summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/vmx/nested.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kvm/vmx/nested.c')
-rw-r--r--arch/x86/kvm/vmx/nested.c2609
1 files changed, 1673 insertions, 936 deletions
diff --git a/arch/x86/kvm/vmx/nested.c b/arch/x86/kvm/vmx/nested.c
index 1a52134b0c42..40777278eabb 100644
--- a/arch/x86/kvm/vmx/nested.c
+++ b/arch/x86/kvm/vmx/nested.c
@@ -1,26 +1,30 @@
// SPDX-License-Identifier: GPL-2.0
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/objtool.h>
#include <linux/percpu.h>
#include <asm/debugreg.h>
#include <asm/mmu_context.h>
+#include <asm/msr.h>
+#include "x86.h"
#include "cpuid.h"
#include "hyperv.h"
#include "mmu.h"
#include "nested.h"
#include "pmu.h"
+#include "posted_intr.h"
#include "sgx.h"
#include "trace.h"
#include "vmx.h"
-#include "x86.h"
+#include "smm.h"
static bool __read_mostly enable_shadow_vmcs = 1;
module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
-static bool __read_mostly nested_early_check = 0;
-module_param(nested_early_check, bool, S_IRUGO);
+static bool __ro_after_init warn_on_missed_cc;
+module_param(warn_on_missed_cc, bool, 0444);
#define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
@@ -177,7 +181,7 @@ static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
* VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
* fields and thus must be synced.
*/
- if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
+ if (nested_vmx_is_evmptr12_set(to_vmx(vcpu)))
to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
return kvm_skip_emulated_instruction(vcpu);
@@ -191,8 +195,8 @@ static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
* failValid writes the error number to the current VMCS, which
* can't be done if there isn't a current VMCS.
*/
- if (vmx->nested.current_vmptr == -1ull &&
- !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
+ if (vmx->nested.current_vmptr == INVALID_GPA &&
+ !nested_vmx_is_evmptr12_valid(vmx))
return nested_vmx_failInvalid(vcpu);
return nested_vmx_failValid(vcpu, vm_instruction_error);
@@ -202,7 +206,7 @@ static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
{
/* TODO: not to reset guest simply here. */
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
- pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
+ pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
}
static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
@@ -218,20 +222,53 @@ static inline u64 vmx_control_msr(u32 low, u32 high)
static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
{
secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
- vmcs_write64(VMCS_LINK_POINTER, -1ull);
+ vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
vmx->nested.need_vmcs12_to_shadow_sync = false;
}
static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
{
+#ifdef CONFIG_KVM_HYPERV
+ struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
struct vcpu_vmx *vmx = to_vmx(vcpu);
- if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
- kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
- vmx->nested.hv_evmcs = NULL;
+ kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map);
+ vmx->nested.hv_evmcs = NULL;
+ vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
+
+ if (hv_vcpu) {
+ hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
+ hv_vcpu->nested.vm_id = 0;
+ hv_vcpu->nested.vp_id = 0;
}
+#endif
+}
- vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
+static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr)
+{
+#ifdef CONFIG_KVM_HYPERV
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ /*
+ * When Enlightened VMEntry is enabled on the calling CPU we treat
+ * memory area pointer by vmptr as Enlightened VMCS (as there's no good
+ * way to distinguish it from VMCS12) and we must not corrupt it by
+ * writing to the non-existent 'launch_state' field. The area doesn't
+ * have to be the currently active EVMCS on the calling CPU and there's
+ * nothing KVM has to do to transition it from 'active' to 'non-active'
+ * state. It is possible that the area will stay mapped as
+ * vmx->nested.hv_evmcs but this shouldn't be a problem.
+ */
+ if (!guest_cpu_cap_has_evmcs(vcpu) ||
+ !evmptr_is_valid(nested_get_evmptr(vcpu)))
+ return false;
+
+ if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr)
+ nested_release_evmcs(vcpu);
+
+ return true;
+#else
+ return false;
+#endif
}
static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
@@ -239,7 +276,7 @@ static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
{
struct vmcs_host_state *dest, *src;
- if (unlikely(!vmx->guest_state_loaded))
+ if (unlikely(!vmx->vt.guest_state_loaded))
return;
src = &prev->host_state;
@@ -265,11 +302,27 @@ static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
cpu = get_cpu();
prev = vmx->loaded_vmcs;
vmx->loaded_vmcs = vmcs;
- vmx_vcpu_load_vmcs(vcpu, cpu, prev);
+ vmx_vcpu_load_vmcs(vcpu, cpu);
vmx_sync_vmcs_host_state(vmx, prev);
put_cpu();
- vmx_register_cache_reset(vcpu);
+ vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
+
+ /*
+ * All lazily updated registers will be reloaded from VMCS12 on both
+ * vmentry and vmexit.
+ */
+ vcpu->arch.regs_dirty = 0;
+}
+
+static void nested_put_vmcs12_pages(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map);
+ kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map);
+ kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map);
+ vmx->nested.pi_desc = NULL;
}
/*
@@ -290,9 +343,10 @@ static void free_nested(struct kvm_vcpu *vcpu)
vmx->nested.vmxon = false;
vmx->nested.smm.vmxon = false;
+ vmx->nested.vmxon_ptr = INVALID_GPA;
free_vpid(vmx->nested.vpid02);
vmx->nested.posted_intr_nv = -1;
- vmx->nested.current_vmptr = -1ull;
+ vmx->nested.current_vmptr = INVALID_GPA;
if (enable_shadow_vmcs) {
vmx_disable_shadow_vmcs(vmx);
vmcs_clear(vmx->vmcs01.shadow_vmcs);
@@ -303,16 +357,10 @@ static void free_nested(struct kvm_vcpu *vcpu)
vmx->nested.cached_vmcs12 = NULL;
kfree(vmx->nested.cached_shadow_vmcs12);
vmx->nested.cached_shadow_vmcs12 = NULL;
- /* Unpin physical memory we referred to in the vmcs02 */
- if (vmx->nested.apic_access_page) {
- kvm_release_page_clean(vmx->nested.apic_access_page);
- vmx->nested.apic_access_page = NULL;
- }
- kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
- kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
- vmx->nested.pi_desc = NULL;
- kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
+ nested_put_vmcs12_pages(vcpu);
+
+ kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
nested_release_evmcs(vcpu);
@@ -330,22 +378,84 @@ void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
vcpu_put(vcpu);
}
+#define EPTP_PA_MASK GENMASK_ULL(51, 12)
+
+static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
+{
+ return VALID_PAGE(root_hpa) &&
+ ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
+}
+
+static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
+ gpa_t addr)
+{
+ unsigned long roots = 0;
+ uint i;
+ struct kvm_mmu_root_info *cached_root;
+
+ WARN_ON_ONCE(!mmu_is_nested(vcpu));
+
+ for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
+ cached_root = &vcpu->arch.mmu->prev_roots[i];
+
+ if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
+ eptp))
+ roots |= KVM_MMU_ROOT_PREVIOUS(i);
+ }
+ if (roots)
+ kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
+}
+
static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
struct x86_exception *fault)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long exit_qualification;
u32 vm_exit_reason;
- unsigned long exit_qualification = vcpu->arch.exit_qualification;
if (vmx->nested.pml_full) {
vm_exit_reason = EXIT_REASON_PML_FULL;
vmx->nested.pml_full = false;
- exit_qualification &= INTR_INFO_UNBLOCK_NMI;
- } else if (fault->error_code & PFERR_RSVD_MASK)
- vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
- else
- vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
+
+ /*
+ * It should be impossible to trigger a nested PML Full VM-Exit
+ * for anything other than an EPT Violation from L2. KVM *can*
+ * trigger nEPT page fault injection in response to an EPT
+ * Misconfig, e.g. if the MMIO SPTE was stale and L1's EPT
+ * tables also changed, but KVM should not treat EPT Misconfig
+ * VM-Exits as writes.
+ */
+ WARN_ON_ONCE(vmx->vt.exit_reason.basic != EXIT_REASON_EPT_VIOLATION);
+
+ /*
+ * PML Full and EPT Violation VM-Exits both use bit 12 to report
+ * "NMI unblocking due to IRET", i.e. the bit can be propagated
+ * as-is from the original EXIT_QUALIFICATION.
+ */
+ exit_qualification = vmx_get_exit_qual(vcpu) & INTR_INFO_UNBLOCK_NMI;
+ } else {
+ if (fault->error_code & PFERR_RSVD_MASK) {
+ vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
+ exit_qualification = 0;
+ } else {
+ exit_qualification = fault->exit_qualification;
+ exit_qualification |= vmx_get_exit_qual(vcpu) &
+ (EPT_VIOLATION_GVA_IS_VALID |
+ EPT_VIOLATION_GVA_TRANSLATED);
+ vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
+ }
+
+ /*
+ * Although the caller (kvm_inject_emulated_page_fault) would
+ * have already synced the faulting address in the shadow EPT
+ * tables for the current EPTP12, we also need to sync it for
+ * any other cached EPTP02s based on the same EP4TA, since the
+ * TLB associates mappings to the EP4TA rather than the full EPTP.
+ */
+ nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
+ fault->address);
+ }
nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
vmcs12->guest_physical_address = fault->address;
@@ -353,9 +463,11 @@ static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
{
- kvm_init_shadow_ept_mmu(vcpu,
- to_vmx(vcpu)->nested.msrs.ept_caps &
- VMX_EPT_EXECUTE_ONLY_BIT,
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
+ int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
+
+ kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
nested_ept_ad_enabled(vcpu),
nested_ept_get_eptp(vcpu));
}
@@ -391,62 +503,22 @@ static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
return inequality ^ bit;
}
-
-/*
- * KVM wants to inject page-faults which it got to the guest. This function
- * checks whether in a nested guest, we need to inject them to L1 or L2.
- */
-static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
+static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
+ u32 error_code)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- unsigned int nr = vcpu->arch.exception.nr;
- bool has_payload = vcpu->arch.exception.has_payload;
- unsigned long payload = vcpu->arch.exception.payload;
-
- if (nr == PF_VECTOR) {
- if (vcpu->arch.exception.nested_apf) {
- *exit_qual = vcpu->arch.apf.nested_apf_token;
- return 1;
- }
- if (nested_vmx_is_page_fault_vmexit(vmcs12,
- vcpu->arch.exception.error_code)) {
- *exit_qual = has_payload ? payload : vcpu->arch.cr2;
- return 1;
- }
- } else if (vmcs12->exception_bitmap & (1u << nr)) {
- if (nr == DB_VECTOR) {
- if (!has_payload) {
- payload = vcpu->arch.dr6;
- payload &= ~DR6_BT;
- payload ^= DR6_ACTIVE_LOW;
- }
- *exit_qual = payload;
- } else
- *exit_qual = 0;
- return 1;
- }
- return 0;
-}
-
-
-static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
- struct x86_exception *fault)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
- WARN_ON(!is_guest_mode(vcpu));
+ /*
+ * Drop bits 31:16 of the error code when performing the #PF mask+match
+ * check. All VMCS fields involved are 32 bits, but Intel CPUs never
+ * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
+ * error code. Including the to-be-dropped bits in the check might
+ * result in an "impossible" or missed exit from L1's perspective.
+ */
+ if (vector == PF_VECTOR)
+ return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
- if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
- !to_vmx(vcpu)->nested.nested_run_pending) {
- vmcs12->vm_exit_intr_error_code = fault->error_code;
- nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
- PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
- INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
- fault->address);
- } else {
- kvm_inject_page_fault(vcpu, fault);
- }
+ return (vmcs12->exception_bitmap & (1u << vector));
}
static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
@@ -483,71 +555,26 @@ static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
return -EINVAL;
- return 0;
-}
-
-/*
- * Check if MSR is intercepted for L01 MSR bitmap.
- */
-static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
-{
- unsigned long *msr_bitmap;
- int f = sizeof(unsigned long);
-
- if (!cpu_has_vmx_msr_bitmap())
- return true;
-
- msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
-
- if (msr <= 0x1fff) {
- return !!test_bit(msr, msr_bitmap + 0x800 / f);
- } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
- msr &= 0x1fff;
- return !!test_bit(msr, msr_bitmap + 0xc00 / f);
- }
+ if (CC(!nested_cpu_has_vid(vmcs12) && vmcs12->tpr_threshold >> 4))
+ return -EINVAL;
- return true;
+ return 0;
}
/*
- * If a msr is allowed by L0, we should check whether it is allowed by L1.
- * The corresponding bit will be cleared unless both of L0 and L1 allow it.
+ * For x2APIC MSRs, ignore the vmcs01 bitmap. L1 can enable x2APIC without L1
+ * itself utilizing x2APIC. All MSRs were previously set to be intercepted,
+ * only the "disable intercept" case needs to be handled.
*/
-static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
- unsigned long *msr_bitmap_nested,
- u32 msr, int type)
+static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
+ unsigned long *msr_bitmap_l0,
+ u32 msr, int type)
{
- int f = sizeof(unsigned long);
-
- /*
- * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
- * have the write-low and read-high bitmap offsets the wrong way round.
- * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
- */
- if (msr <= 0x1fff) {
- if (type & MSR_TYPE_R &&
- !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
- /* read-low */
- __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
+ if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
+ vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
- if (type & MSR_TYPE_W &&
- !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
- /* write-low */
- __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
-
- } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
- msr &= 0x1fff;
- if (type & MSR_TYPE_R &&
- !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
- /* read-high */
- __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
-
- if (type & MSR_TYPE_W &&
- !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
- /* write-high */
- __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
-
- }
+ if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
+ vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
}
static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
@@ -562,6 +589,34 @@ static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
}
}
+#define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw) \
+static inline \
+void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx, \
+ unsigned long *msr_bitmap_l1, \
+ unsigned long *msr_bitmap_l0, u32 msr) \
+{ \
+ if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) || \
+ vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr)) \
+ vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr); \
+ else \
+ vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr); \
+}
+BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
+BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
+
+static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
+ unsigned long *msr_bitmap_l1,
+ unsigned long *msr_bitmap_l0,
+ u32 msr, int types)
+{
+ if (types & MSR_TYPE_R)
+ nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
+ msr_bitmap_l0, msr);
+ if (types & MSR_TYPE_W)
+ nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
+ msr_bitmap_l0, msr);
+}
+
/*
* Merge L0's and L1's MSR bitmap, return false to indicate that
* we do not use the hardware.
@@ -569,25 +624,42 @@ static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
int msr;
unsigned long *msr_bitmap_l1;
- unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
- struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
+ unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
+ struct kvm_host_map map;
/* Nothing to do if the MSR bitmap is not in use. */
if (!cpu_has_vmx_msr_bitmap() ||
!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
return false;
- if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
+ /*
+ * MSR bitmap update can be skipped when:
+ * - MSR bitmap for L1 hasn't changed.
+ * - Nested hypervisor (L1) is attempting to launch the same L2 as
+ * before.
+ * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
+ * and tells KVM (L0) there were no changes in MSR bitmap for L2.
+ */
+ if (!vmx->nested.force_msr_bitmap_recalc) {
+ struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
+
+ if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap &&
+ evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
+ return true;
+ }
+
+ if (kvm_vcpu_map_readonly(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), &map))
return false;
- msr_bitmap_l1 = (unsigned long *)map->hva;
+ msr_bitmap_l1 = (unsigned long *)map.hva;
/*
* To keep the control flow simple, pay eight 8-byte writes (sixteen
* 4-byte writes on 32-bit systems) up front to enable intercepts for
- * the x2APIC MSR range and selectively disable them below.
+ * the x2APIC MSR range and selectively toggle those relevant to L2.
*/
enable_x2apic_msr_intercepts(msr_bitmap_l0);
@@ -606,61 +678,73 @@ static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
}
}
- nested_vmx_disable_intercept_for_msr(
+ nested_vmx_disable_intercept_for_x2apic_msr(
msr_bitmap_l1, msr_bitmap_l0,
X2APIC_MSR(APIC_TASKPRI),
MSR_TYPE_R | MSR_TYPE_W);
if (nested_cpu_has_vid(vmcs12)) {
- nested_vmx_disable_intercept_for_msr(
+ nested_vmx_disable_intercept_for_x2apic_msr(
msr_bitmap_l1, msr_bitmap_l0,
X2APIC_MSR(APIC_EOI),
MSR_TYPE_W);
- nested_vmx_disable_intercept_for_msr(
+ nested_vmx_disable_intercept_for_x2apic_msr(
msr_bitmap_l1, msr_bitmap_l0,
X2APIC_MSR(APIC_SELF_IPI),
MSR_TYPE_W);
}
}
- /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
+ /*
+ * Always check vmcs01's bitmap to honor userspace MSR filters and any
+ * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
+ */
#ifdef CONFIG_X86_64
- nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
- MSR_FS_BASE, MSR_TYPE_RW);
+ nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
+ MSR_FS_BASE, MSR_TYPE_RW);
- nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
- MSR_GS_BASE, MSR_TYPE_RW);
+ nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
+ MSR_GS_BASE, MSR_TYPE_RW);
- nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
- MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
+ nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
+ MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
#endif
+ nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
+ MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
- /*
- * Checking the L0->L1 bitmap is trying to verify two things:
- *
- * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
- * ensures that we do not accidentally generate an L02 MSR bitmap
- * from the L12 MSR bitmap that is too permissive.
- * 2. That L1 or L2s have actually used the MSR. This avoids
- * unnecessarily merging of the bitmap if the MSR is unused. This
- * works properly because we only update the L01 MSR bitmap lazily.
- * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
- * updated to reflect this when L1 (or its L2s) actually write to
- * the MSR.
- */
- if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
- nested_vmx_disable_intercept_for_msr(
- msr_bitmap_l1, msr_bitmap_l0,
- MSR_IA32_SPEC_CTRL,
- MSR_TYPE_R | MSR_TYPE_W);
+ nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
+ MSR_IA32_PRED_CMD, MSR_TYPE_W);
+
+ nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
+ MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
+
+ nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
+ MSR_IA32_APERF, MSR_TYPE_R);
+
+ nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
+ MSR_IA32_MPERF, MSR_TYPE_R);
+
+ nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
+ MSR_IA32_U_CET, MSR_TYPE_RW);
+
+ nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
+ MSR_IA32_S_CET, MSR_TYPE_RW);
+
+ nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
+ MSR_IA32_PL0_SSP, MSR_TYPE_RW);
+
+ nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
+ MSR_IA32_PL1_SSP, MSR_TYPE_RW);
- if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
- nested_vmx_disable_intercept_for_msr(
- msr_bitmap_l1, msr_bitmap_l0,
- MSR_IA32_PRED_CMD,
- MSR_TYPE_W);
+ nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
+ MSR_IA32_PL2_SSP, MSR_TYPE_RW);
- kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
+ nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
+ MSR_IA32_PL3_SSP, MSR_TYPE_RW);
+
+ kvm_vcpu_unmap(vcpu, &map);
+
+ vmx->nested.force_msr_bitmap_recalc = false;
return true;
}
@@ -668,33 +752,39 @@ static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
- struct kvm_host_map map;
- struct vmcs12 *shadow;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
- vmcs12->vmcs_link_pointer == -1ull)
+ vmcs12->vmcs_link_pointer == INVALID_GPA)
return;
- shadow = get_shadow_vmcs12(vcpu);
-
- if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
+ if (ghc->gpa != vmcs12->vmcs_link_pointer &&
+ kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
+ vmcs12->vmcs_link_pointer, VMCS12_SIZE))
return;
- memcpy(shadow, map.hva, VMCS12_SIZE);
- kvm_vcpu_unmap(vcpu, &map, false);
+ kvm_read_guest_cached(vcpu->kvm, ghc, get_shadow_vmcs12(vcpu),
+ VMCS12_SIZE);
}
static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
- vmcs12->vmcs_link_pointer == -1ull)
+ vmcs12->vmcs_link_pointer == INVALID_GPA)
+ return;
+
+ if (ghc->gpa != vmcs12->vmcs_link_pointer &&
+ kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
+ vmcs12->vmcs_link_pointer, VMCS12_SIZE))
return;
- kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
- get_shadow_vmcs12(vcpu), VMCS12_SIZE);
+ kvm_write_guest_cached(vcpu->kvm, ghc, get_shadow_vmcs12(vcpu),
+ VMCS12_SIZE);
}
/*
@@ -762,12 +852,30 @@ static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
return 0;
}
+static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
+ vmx->nested.msrs.misc_high);
+
+ return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
+}
+
static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
u32 count, u64 addr)
{
if (count == 0)
return 0;
+ /*
+ * Exceeding the limit results in architecturally _undefined_ behavior,
+ * i.e. KVM is allowed to do literally anything in response to a bad
+ * limit. Immediately generate a consistency check so that code that
+ * consumes the count doesn't need to worry about extreme edge cases.
+ */
+ if (count > nested_vmx_max_atomic_switch_msrs(vcpu))
+ return -EINVAL;
+
if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
!kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
return -EINVAL;
@@ -878,15 +986,6 @@ static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
return 0;
}
-static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
- vmx->nested.msrs.misc_high);
-
- return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
-}
-
/*
* Load guest's/host's msr at nested entry/exit.
* return 0 for success, entry index for failure.
@@ -903,7 +1002,7 @@ static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
for (i = 0; i < count; i++) {
- if (unlikely(i >= max_msr_list_size))
+ if (WARN_ON_ONCE(i >= max_msr_list_size))
goto fail;
if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
@@ -919,7 +1018,7 @@ static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
__func__, i, e.index, e.reserved);
goto fail;
}
- if (kvm_set_msr(vcpu, e.index, e.value)) {
+ if (kvm_emulate_msr_write(vcpu, e.index, e.value)) {
pr_debug_ratelimited(
"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
__func__, i, e.index, e.value);
@@ -955,7 +1054,7 @@ static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
}
}
- if (kvm_get_msr(vcpu, msr_index, data)) {
+ if (kvm_emulate_msr_read(vcpu, msr_index, data)) {
pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
msr_index);
return false;
@@ -991,7 +1090,7 @@ static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
for (i = 0; i < count; i++) {
- if (unlikely(i >= max_msr_list_size))
+ if (WARN_ON_ONCE(i >= max_msr_list_size))
return -EINVAL;
if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
@@ -1050,9 +1149,9 @@ static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
/*
* Emulated VMEntry does not fail here. Instead a less
* accurate value will be returned by
- * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
- * instead of reading the value from the vmcs02 VMExit
- * MSR-store area.
+ * nested_vmx_get_vmexit_msr_value() by reading KVM's
+ * internal MSR state instead of reading the value from
+ * the vmcs02 VMExit MSR-store area.
*/
pr_warn_ratelimited(
"Not enough msr entries in msr_autostore. Can't add msr %x\n",
@@ -1077,7 +1176,7 @@ static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
bool nested_ept, bool reload_pdptrs,
enum vm_entry_failure_code *entry_failure_code)
{
- if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
+ if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) {
*entry_failure_code = ENTRY_FAIL_DEFAULT;
return -EINVAL;
}
@@ -1087,20 +1186,20 @@ static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
* must not be dereferenced.
*/
if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
- CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
+ CC(!load_pdptrs(vcpu, cr3))) {
*entry_failure_code = ENTRY_FAIL_PDPTE;
return -EINVAL;
}
- if (!nested_ept)
- kvm_mmu_new_pgd(vcpu, cr3);
-
vcpu->arch.cr3 = cr3;
- kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
+ kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
kvm_init_mmu(vcpu);
+ if (!nested_ept)
+ kvm_mmu_new_pgd(vcpu, cr3);
+
return 0;
}
@@ -1131,12 +1230,18 @@ static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
+ /* Handle pending Hyper-V TLB flush requests */
+ kvm_hv_nested_transtion_tlb_flush(vcpu, enable_ept);
+
/*
- * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
- * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
- * full TLB flush from the guest's perspective. This is required even
- * if VPID is disabled in the host as KVM may need to synchronize the
- * MMU in response to the guest TLB flush.
+ * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
+ * same VPID as the host, and so architecturally, linear and combined
+ * mappings for VPID=0 must be flushed at VM-Enter and VM-Exit. KVM
+ * emulates L2 sharing L1's VPID=0 by using vpid01 while running L2,
+ * and so KVM must also emulate TLB flush of VPID=0, i.e. vpid01. This
+ * is required if VPID is disabled in KVM, as a TLB flush (there are no
+ * VPIDs) still occurs from L1's perspective, and KVM may need to
+ * synchronize the MMU in response to the guest TLB flush.
*
* Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
* EPT is a special snowflake, as guest-physical mappings aren't
@@ -1154,29 +1259,26 @@ static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
WARN_ON(!enable_vpid);
/*
- * If VPID is enabled and used by vmc12, but L2 does not have a unique
- * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
- * a VPID for L2, flush the current context as the effective ASID is
- * common to both L1 and L2.
- *
- * Defer the flush so that it runs after vmcs02.EPTP has been set by
- * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
- * redundant flushes further down the nested pipeline.
- *
- * If a TLB flush isn't required due to any of the above, and vpid12 is
- * changing then the new "virtual" VPID (vpid12) will reuse the same
- * "real" VPID (vpid02), and so needs to be flushed. There's no direct
- * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
- * all nested vCPUs. Remember, a flush on VM-Enter does not invalidate
- * guest-physical mappings, so there is no need to sync the nEPT MMU.
+ * VPID is enabled and in use by vmcs12. If vpid12 is changing, then
+ * emulate a guest TLB flush as KVM does not track vpid12 history nor
+ * is the VPID incorporated into the MMU context. I.e. KVM must assume
+ * that the new vpid12 has never been used and thus represents a new
+ * guest ASID that cannot have entries in the TLB.
*/
- if (!nested_has_guest_tlb_tag(vcpu)) {
- kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
- } else if (is_vmenter &&
- vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
+ if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
vmx->nested.last_vpid = vmcs12->virtual_processor_id;
- vpid_sync_context(nested_get_vpid02(vcpu));
+ kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
+ return;
}
+
+ /*
+ * If VPID is enabled, used by vmc12, and vpid12 is not changing but
+ * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
+ * KVM was unable to allocate a VPID for L2, flush the current context
+ * as the effective ASID is common to both L1 and L2.
+ */
+ if (!nested_has_guest_tlb_tag(vcpu))
+ kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
}
static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
@@ -1189,21 +1291,33 @@ static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
{
- const u64 feature_and_reserved =
- /* feature (except bit 48; see below) */
- BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
- /* reserved */
- BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
- u64 vmx_basic = vmx->nested.msrs.basic;
+ const u64 feature_bits = VMX_BASIC_DUAL_MONITOR_TREATMENT |
+ VMX_BASIC_INOUT |
+ VMX_BASIC_TRUE_CTLS |
+ VMX_BASIC_NO_HW_ERROR_CODE_CC;
+
+ const u64 reserved_bits = GENMASK_ULL(63, 57) |
+ GENMASK_ULL(47, 45) |
+ BIT_ULL(31);
- if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
+ u64 vmx_basic = vmcs_config.nested.basic;
+
+ BUILD_BUG_ON(feature_bits & reserved_bits);
+
+ /*
+ * Except for 32BIT_PHYS_ADDR_ONLY, which is an anti-feature bit (has
+ * inverted polarity), the incoming value must not set feature bits or
+ * reserved bits that aren't allowed/supported by KVM. Fields, i.e.
