT_INVEPT_BIT | + VMX_EPT_EXECUTE_ONLY_BIT; + msrs->ept_caps &= ept_caps; msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT | VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT | @@ -5588,18 +7261,13 @@ void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps, SECONDARY_EXEC_ENABLE_PML; msrs->ept_caps |= VMX_EPT_AD_BIT; } - } - if (cpu_has_vmx_vmfunc()) { - msrs->secondary_ctls_high |= - SECONDARY_EXEC_ENABLE_VMFUNC; /* - * Advertise EPTP switching unconditionally - * since we emulate it + * Advertise EPTP switching irrespective of hardware support, + * KVM emulates it in software so long as VMFUNC is supported. */ - if (enable_ept) - msrs->vmfunc_controls = - VMX_VMFUNC_EPTP_SWITCHING; + if (cpu_has_vmx_vmfunc()) + msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING; } /* @@ -5623,32 +7291,42 @@ void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps, msrs->secondary_ctls_high |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; - /* miscellaneous data */ - rdmsr(MSR_IA32_VMX_MISC, - msrs->misc_low, - msrs->misc_high); - msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA; + if (enable_sgx) + msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING; +} + +static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf, + struct nested_vmx_msrs *msrs) +{ + msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA; msrs->misc_low |= - MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS | + VMX_MISC_VMWRITE_SHADOW_RO_FIELDS | VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE | - VMX_MISC_ACTIVITY_HLT; + VMX_MISC_ACTIVITY_HLT | + VMX_MISC_ACTIVITY_WAIT_SIPI; msrs->misc_high = 0; +} +static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs) +{ /* * This MSR reports some information about VMX support. We * should return information about the VMX we emulate for the * guest, and the VMCS structure we give it - not about the * VMX support of the underlying hardware. */ - msrs->basic = - VMCS12_REVISION | - VMX_BASIC_TRUE_CTLS | - ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) | - (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT); + msrs->basic = vmx_basic_encode_vmcs_info(VMCS12_REVISION, VMCS12_SIZE, + X86_MEMTYPE_WB); + msrs->basic |= VMX_BASIC_TRUE_CTLS; if (cpu_has_vmx_basic_inout()) msrs->basic |= VMX_BASIC_INOUT; + if (cpu_has_vmx_basic_no_hw_errcode_cc()) + msrs->basic |= VMX_BASIC_NO_HW_ERROR_CODE_CC; +} +static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs) +{ /* * These MSRs specify bits which the guest must keep fixed on * while L1 is in VMXON mode (in L1's root mode, or running an L2). @@ -5660,11 +7338,58 @@ void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps, msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON; /* These MSRs specify bits which the guest must keep fixed off. */ - rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1); - rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1); + rdmsrq(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1); + rdmsrq(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1); - /* highest index: VMX_PREEMPTION_TIMER_VALUE */ - msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1; + if (vmx_umip_emulated()) + msrs->cr4_fixed1 |= X86_CR4_UMIP; +} + +/* + * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be + * returned for the various VMX controls MSRs when nested VMX is enabled. + * The same values should also be used to verify that vmcs12 control fields are + * valid during nested entry from L1 to L2. + * Each of these control msrs has a low and high 32-bit half: A low bit is on + * if the corresponding bit in the (32-bit) control field *must* be on, and a + * bit in the high half is on if the corresponding bit in the control field + * may be on. See also vmx_control_verify(). + */ +void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps) +{ + struct nested_vmx_msrs *msrs = &vmcs_conf->nested; + + /* + * Note that as a general rule, the high half of the MSRs (bits in + * the control fields which may be 1) should be initialized by the + * intersection of the underlying hardware's MSR (i.e., features which + * can be supported) and the list of features we want to expose - + * because they are known to be properly supported in our code. + * Also, usually, the low half of the MSRs (bits which must be 1) can + * be set to 0, meaning that L1 may turn off any of these bits. The + * reason is that if one of these bits is necessary, it will appear + * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control + * fields of vmcs01 and vmcs02, will turn these bits off - and + * nested_vmx_l1_wants_exit() will not pass related exits to L1. + * These rules have exceptions below. + */ + nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs); + + nested_vmx_setup_exit_ctls(vmcs_conf, msrs); + + nested_vmx_setup_entry_ctls(vmcs_conf, msrs); + + nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs); + + nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs); + + nested_vmx_setup_misc_data(vmcs_conf, msrs); + + nested_vmx_setup_basic(msrs); + + nested_vmx_setup_cr_fixed(msrs); + + msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr(); } void nested_vmx_hardware_unsetup(void) @@ -5685,6 +7410,10 @@ __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *)) enable_shadow_vmcs = 0; if (enable_shadow_vmcs) { for (i = 0; i < VMX_BITMAP_NR; i++) { + /* + * The vmx_bitmap is not tied to a VM and so should + * not be charged to a memcg. + */ vmx_bitmap[i] = (unsigned long *) __get_free_page(GFP_KERNEL); if (!vmx_bitmap[i]) { @@ -5696,25 +7425,35 @@ __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *)) init_vmcs_shadow_fields(); } - exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear, - exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch, - exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld, - exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst, - exit_handlers[EXIT_REASON_VMREAD] = handle_vmread, - exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume, - exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite, - exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff, - exit_handlers[EXIT_REASON_VMON] = handle_vmon, - exit_handlers[EXIT_REASON_INVEPT] = handle_invept, - exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid, - exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc, - - kvm_x86_ops->check_nested_events = vmx_check_nested_events; - kvm_x86_ops->get_nested_state = vmx_get_nested_state; - kvm_x86_ops->set_nested_state = vmx_set_nested_state; - kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages, - kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs; - kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version; + exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear; + exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch; + exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld; + exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst; + exit_handlers[EXIT_REASON_VMREAD] = handle_vmread; + exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume; + exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite; + exit_handlers[EXIT_REASON_VMOFF] = handle_vmxoff; + exit_handlers[EXIT_REASON_VMON] = handle_vmxon; + exit_handlers[EXIT_REASON_INVEPT] = handle_invept; + exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid; + exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc; return 0; } + +struct kvm_x86_nested_ops vmx_nested_ops = { + .leave_nested = vmx_leave_nested, + .is_exception_vmexit = nested_vmx_is_exception_vmexit, + .check_events = vmx_check_nested_events, + .has_events = vmx_has_nested_events, + .triple_fault = nested_vmx_triple_fault, + .get_state = vmx_get_nested_state, + .set_state = vmx_set_nested_state, + .get_nested_state_pages = vmx_get_nested_state_pages, + .write_log_dirty = nested_vmx_write_pml_buffer, +#ifdef CONFIG_KVM_HYPERV + .enable_evmcs = nested_enable_evmcs, + .get_evmcs_version = nested_get_evmcs_version, + .hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush, +#endif +}; |