+ * multi-bit values, are explicitly checked below.
+ */
+ if (!is_bitwise_subset(vmx_basic, data, feature_bits | reserved_bits))
return -EINVAL;
/*
* KVM does not emulate a version of VMX that constrains physical
* addresses of VMX structures (e.g. VMCS) to 32-bits.
*/
- if (data & BIT_ULL(48))
+ if (data & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
return -EINVAL;
if (vmx_basic_vmcs_revision_id(vmx_basic) !=
@@ -1217,36 +1331,42 @@ static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
return 0;
}
-static int
-vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
+static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
+ u32 **low, u32 **high)
{
- u64 supported;
- u32 *lowp, *highp;
-
switch (msr_index) {
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
- lowp = &vmx->nested.msrs.pinbased_ctls_low;
- highp = &vmx->nested.msrs.pinbased_ctls_high;
+ *low = &msrs->pinbased_ctls_low;
+ *high = &msrs->pinbased_ctls_high;
break;
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
- lowp = &vmx->nested.msrs.procbased_ctls_low;
- highp = &vmx->nested.msrs.procbased_ctls_high;
+ *low = &msrs->procbased_ctls_low;
+ *high = &msrs->procbased_ctls_high;
break;
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
- lowp = &vmx->nested.msrs.exit_ctls_low;
- highp = &vmx->nested.msrs.exit_ctls_high;
+ *low = &msrs->exit_ctls_low;
+ *high = &msrs->exit_ctls_high;
break;
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
- lowp = &vmx->nested.msrs.entry_ctls_low;
- highp = &vmx->nested.msrs.entry_ctls_high;
+ *low = &msrs->entry_ctls_low;
+ *high = &msrs->entry_ctls_high;
break;
case MSR_IA32_VMX_PROCBASED_CTLS2:
- lowp = &vmx->nested.msrs.secondary_ctls_low;
- highp = &vmx->nested.msrs.secondary_ctls_high;
+ *low = &msrs->secondary_ctls_low;
+ *high = &msrs->secondary_ctls_high;
break;
default:
BUG();
}
+}
+
+static int
+vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
+{
+ u32 *lowp, *highp;
+ u64 supported;
+
+ vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
supported = vmx_control_msr(*lowp, *highp);
@@ -1258,6 +1378,7 @@ vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
return -EINVAL;
+ vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
*lowp = data;
*highp = data >> 32;
return 0;
@@ -1265,18 +1386,29 @@ vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
{
- const u64 feature_and_reserved_bits =
- /* feature */
- BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
- BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
- /* reserved */
- GENMASK_ULL(13, 9) | BIT_ULL(31);
- u64 vmx_misc;
+ const u64 feature_bits = VMX_MISC_SAVE_EFER_LMA |
+ VMX_MISC_ACTIVITY_HLT |
+ VMX_MISC_ACTIVITY_SHUTDOWN |
+ VMX_MISC_ACTIVITY_WAIT_SIPI |
+ VMX_MISC_INTEL_PT |
+ VMX_MISC_RDMSR_IN_SMM |
+ VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
+ VMX_MISC_VMXOFF_BLOCK_SMI |
+ VMX_MISC_ZERO_LEN_INS;
+
+ const u64 reserved_bits = BIT_ULL(31) | GENMASK_ULL(13, 9);
- vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
- vmx->nested.msrs.misc_high);
+ u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
+ vmcs_config.nested.misc_high);
- if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
+ BUILD_BUG_ON(feature_bits & reserved_bits);
+
+ /*
+ * The incoming value must not set feature bits or reserved bits that
+ * aren't allowed/supported by KVM. Fields, i.e. multi-bit values, are
+ * explicitly checked below.
+ */
+ if (!is_bitwise_subset(vmx_misc, data, feature_bits | reserved_bits))
return -EINVAL;
if ((vmx->nested.msrs.pinbased_ctls_high &
@@ -1302,10 +1434,8 @@ static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
{
- u64 vmx_ept_vpid_cap;
-
- vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
- vmx->nested.msrs.vpid_caps);
+ u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
+ vmcs_config.nested.vpid_caps);
/* Every bit is either reserved or a feature bit. */
if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
@@ -1316,20 +1446,21 @@ static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
return 0;
}
-static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
+static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
{
- u64 *msr;
-
switch (msr_index) {
case MSR_IA32_VMX_CR0_FIXED0:
- msr = &vmx->nested.msrs.cr0_fixed0;
- break;
+ return &msrs->cr0_fixed0;
case MSR_IA32_VMX_CR4_FIXED0:
- msr = &vmx->nested.msrs.cr4_fixed0;
- break;
+ return &msrs->cr4_fixed0;
default:
BUG();
}
+}
+
+static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
+{
+ const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
/*
* 1 bits (which indicates bits which "must-be-1" during VMX operation)
@@ -1338,7 +1469,7 @@ static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
if (!is_bitwise_subset(data, *msr, -1ULL))
return -EINVAL;
- *msr = data;
+ *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
return 0;
}
@@ -1399,7 +1530,7 @@ int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
vmx->nested.msrs.vmcs_enum = data;
return 0;
case MSR_IA32_VMX_VMFUNC:
- if (data & ~vmx->nested.msrs.vmfunc_controls)
+ if (data & ~vmcs_config.nested.vmfunc_controls)
return -EINVAL;
vmx->nested.msrs.vmfunc_controls = data;
return 0;
@@ -1560,19 +1691,32 @@ static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
{
+#ifdef CONFIG_KVM_HYPERV
struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
- struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
+ struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
+ struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
vmcs12->tpr_threshold = evmcs->tpr_threshold;
vmcs12->guest_rip = evmcs->guest_rip;
if (unlikely(!(hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
+ hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
+ hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
+ hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
+ }
+
+ if (unlikely(!(hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
vmcs12->guest_rsp = evmcs->guest_rsp;
vmcs12->guest_rflags = evmcs->guest_rflags;
vmcs12->guest_interruptibility_info =
evmcs->guest_interruptibility_info;
+ /*
+ * Not present in struct vmcs12:
+ * vmcs12->guest_ssp = evmcs->guest_ssp;
+ */
}
if (unlikely(!(hv_clean_fields &
@@ -1619,6 +1763,13 @@ static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields
vmcs12->host_fs_selector = evmcs->host_fs_selector;
vmcs12->host_gs_selector = evmcs->host_gs_selector;
vmcs12->host_tr_selector = evmcs->host_tr_selector;
+ vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
+ /*
+ * Not present in struct vmcs12:
+ * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
+ * vmcs12->host_ssp = evmcs->host_ssp;
+ * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
+ */
}
if (unlikely(!(hv_clean_fields &
@@ -1686,6 +1837,8 @@ static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields
vmcs12->tsc_offset = evmcs->tsc_offset;
vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
+ vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
+ vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
}
if (unlikely(!(hv_clean_fields &
@@ -1733,6 +1886,13 @@ static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields
vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
vmcs12->guest_activity_state = evmcs->guest_activity_state;
vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
+ vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
+ /*
+ * Not present in struct vmcs12:
+ * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
+ * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
+ * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
+ */
}
/*
@@ -1772,12 +1932,16 @@ static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields
*/
return;
+#else /* CONFIG_KVM_HYPERV */
+ KVM_BUG_ON(1, vmx->vcpu.kvm);
+#endif /* CONFIG_KVM_HYPERV */
}
static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
{
+#ifdef CONFIG_KVM_HYPERV
struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
- struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
+ struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
/*
* Should not be changed by KVM:
@@ -1835,12 +1999,23 @@ static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
* evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
* evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
* evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
+ * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
+ * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
+ * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
+ * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
*
* Not present in struct vmcs12:
* evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
* evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
* evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
* evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
+ * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
+ * evmcs->host_ssp = vmcs12->host_ssp;
+ * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
+ * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
+ * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
+ * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
+ * evmcs->guest_ssp = vmcs12->guest_ssp;
*/
evmcs->guest_es_selector = vmcs12->guest_es_selector;
@@ -1935,6 +2110,9 @@ static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
return;
+#else /* CONFIG_KVM_HYPERV */
+ KVM_BUG_ON(1, vmx->vcpu.kvm);
+#endif /* CONFIG_KVM_HYPERV */
}
/*
@@ -1944,20 +2122,22 @@ static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
struct kvm_vcpu *vcpu, bool from_launch)
{
+#ifdef CONFIG_KVM_HYPERV
struct vcpu_vmx *vmx = to_vmx(vcpu);
bool evmcs_gpa_changed = false;
u64 evmcs_gpa;
- if (likely(!vmx->nested.enlightened_vmcs_enabled))
+ if (likely(!guest_cpu_cap_has_evmcs(vcpu)))
return EVMPTRLD_DISABLED;
- if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
+ evmcs_gpa = nested_get_evmptr(vcpu);
+ if (!evmptr_is_valid(evmcs_gpa)) {
nested_release_evmcs(vcpu);
return EVMPTRLD_DISABLED;
}
if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
- vmx->nested.current_vmptr = -1ull;
+ vmx->nested.current_vmptr = INVALID_GPA;
nested_release_evmcs(vcpu);
@@ -2016,18 +2196,24 @@ static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
* Clean fields data can't be used on VMLAUNCH and when we switch
* between different L2 guests as KVM keeps a single VMCS12 per L1.
*/
- if (from_launch || evmcs_gpa_changed)
+ if (from_launch || evmcs_gpa_changed) {
vmx->nested.hv_evmcs->hv_clean_fields &=
~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
+ vmx->nested.force_msr_bitmap_recalc = true;
+ }
+
return EVMPTRLD_SUCCEEDED;
+#else
+ return EVMPTRLD_DISABLED;
+#endif
}
void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
- if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
+ if (nested_vmx_is_evmptr12_valid(vmx))
copy_vmcs12_to_enlightened(vmx);
else
copy_vmcs12_to_shadow(vmx);
@@ -2101,6 +2287,8 @@ static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
{
+ struct kvm *kvm = vmx->vcpu.kvm;
+
/*
* If vmcs02 hasn't been initialized, set the constant vmcs02 state
* according to L0's settings (vmcs12 is irrelevant here). Host
@@ -2111,14 +2299,8 @@ static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
return;
vmx->nested.vmcs02_initialized = true;
- /*
- * We don't care what the EPTP value is we just need to guarantee
- * it's valid so we don't get a false positive when doing early
- * consistency checks.
- */
- if (enable_ept && nested_early_check)
- vmcs_write64(EPT_POINTER,
- construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
+ if (vmx->ve_info)
+ vmcs_write64(VE_INFORMATION_ADDRESS, __pa(vmx->ve_info));
/* All VMFUNCs are currently emulated through L0 vmexits. */
if (cpu_has_vmx_vmfunc())
@@ -2141,7 +2323,10 @@ static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
}
if (cpu_has_vmx_encls_vmexit())
- vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
+ vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
+
+ if (kvm_notify_vmexit_enabled(kvm))
+ vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
/*
* Set the MSR load/store lists to match L0's settings. Only the
@@ -2160,8 +2345,19 @@ static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
{
prepare_vmcs02_constant_state(vmx);
- vmcs_write64(VMCS_LINK_POINTER, -1ull);
+ vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
+ /*
+ * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
+ * same VPID as the host. Emulate this behavior by using vpid01 for L2
+ * if VPID is disabled in vmcs12. Note, if VPID is disabled, VM-Enter
+ * and VM-Exit are architecturally required to flush VPID=0, but *only*
+ * VPID=0. I.e. using vpid02 would be ok (so long as KVM emulates the
+ * required flushes), but doing so would cause KVM to over-flush. E.g.
+ * if L1 runs L2 X with VPID12=1, then runs L2 Y with VPID12 disabled,
+ * and then runs L2 X again, then KVM can and should retain TLB entries
+ * for VPID12=1.
+ */
if (enable_vpid) {
if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
@@ -2170,26 +2366,28 @@ static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
}
}
-static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
+static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
+ struct vmcs12 *vmcs12)
{
u32 exec_control;
u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
- if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
+ if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx))
prepare_vmcs02_early_rare(vmx, vmcs12);
/*
* PIN CONTROLS
*/
- exec_control = vmx_pin_based_exec_ctrl(vmx);
+ exec_control = __pin_controls_get(vmcs01);
exec_control |= (vmcs12->pin_based_vm_exec_control &
~PIN_BASED_VMX_PREEMPTION_TIMER);
/* Posted interrupts setting is only taken from vmcs12. */
+ vmx->nested.pi_pending = false;
if (nested_cpu_has_posted_intr(vmcs12)) {
vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
- vmx->nested.pi_pending = false;
} else {
+ vmx->nested.posted_intr_nv = -1;
exec_control &= ~PIN_BASED_POSTED_INTR;
}
pin_controls_set(vmx, exec_control);
@@ -2197,7 +2395,7 @@ static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
/*
* EXEC CONTROLS
*/
- exec_control = vmx_exec_control(vmx); /* L0's desires */
+ exec_control = __exec_controls_get(vmcs01); /* L0's desires */
exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
exec_control &= ~CPU_BASED_TPR_SHADOW;
@@ -2234,18 +2432,20 @@ static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
* SECONDARY EXEC CONTROLS
*/
if (cpu_has_secondary_exec_ctrls()) {
- exec_control = vmx->secondary_exec_control;
+ exec_control = __secondary_exec_controls_get(vmcs01);
/* Take the following fields only from vmcs12 */
exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_ENABLE_INVPCID |
SECONDARY_EXEC_ENABLE_RDTSCP |
- SECONDARY_EXEC_XSAVES |
+ SECONDARY_EXEC_ENABLE_XSAVES |
SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_ENABLE_VMFUNC |
- SECONDARY_EXEC_TSC_SCALING);
+ SECONDARY_EXEC_DESC);
+
if (nested_cpu_has(vmcs12,
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
exec_control |= vmcs12->secondary_vm_exec_control;
@@ -2260,8 +2460,7 @@ static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
* Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
* will not have to rewrite the controls just for this bit.
*/
- if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
- (vmcs12->guest_cr4 & X86_CR4_UMIP))
+ if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
exec_control |= SECONDARY_EXEC_DESC;
if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
@@ -2284,13 +2483,19 @@ static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
* are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
* on the related bits (if supported by the CPU) in the hope that
* we can avoid VMWrites during vmx_set_efer().
+ *
+ * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
+ * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
+ * do the same for L2.
*/
- exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
- ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
+ exec_control = __vm_entry_controls_get(vmcs01);
+ exec_control |= (vmcs12->vm_entry_controls &
+ ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
+ exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
if (cpu_has_load_ia32_efer()) {
if (guest_efer & EFER_LMA)
exec_control |= VM_ENTRY_IA32E_MODE;
- if (guest_efer != host_efer)
+ if (guest_efer != kvm_host.efer)
exec_control |= VM_ENTRY_LOAD_IA32_EFER;
}
vm_entry_controls_set(vmx, exec_control);
@@ -2302,9 +2507,11 @@ static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
* we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
* bits may be modified by vmx_set_efer() in prepare_vmcs02().
*/
- exec_control = vmx_vmexit_ctrl();
- if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
+ exec_control = __vm_exit_controls_get(vmcs01);
+ if (cpu_has_load_ia32_efer() && guest_efer != kvm_host.efer)
exec_control |= VM_EXIT_LOAD_IA32_EFER;
+ else
+ exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
vm_exit_controls_set(vmx, exec_control);
/*
@@ -2326,12 +2533,39 @@ static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
}
}
+static void vmcs_read_cet_state(struct kvm_vcpu *vcpu, u64 *s_cet,
+ u64 *ssp, u64 *ssp_tbl)
+{
+ if (guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) ||
+ guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
+ *s_cet = vmcs_readl(GUEST_S_CET);
+
+ if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) {
+ *ssp = vmcs_readl(GUEST_SSP);
+ *ssp_tbl = vmcs_readl(GUEST_INTR_SSP_TABLE);
+ }
+}
+
+static void vmcs_write_cet_state(struct kvm_vcpu *vcpu, u64 s_cet,
+ u64 ssp, u64 ssp_tbl)
+{
+ if (guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) ||
+ guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
+ vmcs_writel(GUEST_S_CET, s_cet);
+
+ if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) {
+ vmcs_writel(GUEST_SSP, ssp);
+ vmcs_writel(GUEST_INTR_SSP_TABLE, ssp_tbl);
+ }
+}
+
static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
{
- struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
+ struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx);
if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
+
vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
@@ -2369,7 +2603,7 @@ static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
- vmx->segment_cache.bitmask = 0;
+ vmx_segment_cache_clear(vmx);
}
if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
@@ -2441,6 +2675,10 @@ static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
+ if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE)
+ vmcs_write_cet_state(&vmx->vcpu, vmcs12->guest_s_cet,
+ vmcs12->guest_ssp, vmcs12->guest_ssp_tbl);
+
set_cr4_guest_host_mask(vmx);
}
@@ -2460,28 +2698,36 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
enum vm_entry_failure_code *entry_failure_code)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
bool load_guest_pdptrs_vmcs12 = false;
- if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
+ if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) {
prepare_vmcs02_rare(vmx, vmcs12);
vmx->nested.dirty_vmcs12 = false;
- load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
- !(vmx->nested.hv_evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
+ load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) ||
+ !(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
}
if (vmx->nested.nested_run_pending &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
- vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
+ vmx_guest_debugctl_write(vcpu, vmcs12->guest_ia32_debugctl &
+ vmx_get_supported_debugctl(vcpu, false));
} else {
kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
- vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
+ vmx_guest_debugctl_write(vcpu, vmx->nested.pre_vmenter_debugctl);
}
+
+ if (!vmx->nested.nested_run_pending ||
+ !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE))
+ vmcs_write_cet_state(vcpu, vmx->nested.pre_vmenter_s_cet,
+ vmx->nested.pre_vmenter_ssp,
+ vmx->nested.pre_vmenter_ssp_tbl);
+
if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
- vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
+ vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
vmx_set_rflags(vcpu, vmcs12->guest_rflags);
/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
@@ -2497,7 +2743,7 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
vcpu->arch.pat = vmcs12->guest_ia32_pat;
} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
- vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
+ vmcs_write64(GUEST_IA32_PAT, vcpu->arch.pat);
}
vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
@@ -2510,7 +2756,7 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
vmx_get_l2_tsc_multiplier(vcpu));
vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
- if (kvm_has_tsc_control)
+ if (kvm_caps.has_tsc_control)
vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
@@ -2519,12 +2765,9 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
nested_ept_init_mmu_context(vcpu);
/*
- * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
- * bits which we consider mandatory enabled.
- * The CR0_READ_SHADOW is what L2 should have expected to read given
- * the specifications by L1; It's not enough to take
- * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
- * have more bits than L1 expected.
+ * Override the CR0/CR4 read shadows after setting the effective guest
+ * CR0/CR4. The common helpers also set the shadows, but they don't
+ * account for vmcs12's cr0/4_guest_host_mask.
*/
vmx_set_cr0(vcpu, vmcs12->guest_cr0);
vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
@@ -2540,8 +2783,13 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
* Guest state is invalid and unrestricted guest is disabled,
* which means L1 attempted VMEntry to L2 with invalid state.
* Fail the VMEntry.
+ *
+ * However when force loading the guest state (SMM exit or
+ * loading nested state after migration, it is possible to
+ * have invalid guest state now, which will be later fixed by
+ * restoring L2 register state
*/
- if (CC(!vmx_guest_state_valid(vcpu))) {
+ if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
*entry_failure_code = ENTRY_FAIL_DEFAULT;
return -EINVAL;
}
@@ -2570,13 +2818,13 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
}
- if (!enable_ept)
- vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
-
if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
- WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
- vmcs12->guest_ia32_perf_global_ctrl)))
+ kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
+ WARN_ON_ONCE(__kvm_emulate_msr_write(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
+ vmcs12->guest_ia32_perf_global_ctrl))) {
+ *entry_failure_code = ENTRY_FAIL_DEFAULT;
return -EINVAL;
+ }
kvm_rsp_write(vcpu, vmcs12->guest_rsp);
kvm_rip_write(vcpu, vmcs12->guest_rip);
@@ -2587,9 +2835,8 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
* bits when it changes a field in eVMCS. Mark all fields as clean
* here.
*/
- if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
- vmx->nested.hv_evmcs->hv_clean_fields |=
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
+ if (nested_vmx_is_evmptr12_valid(vmx))
+ evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
return 0;
}
@@ -2640,7 +2887,7 @@ static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
}
/* Reserved bits should not be set */
- if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
+ if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
return false;
/* AD, if set, should be supported */
@@ -2708,6 +2955,10 @@ static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
}
}
+ if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING) &&
+ CC(!vmcs12->tsc_multiplier))
+ return -EINVAL;
+
return 0;
}
@@ -2752,7 +3003,6 @@ static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
- bool should_have_error_code;
bool urg = nested_cpu_has2(vmcs12,
SECONDARY_EXEC_UNRESTRICTED_GUEST);
bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
@@ -2769,12 +3019,19 @@ static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
return -EINVAL;
- /* VM-entry interruption-info field: deliver error code */
- should_have_error_code =
- intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
- x86_exception_has_error_code(vector);
- if (CC(has_error_code != should_have_error_code))
- return -EINVAL;
+ /*
+ * Cannot deliver error code in real mode or if the interrupt
+ * type is not hardware exception. For other cases, do the
+ * consistency check only if the vCPU doesn't enumerate
+ * VMX_BASIC_NO_HW_ERROR_CODE_CC.
+ */
+ if (!prot_mode || intr_type != INTR_TYPE_HARD_EXCEPTION) {
+ if (CC(has_error_code))
+ return -EINVAL;
+ } else if (!nested_cpu_has_no_hw_errcode_cc(vcpu)) {
+ if (CC(has_error_code != x86_exception_has_error_code(vector)))
+ return -EINVAL;
+ }
/* VM-entry exception error code */
if (CC(has_error_code &&
@@ -2790,7 +3047,7 @@ static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
case INTR_TYPE_SOFT_EXCEPTION:
case INTR_TYPE_SOFT_INTR:
case INTR_TYPE_PRIV_SW_EXCEPTION:
- if (CC(vmcs12->vm_entry_instruction_len > 15) ||
+ if (CC(vmcs12->vm_entry_instruction_len > X86_MAX_INSTRUCTION_LENGTH) ||
CC(vmcs12->vm_entry_instruction_len == 0 &&
CC(!nested_cpu_has_zero_length_injection(vcpu))))
return -EINVAL;
@@ -2811,8 +3068,74 @@ static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
nested_check_vm_entry_controls(vcpu, vmcs12))
return -EINVAL;
- if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
+#ifdef CONFIG_KVM_HYPERV
+ if (guest_cpu_cap_has_evmcs(vcpu))
return nested_evmcs_check_controls(vmcs12);
+#endif
+
+ return 0;
+}
+
+static int nested_vmx_check_controls_late(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ void *vapic = to_vmx(vcpu)->nested.virtual_apic_map.hva;
+ u32 vtpr = vapic ? (*(u32 *)(vapic + APIC_TASKPRI)) >> 4 : 0;
+
+ /*
+ * Don't bother with the consistency checks if KVM isn't configured to
+ * WARN on missed consistency checks, as KVM needs to rely on hardware
+ * to fully detect an illegal vTPR vs. TRP Threshold combination due to
+ * the vTPR being writable by L1 at all times (it's an in-memory value,
+ * not a VMCS field). I.e. even if the check passes now, it might fail
+ * at the actual VM-Enter.
+ *
+ * Keying off the module param also allows treating an invalid vAPIC
+ * mapping as a consistency check failure without increasing the risk
+ * of breaking a "real" VM.
+ */
+ if (!warn_on_missed_cc)
+ return 0;
+
+ if ((exec_controls_get(to_vmx(vcpu)) & CPU_BASED_TPR_SHADOW) &&
+ nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW) &&
+ !nested_cpu_has_vid(vmcs12) &&
+ !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
+ (CC(!vapic) ||
+ CC((vmcs12->tpr_threshold & GENMASK(3, 0)) > (vtpr & GENMASK(3, 0)))))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+#ifdef CONFIG_X86_64
+ if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
+ !!(vcpu->arch.efer & EFER_LMA)))
+ return -EINVAL;
+#endif
+ return 0;
+}
+
+static bool is_l1_noncanonical_address_on_vmexit(u64 la, struct vmcs12 *vmcs12)
+{
+ /*
+ * Check that the given linear address is canonical after a VM exit
+ * from L2, based on HOST_CR4.LA57 value that will be loaded for L1.
+ */
+ u8 l1_address_bits_on_exit = (vmcs12->host_cr4 & X86_CR4_LA57) ? 57 : 48;
+
+ return !__is_canonical_address(la, l1_address_bits_on_exit);
+}
+
+static int nested_vmx_check_cet_state_common(struct kvm_vcpu *vcpu, u64 s_cet,
+ u64 ssp, u64 ssp_tbl)
+{
+ if (CC(!kvm_is_valid_u_s_cet(vcpu, s_cet)) || CC(!IS_ALIGNED(ssp, 4)) ||
+ CC(is_noncanonical_msr_address(ssp_tbl, vcpu)))
+ return -EINVAL;
return 0;
}
@@ -2820,15 +3143,18 @@ static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
- bool ia32e;
+ bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
- CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
+ CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3)))
return -EINVAL;
- if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
- CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
+ if (CC(vmcs12->host_cr4 & X86_CR4_CET && !(vmcs12->host_cr0 & X86_CR0_WP)))
+ return -EINVAL;
+
+ if (CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
+ CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
return -EINVAL;
if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
@@ -2840,19 +3166,11 @@ static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
vmcs12->host_ia32_perf_global_ctrl)))
return -EINVAL;
-#ifdef CONFIG_X86_64
- ia32e = !!(vcpu->arch.efer & EFER_LMA);
-#else
- ia32e = false;
-#endif
-
if (ia32e) {
- if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
- CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
+ if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
return -EINVAL;
} else {
- if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
- CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
+ if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
CC((vmcs12->host_rip) >> 32))
return -EINVAL;
@@ -2870,12 +3188,12 @@ static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
CC(vmcs12->host_ss_selector == 0 && !ia32e))
return -EINVAL;
- if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
- CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
- CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
- CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
- CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
- CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
+ if (CC(is_noncanonical_base_address(vmcs12->host_fs_base, vcpu)) ||
+ CC(is_noncanonical_base_address(vmcs12->host_gs_base, vcpu)) ||
+ CC(is_noncanonical_base_address(vmcs12->host_gdtr_base, vcpu)) ||
+ CC(is_noncanonical_base_address(vmcs12->host_idtr_base, vcpu)) ||
+ CC(is_noncanonical_base_address(vmcs12->host_tr_base, vcpu)) ||
+ CC(is_l1_noncanonical_address_on_vmexit(vmcs12->host_rip, vmcs12)))
return -EINVAL;
/*
@@ -2891,33 +3209,58 @@ static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
return -EINVAL;
}
+ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_CET_STATE) {
+ if (nested_vmx_check_cet_state_common(vcpu, vmcs12->host_s_cet,
+ vmcs12->host_ssp,
+ vmcs12->host_ssp_tbl))
+ return -EINVAL;
+
+ /*
+ * IA32_S_CET and SSP must be canonical if the host will
+ * enter 64-bit mode after VM-exit; otherwise, higher
+ * 32-bits must be all 0s.
+ */
+ if (ia32e) {
+ if (CC(is_noncanonical_msr_address(vmcs12->host_s_cet, vcpu)) ||
+ CC(is_noncanonical_msr_address(vmcs12->host_ssp, vcpu)))
+ return -EINVAL;
+ } else {
+ if (CC(vmcs12->host_s_cet >> 32) || CC(vmcs12->host_ssp >> 32))
+ return -EINVAL;
+ }
+ }
+
return 0;
}
static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
- int r = 0;
- struct vmcs12 *shadow;
- struct kvm_host_map map;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
+ struct vmcs_hdr hdr;
- if (vmcs12->vmcs_link_pointer == -1ull)
+ if (vmcs12->vmcs_link_pointer == INVALID_GPA)
return 0;
if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
return -EINVAL;
- if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
- return -EINVAL;
+ if (ghc->gpa != vmcs12->vmcs_link_pointer &&
+ CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
+ vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
+ return -EINVAL;
- shadow = map.hva;
+ if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
+ offsetof(struct vmcs12, hdr),
+ sizeof(hdr))))
+ return -EINVAL;
- if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
- CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
- r = -EINVAL;
+ if (CC(hdr.revision_id != VMCS12_REVISION) ||
+ CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
+ return -EINVAL;
- kvm_vcpu_unmap(vcpu, &map, false);
- return r;
+ return 0;
}
/*
@@ -2937,7 +3280,7 @@ static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12,
enum vm_entry_failure_code *entry_failure_code)
{
- bool ia32e;
+ bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
*entry_failure_code = ENTRY_FAIL_DEFAULT;
@@ -2945,8 +3288,12 @@ static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
return -EINVAL;
+ if (CC(vmcs12->guest_cr4 & X86_CR4_CET && !(vmcs12->guest_cr0 & X86_CR0_WP)))
+ return -EINVAL;
+
if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
- CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
+ (CC(!kvm_dr7_valid(vmcs12->guest_dr7)) ||
+ CC(!vmx_is_valid_debugctl(vcpu, vmcs12->guest_ia32_debugctl, false))))
return -EINVAL;
if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
@@ -2963,6 +3310,13 @@ static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
vmcs12->guest_ia32_perf_global_ctrl)))
return -EINVAL;
+ if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
+ return -EINVAL;
+
+ if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
+ CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
+ return -EINVAL;
+
/*
* If the load IA32_EFER VM-entry control is 1, the following checks
* are performed on the field for the IA32_EFER MSR:
@@ -2974,7 +3328,6 @@ static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
*/
if (to_vmx(vcpu)->nested.nested_run_pending &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
- ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
@@ -2983,94 +3336,34 @@ static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
}
if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
- (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
+ (CC(is_noncanonical_msr_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
return -EINVAL;
- if (nested_check_guest_non_reg_state(vmcs12))
- return -EINVAL;
-
- return 0;
-}
-
-static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- unsigned long cr3, cr4;
- bool vm_fail;
-
- if (!nested_early_check)
- return 0;
-
- if (vmx->msr_autoload.host.nr)
- vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
- if (vmx->msr_autoload.guest.nr)
- vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
-
- preempt_disable();
-
- vmx_prepare_switch_to_guest(vcpu);
-
- /*
- * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
- * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
- * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
- * there is no need to preserve other bits or save/restore the field.
- */
- vmcs_writel(GUEST_RFLAGS, 0);
-
- cr3 = __get_current_cr3_fast();
- if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
- vmcs_writel(HOST_CR3, cr3);
- vmx->loaded_vmcs->host_state.cr3 = cr3;
- }
-
- cr4 = cr4_read_shadow();
- if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
- vmcs_writel(HOST_CR4, cr4);
- vmx->loaded_vmcs->host_state.cr4 = cr4;
- }
-
- vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
- vmx->loaded_vmcs->launched);
-
- if (vmx->msr_autoload.host.nr)
- vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
- if (vmx->msr_autoload.guest.nr)
- vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
-
- if (vm_fail) {
- u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
-
- preempt_enable();
+ if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE) {
+ if (nested_vmx_check_cet_state_common(vcpu, vmcs12->guest_s_cet,
+ vmcs12->guest_ssp,
+ vmcs12->guest_ssp_tbl))
+ return -EINVAL;
- trace_kvm_nested_vmenter_failed(
- "early hardware check VM-instruction error: ", error);
- WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
- return 1;
+ /*
+ * Guest SSP must have 63:N bits identical, rather than
+ * be canonical (i.e., 63:N-1 bits identical), where N is
+ * the CPU's maximum linear-address width. Similar to
+ * is_noncanonical_msr_address(), use the host's
+ * linear-address width.
+ */
+ if (CC(!__is_canonical_address(vmcs12->guest_ssp, max_host_virt_addr_bits() + 1)))
+ return -EINVAL;
}
- /*
- * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
- */
- if (hw_breakpoint_active())
- set_debugreg(__this_cpu_read(cpu_dr7), 7);
- local_irq_enable();
- preempt_enable();
-
- /*
- * A non-failing VMEntry means we somehow entered guest mode with
- * an illegal RIP, and that's just the tip of the iceberg. There
- * is no telling what memory has been modified or what state has
- * been exposed to unknown code. Hitting this all but guarantees
- * a (very critical) hardware issue.
- */
- WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
- VMX_EXIT_REASONS_FAILED_VMENTRY));
+ if (nested_check_guest_non_reg_state(vmcs12))
+ return -EINVAL;
return 0;
}
+#ifdef CONFIG_KVM_HYPERV
static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
@@ -3080,7 +3373,7 @@ static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
* L2 was running), map it here to make sure vmcs12 changes are
* properly reflected.
*/
- if (vmx->nested.enlightened_vmcs_enabled &&
+ if (guest_cpu_cap_has_evmcs(vcpu) &&
vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
enum nested_evmptrld_status evmptrld_status =
nested_vmx_handle_enlightened_vmptrld(vcpu, false);
@@ -3098,14 +3391,13 @@ static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
return true;
}
+#endif
static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_host_map *map;
- struct page *page;
- u64 hpa;
if (!vcpu->arch.pdptrs_from_userspace &&
!nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
@@ -3114,29 +3406,18 @@ static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
* the guest CR3 might be restored prior to setting the nested
* state which can lead to a load of wrong PDPTRs.
*/
- if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3)))
+ if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
return false;
}
if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
- /*
- * Translate L1 physical address to host physical
- * address for vmcs02. Keep the page pinned, so this
- * physical address remains valid. We keep a reference
- * to it so we can release it later.
- */
- if (vmx->nested.apic_access_page) { /* shouldn't happen */
- kvm_release_page_clean(vmx->nested.apic_access_page);
- vmx->nested.apic_access_page = NULL;
- }
- page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
- if (!is_error_page(page)) {
- vmx->nested.apic_access_page = page;
- hpa = page_to_phys(vmx->nested.apic_access_page);
- vmcs_write64(APIC_ACCESS_ADDR, hpa);
+ map = &vmx->nested.apic_access_page_map;
+
+ if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
+ vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
} else {
- pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
+ pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
__func__);
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror =
@@ -3168,7 +3449,7 @@ static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
* Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
* force VM-Entry to fail.
*/
- vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
+ vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
}
}
@@ -3202,6 +3483,13 @@ static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
{
+#ifdef CONFIG_KVM_HYPERV
+ /*
+ * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
+ * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
+ * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
+ * migration.
+ */
if (!nested_get_evmcs_page(vcpu)) {
pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
__func__);
@@ -3212,6 +3500,7 @@ static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
return false;
}
+#endif
if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
return false;
@@ -3239,7 +3528,7 @@ static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
if (!nested_cpu_has_pml(vmcs12))
return 0;
- if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
+ if (vmcs12->guest_pml_index >= PML_LOG_NR_ENTRIES) {
vmx->nested.pml_full = true;
return 1;
}
@@ -3278,14 +3567,6 @@ static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
return 1;
}
-static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
-{
- u8 rvi = vmx_get_rvi();
- u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
-
- return ((rvi & 0xf0) > (vppr & 0xf0));
-}
-
static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12);
@@ -3305,49 +3586,56 @@ enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
enum vm_entry_failure_code entry_failure_code;
- bool evaluate_pending_interrupts;
union vmx_exit_reason exit_reason = {
.basic = EXIT_REASON_INVALID_STATE,
.failed_vmentry = 1,
};
u32 failed_index;
- if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
- kvm_vcpu_flush_tlb_current(vcpu);
-
- evaluate_pending_interrupts = exec_controls_get(vmx) &
- (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
- if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
- evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
-
- if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
- vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
+ trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
+ vmx->nested.current_vmptr,
+ vmcs12->guest_rip,
+ vmcs12->guest_intr_status,
+ vmcs12->vm_entry_intr_info_field,
+ vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
+ vmcs12->ept_pointer,
+ vmcs12->guest_cr3,
+ KVM_ISA_VMX);
+
+ kvm_service_local_tlb_flush_requests(vcpu);
+
+ if (!vmx->nested.nested_run_pending ||
+ !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
+ vmx->nested.pre_vmenter_debugctl = vmx_guest_debugctl_read();
if (kvm_mpx_supported() &&
- !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
- vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
+ (!vmx->nested.nested_run_pending ||
+ !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
+ vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
+
+ if (!vmx->nested.nested_run_pending ||
+ !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE))
+ vmcs_read_cet_state(vcpu, &vmx->nested.pre_vmenter_s_cet,
+ &vmx->nested.pre_vmenter_ssp,
+ &vmx->nested.pre_vmenter_ssp_tbl);
/*
- * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
- * nested early checks are disabled. In the event of a "late" VM-Fail,
- * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
- * software model to the pre-VMEntry host state. When EPT is disabled,
- * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
- * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
- * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
- * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
- * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
- * guaranteed to be overwritten with a shadow CR3 prior to re-entering
- * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
- * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
- * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
- * path would need to manually save/restore vmcs01.GUEST_CR3.
+ * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled. In the
+ * event of a "late" VM-Fail, i.e. a VM-Fail detected by hardware but
+ * not KVM, KVM must unwind its software model to the pre-VM-Entry host
+ * state. When EPT is disabled, GUEST_CR3 holds KVM's shadow CR3, not
+ * L1's "real" CR3, which causes nested_vmx_restore_host_state() to
+ * corrupt vcpu->arch.cr3. Stuffing vmcs01.GUEST_CR3 results in the
+ * unwind naturally setting arch.cr3 to the correct value. Smashing
+ * vmcs01.GUEST_CR3 is safe because nested VM-Exits, and the unwind,
+ * reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is guaranteed to be
+ * overwritten with a shadow CR3 prior to re-entering L1.
*/
- if (!enable_ept && !nested_early_check)
+ if (!enable_ept)
vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
- prepare_vmcs02_early(vmx, vmcs12);
+ prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
if (from_vmentry) {
if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
@@ -3355,7 +3643,7 @@ enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
}
- if (nested_vmx_check_vmentry_hw(vcpu)) {
+ if (nested_vmx_check_controls_late(vcpu, vmcs12)) {
vmx_switch_vmcs(vcpu, &vmx->vmcs01);
return NVMX_VMENTRY_VMFAIL;
}
@@ -3397,20 +3685,16 @@ enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
}
/*
- * If L1 had a pending IRQ/NMI until it executed
- * VMLAUNCH/VMRESUME which wasn't delivered because it was
- * disallowed (e.g. interrupts disabled), L0 needs to
- * evaluate if this pending event should cause an exit from L2
- * to L1 or delivered directly to L2 (e.g. In case L1 don't
- * intercept EXTERNAL_INTERRUPT).
- *
- * Usually this would be handled by the processor noticing an
- * IRQ/NMI window request, or checking RVI during evaluation of
- * pending virtual interrupts. However, this setting was done
- * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
- * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
+ * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
+ * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
+ * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
+ * unconditionally. Take care to pull data from vmcs01 as appropriate,
+ * e.g. when checking for interrupt windows, as vmcs02 is now loaded.
*/
- if (unlikely(evaluate_pending_interrupts))
+ if ((__exec_controls_get(&vmx->vmcs01) & (CPU_BASED_INTR_WINDOW_EXITING |
+ CPU_BASED_NMI_WINDOW_EXITING)) ||
+ kvm_apic_has_pending_init_or_sipi(vcpu) ||
+ kvm_apic_has_interrupt(vcpu))
kvm_make_request(KVM_REQ_EVENT, vcpu);
/*
@@ -3450,7 +3734,7 @@ vmentry_fail_vmexit:
load_vmcs12_host_state(vcpu, vmcs12);
vmcs12->vm_exit_reason = exit_reason.full;
- if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
+ if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))
vmx->nested.need_vmcs12_to_shadow_sync = true;
return NVMX_VMENTRY_VMEXIT;
}
@@ -3474,12 +3758,15 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
if (evmptrld_status == EVMPTRLD_ERROR) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
- } else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
- return nested_vmx_failInvalid(vcpu);
}
- if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
- vmx->nested.current_vmptr == -1ull))
+ kvm_pmu_branch_retired(vcpu);
+
+ if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
+ return nested_vmx_failInvalid(vcpu);
+
+ if (CC(!nested_vmx_is_evmptr12_valid(vmx) &&
+ vmx->nested.current_vmptr == INVALID_GPA))
return nested_vmx_failInvalid(vcpu);
vmcs12 = get_vmcs12(vcpu);
@@ -3493,8 +3780,10 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
if (CC(vmcs12->hdr.shadow_vmcs))
return nested_vmx_failInvalid(vcpu);
- if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
- copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
+ if (nested_vmx_is_evmptr12_valid(vmx)) {
+ struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
+
+ copy_enlightened_to_vmcs12(vmx, evmcs->hv_clean_fields);
/* Enlightened VMCS doesn't have launch state */
vmcs12->launch_state = !launch;
} else if (enable_shadow_vmcs) {
@@ -3522,6 +3811,9 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
if (nested_vmx_check_controls(vcpu, vmcs12))
return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+ if (nested_vmx_check_address_space_size(vcpu, vmcs12))
+ return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
+
if (nested_vmx_check_host_state(vcpu, vmcs12))
return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
@@ -3535,16 +3827,8 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
if (unlikely(status != NVMX_VMENTRY_SUCCESS))
goto vmentry_failed;
- /* Emulate processing of posted interrupts on VM-Enter. */
- if (nested_cpu_has_posted_intr(vmcs12) &&
- kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
- vmx->nested.pi_pending = true;
- kvm_make_request(KVM_REQ_EVENT, vcpu);
- kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
- }
-
/* Hide L1D cache contents from the nested guest. */
- vmx->vcpu.arch.l1tf_flush_l1d = true;
+ kvm_request_l1tf_flush_l1d();
/*
* Must happen outside of nested_vmx_enter_non_root_mode() as it will
@@ -3570,12 +3854,12 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
!(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
(vmcs12->guest_rflags & X86_EFLAGS_IF))) {
vmx->nested.nested_run_pending = 0;
- return kvm_vcpu_halt(vcpu);
+ return kvm_emulate_halt_noskip(vcpu);
}
break;
case GUEST_ACTIVITY_WAIT_SIPI:
vmx->nested.nested_run_pending = 0;
- vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
+ kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED);
break;
default:
break;
@@ -3631,13 +3915,35 @@ vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
}
static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
+ struct vmcs12 *vmcs12,
+ u32 vm_exit_reason, u32 exit_intr_info)
{
u32 idt_vectoring;
unsigned int nr;
- if (vcpu->arch.exception.injected) {
- nr = vcpu->arch.exception.nr;
+ /*
+ * Per the SDM, VM-Exits due to double and triple faults are never
+ * considered to occur during event delivery, even if the double/triple
+ * fault is the result of an escalating vectoring issue.
+ *
+ * Note, the SDM qualifies the double fault behavior with "The original
+ * event results in a double-fault exception". It's unclear why the
+ * qualification exists since exits due to double fault can occur only
+ * while vectoring a different exception (injected events are never
+ * subject to interception), i.e. there's _always_ an original event.
+ *
+ * The SDM also uses NMI as a confusing example for the "original event
+ * causes the VM exit directly" clause. NMI isn't special in any way,
+ * the same rule applies to all events that cause an exit directly.
+ * NMI is an odd choice for the example because NMIs can only occur on
+ * instruction boundaries, i.e. they _can't_ occur during vectoring.
+ */
+ if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
+ ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
+ is_double_fault(exit_intr_info))) {
+ vmcs12->idt_vectoring_info_field = 0;
+ } else if (vcpu->arch.exception.injected) {
+ nr = vcpu->arch.exception.vector;
idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
if (kvm_exception_is_soft(nr)) {
@@ -3669,6 +3975,8 @@ static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
idt_vectoring |= INTR_TYPE_EXT_INTR;
vmcs12->idt_vectoring_info_field = idt_vectoring;
+ } else {
+ vmcs12->idt_vectoring_info_field = 0;
}
}
@@ -3712,8 +4020,8 @@ static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
if (!pi_test_and_clear_on(vmx->nested.pi_desc))
return 0;
- max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
- if (max_irr != 256) {
+ max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
+ if (max_irr > 0) {
vapic_page = vmx->nested.virtual_apic_map.hva;
if (!vapic_page)
goto mmio_needed;
@@ -3736,19 +4044,45 @@ mmio_needed:
return -ENXIO;
}
-static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
- unsigned long exit_qual)
+static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
{
+ struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
+ u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- unsigned int nr = vcpu->arch.exception.nr;
- u32 intr_info = nr | INTR_INFO_VALID_MASK;
+ unsigned long exit_qual;
+
+ if (ex->has_payload) {
+ exit_qual = ex->payload;
+ } else if (ex->vector == PF_VECTOR) {
+ exit_qual = vcpu->arch.cr2;
+ } else if (ex->vector == DB_VECTOR) {
+ exit_qual = vcpu->arch.dr6;
+ exit_qual &= ~DR6_BT;
+ exit_qual ^= DR6_ACTIVE_LOW;
+ } else {
+ exit_qual = 0;
+ }
- if (vcpu->arch.exception.has_error_code) {
- vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
+ /*
+ * Unlike AMD's Paged Real Mode, which reports an error code on #PF
+ * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
+ * "has error code" flags on VM-Exit if the CPU is in Real Mode.
+ */
+ if (ex->has_error_code && is_protmode(vcpu)) {
+ /*
+ * Intel CPUs do not generate error codes with bits 31:16 set,
+ * and more importantly VMX disallows setting bits 31:16 in the
+ * injected error code for VM-Entry. Drop the bits to mimic
+ * hardware and avoid inducing failure on nested VM-Entry if L1
+ * chooses to inject the exception back to L2. AMD CPUs _do_
+ * generate "full" 32-bit error codes, so KVM allows userspace
+ * to inject exception error codes with bits 31:16 set.
+ */
+ vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
intr_info |= INTR_INFO_DELIVER_CODE_MASK;
}
- if (kvm_exception_is_soft(nr))
+ if (kvm_exception_is_soft(ex->vector))
intr_info |= INTR_TYPE_SOFT_EXCEPTION;
else
intr_info |= INTR_TYPE_HARD_EXCEPTION;
@@ -3761,16 +4095,39 @@ static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
}
/*
- * Returns true if a debug trap is pending delivery.
+ * Returns true if a debug trap is (likely) pending delivery. Infer the class
+ * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
+ * Using the payload is flawed because code breakpoints (fault-like) and data
+ * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
+ * this will return false positives if a to-be-injected code breakpoint #DB is
+ * pending (from KVM's perspective, but not "pending" across an instruction
+ * boundary). ICEBP, a.k.a. INT1, is also not reflected here even though it
+ * too is trap-like.
*
- * In KVM, debug traps bear an exception payload. As such, the class of a #DB
- * exception may be inferred from the presence of an exception payload.
+ * KVM "works" despite these flaws as ICEBP isn't currently supported by the
+ * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
+ * #DB has already happened), and MTF isn't marked pending on code breakpoints
+ * from the emulator (because such #DBs are fault-like and thus don't trigger
+ * actions that fire on instruction retire).
*/
-static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
+static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
{
- return vcpu->arch.exception.pending &&
- vcpu->arch.exception.nr == DB_VECTOR &&
- vcpu->arch.exception.payload;
+ if (!ex->pending || ex->vector != DB_VECTOR)
+ return 0;
+
+ /* General Detect #DBs are always fault-like. */
+ return ex->payload & ~DR6_BD;
+}
+
+/*
+ * Returns true if there's a pending #DB exception that is lower priority than
+ * a pending Monitor Trap Flag VM-Exit. TSS T-flag #DBs are not emulated by
+ * KVM, but could theoretically be injected by userspace. Note, this code is
+ * imperfect, see above.
+ */
+static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
+{
+ return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
}
/*
@@ -3782,9 +4139,11 @@ static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
*/
static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
{
- if (vmx_pending_dbg_trap(vcpu))
- vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
- vcpu->arch.exception.payload);
+ unsigned long pending_dbg;
+
+ pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
+ if (pending_dbg)
+ vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
}
static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
@@ -3793,21 +4152,161 @@ static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
to_vmx(vcpu)->nested.preemption_timer_expired;
}
-static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
+static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
- unsigned long exit_qual;
- bool block_nested_events =
- vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
- bool mtf_pending = vmx->nested.mtf_pending;
- struct kvm_lapic *apic = vcpu->arch.apic;
+ void *vapic = vmx->nested.virtual_apic_map.hva;
+ int max_irr, vppr;
+
+ if (nested_vmx_preemption_timer_pending(vcpu) ||
+ vmx->nested.mtf_pending)
+ return true;
/*
- * Clear the MTF state. If a higher priority VM-exit is delivered first,
- * this state is discarded.
+ * Virtual Interrupt Delivery doesn't require manual injection. Either
+ * the interrupt is already in GUEST_RVI and will be recognized by CPU
+ * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move
+ * the interrupt from the PIR to RVI prior to entering the guest.
*/
- if (!block_nested_events)
- vmx->nested.mtf_pending = false;
+ if (for_injection)
+ return false;
+
+ if (!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
+ __vmx_interrupt_blocked(vcpu))
+ return false;
+
+ if (!vapic)
+ return false;
+
+ vppr = *((u32 *)(vapic + APIC_PROCPRI));
+
+ max_irr = vmx_get_rvi();
+ if ((max_irr & 0xf0) > (vppr & 0xf0))
+ return true;
+
+ if (vmx->nested.pi_pending && vmx->nested.pi_desc &&
+ pi_test_on(vmx->nested.pi_desc)) {
+ max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
+ if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0))
+ return true;
+ }
+
+ return false;
+}
+
+/*
+ * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
+ * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
+ * and less minor edits to splice in the priority of VMX Non-Root specific
+ * events, e.g. MTF and NMI/INTR-window exiting.
+ *
+ * 1 Hardware Reset and Machine Checks
+ * - RESET
+ * - Machine Check
+ *
+ * 2 Trap on Task Switch
+ * - T flag in TSS is set (on task switch)
+ *
+ * 3 External Hardware Interventions
+ * - FLUSH
+ * - STOPCLK
+ * - SMI
+ * - INIT
+ *
+ * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
+ *
+ * 4 Traps on Previous Instruction
+ * - Breakpoints
+ * - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
+ * breakpoint, or #DB due to a split-lock access)
+ *
+ * 4.3 VMX-preemption timer expired VM-exit
+ *
+ * 4.6 NMI-window exiting VM-exit[2]
+ *
+ * 5 Nonmaskable Interrupts (NMI)
+ *
+ * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
+ *
+ * 6 Maskable Hardware Interrupts
+ *
+ * 7 Code Breakpoint Fault
+ *
+ * 8 Faults from Fetching Next Instruction
+ * - Code-Segment Limit Violation
+ * - Code Page Fault
+ * - Control protection exception (missing ENDBRANCH at target of indirect
+ * call or jump)
+ *
+ * 9 Faults from Decoding Next Instruction
+ * - Instruction length > 15 bytes
+ * - Invalid Opcode
+ * - Coprocessor Not Available
+ *
+ *10 Faults on Executing Instruction
+ * - Overflow
+ * - Bound error
+ * - Invalid TSS
+ * - Segment Not Present
+ * - Stack fault
+ * - General Protection
+ * - Data Page Fault
+ * - Alignment Check
+ * - x86 FPU Floating-point exception
+ * - SIMD floating-point exception
+ * - Virtualization exception
+ * - Control protection exception
+ *
+ * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
+ * INIT signals, and higher priority events take priority over MTF VM exits.
+ * MTF VM exits take priority over debug-trap exceptions and lower priority
+ * events.
+ *
+ * [2] Debug-trap exceptions and higher priority events take priority over VM exits
+ * caused by the VMX-preemption timer. VM exits caused by the VMX-preemption
+ * timer take priority over VM exits caused by the "NMI-window exiting"
+ * VM-execution control and lower priority events.
+ *
+ * [3] Debug-trap exceptions and higher priority events take priority over VM exits
+ * caused by "NMI-window exiting". VM exits caused by this control take
+ * priority over non-maskable interrupts (NMIs) and lower priority events.
+ *
+ * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
+ * the 1-setting of the "interrupt-window exiting" VM-execution control. Thus,
+ * non-maskable interrupts (NMIs) and higher priority events take priority over
+ * delivery of a virtual interrupt; delivery of a virtual interrupt takes
+ * priority over external interrupts and lower priority events.
+ */
+static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ /*
+ * Only a pending nested run blocks a pending exception. If there is a
+ * previously injected event, the pending exception occurred while said
+ * event was being delivered and thus needs to be handled.
+ */
+ bool block_nested_exceptions = vmx->nested.nested_run_pending;
+ /*
+ * Events that don't require injection, i.e. that are virtualized by
+ * hardware, aren't blocked by a pending VM-Enter as KVM doesn't need
+ * to regain control in order to deliver the event, and hardware will
+ * handle event ordering, e.g. with respect to injected exceptions.
+ *
+ * But, new events (not exceptions) are only recognized at instruction
+ * boundaries. If an event needs reinjection, then KVM is handling a
+ * VM-Exit that occurred _during_ instruction execution; new events,
+ * irrespective of whether or not they're injected, are blocked until
+ * the instruction completes.
+ */
+ bool block_non_injected_events = kvm_event_needs_reinjection(vcpu);
+ /*
+ * Inject events are blocked by nested VM-Enter, as KVM is responsible
+ * for managing priority between concurrent events, i.e. KVM needs to
+ * wait until after VM-Enter completes to deliver injected events.
+ */
+ bool block_nested_events = block_nested_exceptions ||
+ block_non_injected_events;
if (lapic_in_kernel(vcpu) &&
test_bit(KVM_APIC_INIT, &apic->pending_events)) {
@@ -3817,6 +4316,9 @@ static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
clear_bit(KVM_APIC_INIT, &apic->pending_events);
if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
+
+ /* MTF is discarded if the vCPU is in WFS. */
+ vmx->nested.mtf_pending = false;
return 0;
}
@@ -3826,31 +4328,41 @@ static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
return -EBUSY;
clear_bit(KVM_APIC_SIPI, &apic->pending_events);
- if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
+ if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
apic->sipi_vector & 0xFFUL);
- return 0;
+ return 0;
+ }
+ /* Fallthrough, the SIPI is completely ignored. */
}
/*
- * Process any exceptions that are not debug traps before MTF.
+ * Process exceptions that are higher priority than Monitor Trap Flag:
+ * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
+ * could theoretically come in from userspace), and ICEBP (INT1).
*
- * Note that only a pending nested run can block a pending exception.
- * Otherwise an injected NMI/interrupt should either be
- * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
- * while delivering the pending exception.
+ * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
+ * for TSS T flag #DBs). KVM also doesn't save/restore pending MTF
+ * across SMI/RSM as it should; that needs to be addressed in order to
+ * prioritize SMI over MTF and trap-like #DBs.
*/
-
- if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
- if (vmx->nested.nested_run_pending)
+ if (vcpu->arch.exception_vmexit.pending &&
+ !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
+ if (block_nested_exceptions)
return -EBUSY;
- if (!nested_vmx_check_exception(vcpu, &exit_qual))
- goto no_vmexit;
- nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
+
+ nested_vmx_inject_exception_vmexit(vcpu);
return 0;
}
- if (mtf_pending) {
+ if (vcpu->arch.exception.pending &&
+ !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
+ if (block_nested_exceptions)
+ return -EBUSY;
+ goto no_vmexit;
+ }
+
+ if (vmx->nested.mtf_pending) {
if (block_nested_events)
return -EBUSY;
nested_vmx_update_pending_dbg(vcpu);
@@ -3858,15 +4370,20 @@ static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
return 0;
}
- if (vcpu->arch.exception.pending) {
- if (vmx->nested.nested_run_pending)
+ if (vcpu->arch.exception_vmexit.pending) {
+ if (block_nested_exceptions)
return -EBUSY;
- if (!nested_vmx_check_exception(vcpu, &exit_qual))
- goto no_vmexit;
- nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
+
+ nested_vmx_inject_exception_vmexit(vcpu);
return 0;
}
+ if (vcpu->arch.exception.pending) {
+ if (block_nested_exceptions)
+ return -EBUSY;
+ goto no_vmexit;
+ }
+
if (nested_vmx_preemption_timer_pending(vcpu)) {
if (block_nested_events)
return -EBUSY;
@@ -3899,11 +4416,71 @@ static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
}
if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
+ int irq;
+
+ if (!nested_exit_on_intr(vcpu)) {
+ if (block_nested_events)
+ return -EBUSY;
+
+ goto no_vmexit;
+ }
+
+ if (!nested_exit_intr_ack_set(vcpu)) {
+ if (block_nested_events)
+ return -EBUSY;
+
+ nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
+ return 0;
+ }
+
+ irq = kvm_cpu_get_extint(vcpu);
+ if (irq != -1) {
+ if (block_nested_events)
+ return -EBUSY;
+
+ nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
+ INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
+ return 0;
+ }
+
+ irq = kvm_apic_has_interrupt(vcpu);
+ if (WARN_ON_ONCE(irq < 0))
+ goto no_vmexit;
+
+ /*
+ * If the IRQ is L2's PI notification vector, process posted
+ * interrupts for L2 instead of injecting VM-Exit, as the
+ * detection/morphing architecturally occurs when the IRQ is
+ * delivered to the CPU. Note, only interrupts that are routed
+ * through the local APIC trigger posted interrupt processing,
+ * and enabling posted interrupts requires ACK-on-exit.
+ */
+ if (irq == vmx->nested.posted_intr_nv) {
+ /*
+ * Nested posted interrupts are delivered via RVI, i.e.
+ * aren't injected by KVM, and so can be queued even if
+ * manual event injection is disallowed.
+ */
+ if (block_non_injected_events)
+ return -EBUSY;
+
+ vmx->nested.pi_pending = true;
+ kvm_apic_clear_irr(vcpu, irq);
+ goto no_vmexit;
+ }
+
if (block_nested_events)
return -EBUSY;
- if (!nested_exit_on_intr(vcpu))
- goto no_vmexit;
- nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
+
+ nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
+ INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
+
+ /*
+ * ACK the interrupt _after_ emulating VM-Exit, as the IRQ must
+ * be marked as in-service in vmcs01.GUEST_INTERRUPT_STATUS.SVI
+ * if APICv is active.
+ */
+ kvm_apic_ack_interrupt(vcpu, irq);
return 0;
}
@@ -4013,8 +4590,6 @@ static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
vmcs12->guest_pending_dbg_exceptions =
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
- if (kvm_mpx_supported())
- vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
}
@@ -4033,12 +4608,12 @@ static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
cpu = get_cpu();
vmx->loaded_vmcs = &vmx->nested.vmcs02;
- vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
+ vmx_vcpu_load_vmcs(vcpu, cpu);
sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
vmx->loaded_vmcs = &vmx->vmcs01;
- vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
+ vmx_vcpu_load_vmcs(vcpu, cpu);
put_cpu();
}
@@ -4052,11 +4627,11 @@ static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
- if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
+ if (nested_vmx_is_evmptr12_valid(vmx))
sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
- !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
+ !nested_vmx_is_evmptr12_valid(vmx);
vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
@@ -4111,11 +4686,21 @@ static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
+ /*
+ * Note! Save DR7, but intentionally don't grab DEBUGCTL from vmcs02.
+ * Writes to DEBUGCTL that aren't intercepted by L1 are immediately
+ * propagated to vmcs12 (see vmx_set_msr()), as the value loaded into
+ * vmcs02 doesn't strictly track vmcs12.
+ */
if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
- kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
+ vmcs12->guest_dr7 = vcpu->arch.dr7;
if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
vmcs12->guest_ia32_efer = vcpu->arch.efer;
+
+ vmcs_read_cet_state(&vmx->vcpu, &vmcs12->guest_s_cet,
+ &vmcs12->guest_ssp,
+ &vmcs12->guest_ssp_tbl);
}
/*
@@ -4131,19 +4716,19 @@ static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
*/
static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
u32 vm_exit_reason, u32 exit_intr_info,
- unsigned long exit_qualification)
+ unsigned long exit_qualification, u32 exit_insn_len)
{
/* update exit information fields: */
vmcs12->vm_exit_reason = vm_exit_reason;
- if (to_vmx(vcpu)->exit_reason.enclave_mode)
+ if (vmx_get_exit_reason(vcpu).enclave_mode)
vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
vmcs12->exit_qualification = exit_qualification;
- vmcs12->vm_exit_intr_info = exit_intr_info;
-
- vmcs12->idt_vectoring_info_field = 0;
- vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
- vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ /*
+ * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
+ * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
+ * exit info fields are unmodified.
+ */
if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
vmcs12->launch_state = 1;
@@ -4155,7 +4740,12 @@ static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
* Transfer the event that L0 or L1 may wanted to inject into
* L2 to IDT_VECTORING_INFO_FIELD.
*/
- vmcs12_save_pending_event(vcpu, vmcs12);
+ vmcs12_save_pending_event(vcpu, vmcs12,
+ vm_exit_reason, exit_intr_info);
+
+ vmcs12->vm_exit_intr_info = exit_intr_info;
+ vmcs12->vm_exit_instruction_len = exit_insn_len;
+ vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
/*
* According to spec, there's no need to store the guest's
@@ -4169,14 +4759,6 @@ static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
nested_vmx_abort(vcpu,
VMX_ABORT_SAVE_GUEST_MSR_FAIL);
}
-
- /*
- * Drop what we picked up for L2 via vmx_complete_interrupts. It is
- * preserved above and would only end up incorrectly in L1.
- */
- vcpu->arch.nmi_injected = false;
- kvm_clear_exception_queue(vcpu);
- kvm_clear_interrupt_queue(vcpu);
}
/*
@@ -4214,7 +4796,7 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
* CR0_GUEST_HOST_MASK is already set in the original vmcs01
* (KVM doesn't change it);
*/
- vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
+ vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
vmx_set_cr0(vcpu, vmcs12->host_cr0);
/* Same as above - no reason to call set_cr4_guest_host_mask(). */
@@ -4244,13 +4826,26 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
vmcs_write64(GUEST_BNDCFGS, 0);
+ /*
+ * Load CET state from host state if VM_EXIT_LOAD_CET_STATE is set.
+ * otherwise CET state should be retained across VM-exit, i.e.,
+ * guest values should be propagated from vmcs12 to vmcs01.
+ */
+ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_CET_STATE)
+ vmcs_write_cet_state(vcpu, vmcs12->host_s_cet, vmcs12->host_ssp,
+ vmcs12->host_ssp_tbl);
+ else
+ vmcs_write_cet_state(vcpu, vmcs12->guest_s_cet, vmcs12->guest_ssp,
+ vmcs12->guest_ssp_tbl);
+
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
vcpu->arch.pat = vmcs12->host_ia32_pat;
}
- if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
- WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
- vmcs12->host_ia32_perf_global_ctrl));
+ if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
+ kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
+ WARN_ON_ONCE(__kvm_emulate_msr_write(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
+ vmcs12->host_ia32_perf_global_ctrl));
/* Set L1 segment info according to Intel SDM
27.5.2 Loading Host Segment and Descriptor-Table Registers */
@@ -4267,7 +4862,7 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
seg.l = 1;
else
seg.db = 1;
- vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
+ __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
seg = (struct kvm_segment) {
.base = 0,
.limit = 0xFFFFFFFF,
@@ -4278,17 +4873,17 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
.g = 1
};
seg.selector = vmcs12->host_ds_selector;
- vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
+ __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
seg.selector = vmcs12->host_es_selector;
- vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
+ __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
seg.selector = vmcs12->host_ss_selector;
- vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
+ __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
seg.selector = vmcs12->host_fs_selector;
seg.base = vmcs12->host_fs_base;
- vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
+ __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
seg.selector = vmcs12->host_gs_selector;
seg.base = vmcs12->host_gs_base;
- vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
+ __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
seg = (struct kvm_segment) {
.base = vmcs12->host_tr_base,
.limit = 0x67,
@@ -4296,17 +4891,20 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
.type = 11,
.present = 1
};
- vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
+ __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
- kvm_set_dr(vcpu, 7, 0x400);
- vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
+ memset(&seg, 0, sizeof(seg));
+ seg.unusable = 1;
+ __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
- if (cpu_has_vmx_msr_bitmap())
- vmx_update_msr_bitmap(vcpu);
+ kvm_set_dr(vcpu, 7, 0x400);
+ vmx_guest_debugctl_write(vcpu, 0);
if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
vmcs12->vm_exit_msr_load_count))
nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
+
+ to_vt(vcpu)->emulation_required = vmx_emulation_required(vcpu);
}
static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
@@ -4318,7 +4916,7 @@ static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
return vmcs_read64(GUEST_IA32_EFER);
if (cpu_has_load_ia32_efer())
- return host_efer;
+ return kvm_host.efer;
for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
@@ -4329,7 +4927,7 @@ static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
if (efer_msr)
return efer_msr->data;
- return host_efer;
+ return kvm_host.efer;
}
static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
@@ -4355,13 +4953,16 @@ static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
}
+ /* Reload DEBUGCTL to ensure vmcs01 has a fresh FREEZE_IN_SMM value. */
+ vmx_reload_guest_debugctl(vcpu);
+
/*
* Note that calling vmx_set_{efer,cr0,cr4} is important as they
* handle a variety of side effects to KVM's software model.
*/
vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
- vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
+ vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
@@ -4382,9 +4983,6 @@ static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
kvm_mmu_reset_context(vcpu);
- if (cpu_has_vmx_msr_bitmap())
- vmx_update_msr_bitmap(vcpu);
-
/*
* This nasty bit of open coding is a compromise between blindly
* loading L1's MSRs using the exit load lists (incorrect emulation
@@ -4425,7 +5023,7 @@ static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
goto vmabort;
}
- if (kvm_set_msr(vcpu, h.index, h.value)) {
+ if (kvm_emulate_msr_write(vcpu, h.index, h.value)) {
pr_debug_ratelimited(
"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
__func__, j, h.index, h.value);
@@ -4445,18 +5043,20 @@ vmabort:
* and modify vmcs12 to make it see what it would expect to see there if
* L2 was its real guest. Must only be called when in L2 (is_guest_mode())
*/
-void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
- u32 exit_intr_info, unsigned long exit_qualification)
+void __nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
+ u32 exit_intr_info, unsigned long exit_qualification,
+ u32 exit_insn_len)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ /* Pending MTF traps are discarded on VM-Exit. */
+ vmx->nested.mtf_pending = false;
+
/* trying to cancel vmlaunch/vmresume is a bug */
WARN_ON_ONCE(vmx->nested.nested_run_pending);
- /* Similarly, triple faults in L2 should never escape. */
- WARN_ON_ONCE(kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu));
-
+#ifdef CONFIG_KVM_HYPERV
if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
/*
* KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
@@ -4466,10 +5066,10 @@ void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
*/
(void)nested_get_evmcs_page(vcpu);
}
+#endif
- /* Service the TLB flush request for L2 before switching to L1. */
- if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
- kvm_vcpu_flush_tlb_current(vcpu);
+ /* Service pending TLB flush requests for L2 before switching to L1. */
+ kvm_service_local_tlb_flush_requests(vcpu);
/*
* VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
@@ -4495,7 +5095,8 @@ void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
if (vm_exit_reason != -1)
prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
- exit_intr_info, exit_qualification);
+ exit_intr_info, exit_qualification,
+ exit_insn_len);
/*
* Must happen outside of sync_vmcs02_to_vmcs12() as it will
@@ -4511,21 +5112,35 @@ void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
/*
* The only expected VM-instruction error is "VM entry with
* invalid control field(s)." Anything else indicates a
- * problem with L0. And we should never get here with a
- * VMFail of any type if early consistency checks are enabled.
+ * problem with L0.
*/
WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
VMXERR_ENTRY_INVALID_CONTROL_FIELD);
- WARN_ON_ONCE(nested_early_check);
+
+ /* VM-Fail at VM-Entry means KVM missed a consistency check. */
+ WARN_ON_ONCE(warn_on_missed_cc);
}
+ /*
+ * Drop events/exceptions that were queued for re-injection to L2
+ * (picked up via vmx_complete_interrupts()), as well as exceptions
+ * that were pending for L2. Note, this must NOT be hoisted above
+ * prepare_vmcs12(), events/exceptions queued for re-injection need to
+ * be captured in vmcs12 (see vmcs12_save_pending_event()).
+ */
+ vcpu->arch.nmi_injected = false;
+ kvm_clear_exception_queue(vcpu);
+ kvm_clear_interrupt_queue(vcpu);
+
vmx_switch_vmcs(vcpu, &vmx->vmcs01);
+ kvm_nested_vmexit_handle_ibrs(vcpu);
+
/* Update any VMCS fields that might have changed while L2 ran */
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
- if (kvm_has_tsc_control)
+ if (kvm_caps.has_tsc_control)
vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
if (vmx->nested.l1_tpr_threshold != -1)
@@ -4541,36 +5156,31 @@ void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
vmx_update_cpu_dirty_logging(vcpu);
}
- /* Unpin physical memory we referred to in vmcs02 */
- if (vmx->nested.apic_access_page) {
- kvm_release_page_clean(vmx->nested.apic_access_page);
- vmx->nested.apic_access_page = NULL;
- }
- kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
- kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
- vmx->nested.pi_desc = NULL;
+ nested_put_vmcs12_pages(vcpu);
if (vmx->nested.reload_vmcs01_apic_access_page) {
vmx->nested.reload_vmcs01_apic_access_page = false;
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
}
+ if (vmx->nested.update_vmcs01_apicv_status) {
+ vmx->nested.update_vmcs01_apicv_status = false;
+ kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
+ }
+
+ if (vmx->nested.update_vmcs01_hwapic_isr) {
+ vmx->nested.update_vmcs01_hwapic_isr = false;
+ kvm_apic_update_hwapic_isr(vcpu);
+ }
+
if ((vm_exit_reason != -1) &&
- (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
+ (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)))
vmx->nested.need_vmcs12_to_shadow_sync = true;
/* in case we halted in L2 */
- vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+ kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
if (likely(!vmx->fail)) {
- if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
- nested_exit_intr_ack_set(vcpu)) {
- int irq = kvm_cpu_get_interrupt(vcpu);
- WARN_ON(irq < 0);
- vmcs12->vm_exit_intr_info = irq |
- INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
- }
-
if (vm_exit_reason != -1)
trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
vmcs12->exit_qualification,
@@ -4581,6 +5191,17 @@ void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
load_vmcs12_host_state(vcpu, vmcs12);
+ /*
+ * Process events if an injectable IRQ or NMI is pending, even
+ * if the event is blocked (RFLAGS.IF is cleared on VM-Exit).
+ * If an event became pending while L2 was active, KVM needs to
+ * either inject the event or request an IRQ/NMI window. SMIs
+ * don't need to be processed as SMM is mutually exclusive with
+ * non-root mode. INIT/SIPI don't need to be checked as INIT
+ * is blocked post-VMXON, and SIPIs are ignored.
+ */
+ if (kvm_cpu_has_injectable_intr(vcpu) || vcpu->arch.nmi_pending)
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
return;
}
@@ -4606,6 +5227,7 @@ void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
{
+ kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
}
@@ -4681,11 +5303,12 @@ int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
else
*ret = off;
+ *ret = vmx_get_untagged_addr(vcpu, *ret, 0);
/* Long mode: #GP(0)/#SS(0) if the memory address is in a
* non-canonical form. This is the only check on the memory
* destination for long mode!
*/
- exn = is_noncanonical_address(*ret, vcpu);
+ exn = is_noncanonical_address(*ret, vcpu, 0);
} else {
/*
* When not in long mode, the virtual/linear address is
@@ -4739,27 +5362,6 @@ int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
return 0;
}
-void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx;
-
- if (!nested_vmx_allowed(vcpu))
- return;
-
- vmx = to_vmx(vcpu);
- if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
- vmx->nested.msrs.entry_ctls_high |=
- VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
- vmx->nested.msrs.exit_ctls_high |=
- VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
- } else {
- vmx->nested.msrs.entry_ctls_high &=
- ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
- vmx->nested.msrs.exit_ctls_high &=
- ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
- }
-}
-
static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
int *ret)
{
@@ -4794,18 +5396,20 @@ static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
/*
- * We should allocate a shadow vmcs for vmcs01 only when L1
- * executes VMXON and free it when L1 executes VMXOFF.
- * As it is invalid to execute VMXON twice, we shouldn't reach
- * here when vmcs01 already have an allocated shadow vmcs.
+ * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
+ * when L1 executes VMXOFF or the vCPU is forced out of nested
+ * operation. VMXON faults if the CPU is already post-VMXON, so it
+ * should be impossible to already have an allocated shadow VMCS. KVM
+ * doesn't support virtualization of VMCS shadowing, so vmcs01 should
+ * always be the loaded VMCS.
*/
- WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
+ if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
+ return loaded_vmcs->shadow_vmcs;
+
+ loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
+ if (loaded_vmcs->shadow_vmcs)
+ vmcs_clear(loaded_vmcs->shadow_vmcs);
- if (!loaded_vmcs->shadow_vmcs) {
- loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
- if (loaded_vmcs->shadow_vmcs)
- vmcs_clear(loaded_vmcs->shadow_vmcs);
- }
return loaded_vmcs->shadow_vmcs;
}
@@ -4822,6 +5426,7 @@ static int enter_vmx_operation(struct kvm_vcpu *vcpu)
if (!vmx->nested.cached_vmcs12)
goto out_cached_vmcs12;
+ vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
if (!vmx->nested.cached_shadow_vmcs12)
goto out_cached_shadow_vmcs12;
@@ -4829,9 +5434,8 @@ static int enter_vmx_operation(struct kvm_vcpu *vcpu)
if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
goto out_shadow_vmcs;
- hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
- HRTIMER_MODE_ABS_PINNED);
- vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
+ hrtimer_setup(&vmx->nested.preemption_timer, vmx_preemption_timer_fn, CLOCK_MONOTONIC,
+ HRTIMER_MODE_ABS_PINNED);
vmx->nested.vpid02 = allocate_vpid();
@@ -4858,15 +5462,8 @@ out_vmcs02:
return -ENOMEM;
}
-/*
- * Emulate the VMXON instruction.
- * Currently, we just remember that VMX is active, and do not save or even
- * inspect the argument to VMXON (the so-called "VMXON pointer") because we
- * do not currently need to store anything in that guest-allocated memory
- * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
- * argument is different from the VMXON pointer (which the spec says they do).
- */
-static int handle_vmon(struct kvm_vcpu *vcpu)
+/* Emulate the VMXON instruction. */
+static int handle_vmxon(struct kvm_vcpu *vcpu)
{
int ret;
gpa_t vmptr;
@@ -4876,20 +5473,36 @@ static int handle_vmon(struct kvm_vcpu *vcpu)
| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
/*
- * The Intel VMX Instruction Reference lists a bunch of bits that are
- * prerequisite to running VMXON, most notably cr4.VMXE must be set to
- * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
- * Otherwise, we should fail with #UD. But most faulting conditions
- * have already been checked by hardware, prior to the VM-exit for
- * VMXON. We do test guest cr4.VMXE because processor CR4 always has
- * that bit set to 1 in non-root mode.
+ * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
+ * the guest and so cannot rely on hardware to perform the check,
+ * which has higher priority than VM-Exit (see Intel SDM's pseudocode
+ * for VMXON).
+ *
+ * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
+ * and !COMPATIBILITY modes. For an unrestricted guest, KVM doesn't
+ * force any of the relevant guest state. For a restricted guest, KVM
+ * does force CR0.PE=1, but only to also force VM86 in order to emulate
+ * Real Mode, and so there's no need to check CR0.PE manually.
*/
- if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
+ if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
- /* CPL=0 must be checked manually. */
+ /*
+ * The CPL is checked for "not in VMX operation" and for "in VMX root",
+ * and has higher priority than the VM-Fail due to being post-VMXON,
+ * i.e. VMXON #GPs outside of VMX non-root if CPL!=0. In VMX non-root,
+ * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
+ * from L2 to L1, i.e. there's no need to check for the vCPU being in
+ * VMX non-root.
+ *
+ * Forwarding the VM-Exit unconditionally, i.e. without performing the
+ * #UD checks (see above), is functionally ok because KVM doesn't allow
+ * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
+ * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
+ * missed by hardware due to shadowing CR0 and/or CR4.
+ */
if (vmx_get_cpl(vcpu)) {
kvm_inject_gp(vcpu, 0);
return 1;
@@ -4898,6 +5511,17 @@ static int handle_vmon(struct kvm_vcpu *vcpu)
if (vmx->nested.vmxon)
return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
+ /*
+ * Invalid CR0/CR4 generates #GP. These checks are performed if and
+ * only if the vCPU isn't already in VMX operation, i.e. effectively
+ * have lower priority than the VM-Fail above.
+ */
+ if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
+ !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
!= VMXON_NEEDED_FEATURES) {
kvm_inject_gp(vcpu, 0);
@@ -4934,7 +5558,7 @@ static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
- if (vmx->nested.current_vmptr == -1ull)
+ if (vmx->nested.current_vmptr == INVALID_GPA)
return;
copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
@@ -4952,21 +5576,21 @@ static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
vmx->nested.current_vmptr >> PAGE_SHIFT,
vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
- kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
+ kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
- vmx->nested.current_vmptr = -1ull;
+ vmx->nested.current_vmptr = INVALID_GPA;
}
/* Emulate the VMXOFF instruction */
-static int handle_vmoff(struct kvm_vcpu *vcpu)
+static int handle_vmxoff(struct kvm_vcpu *vcpu)
{
if (!nested_vmx_check_permission(vcpu))
return 1;
free_nested(vcpu);
- /* Process a latched INIT during time CPU was in VMX operation */
- kvm_make_request(KVM_REQ_EVENT, vcpu);
+ if (kvm_apic_has_pending_init_or_sipi(vcpu))
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
return nested_vmx_succeed(vcpu);
}
@@ -4977,7 +5601,6 @@ static int handle_vmclear(struct kvm_vcpu *vcpu)
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 zero = 0;
gpa_t vmptr;
- u64 evmcs_gpa;
int r;
if (!nested_vmx_check_permission(vcpu))
@@ -4992,27 +5615,23 @@ static int handle_vmclear(struct kvm_vcpu *vcpu)
if (vmptr == vmx->nested.vmxon_ptr)
return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
- /*
- * When Enlightened VMEntry is enabled on the calling CPU we treat
- * memory area pointer by vmptr as Enlightened VMCS (as there's no good
- * way to distinguish it from VMCS12) and we must not corrupt it by
- * writing to the non-existent 'launch_state' field. The area doesn't
- * have to be the currently active EVMCS on the calling CPU and there's
- * nothing KVM has to do to transition it from 'active' to 'non-active'
- * state. It is possible that the area will stay mapped as
- * vmx->nested.hv_evmcs but this shouldn't be a problem.
- */
- if (likely(!vmx->nested.enlightened_vmcs_enabled ||
- !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
+ if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) {
if (vmptr == vmx->nested.current_vmptr)
nested_release_vmcs12(vcpu);
- kvm_vcpu_write_guest(vcpu,
- vmptr + offsetof(struct vmcs12,
- launch_state),
- &zero, sizeof(zero));
- } else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
- nested_release_evmcs(vcpu);
+ /*
+ * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
+ * for VMCLEAR includes a "ensure that data for VMCS referenced
+ * by the operand is in memory" clause that guards writes to
+ * memory, i.e. doing nothing for I/O is architecturally valid.
+ *
+ * FIXME: Suppress failures if and only if no memslot is found,
+ * i.e. exit to userspace if __copy_to_user() fails.
+ */
+ (void)kvm_vcpu_write_guest(vcpu,
+ vmptr + offsetof(struct vmcs12,
+ launch_state),
+ &zero, sizeof(zero));
}
return nested_vmx_succeed(vcpu);
@@ -5048,27 +5667,49 @@ static int handle_vmread(struct kvm_vcpu *vcpu)
if (!nested_vmx_check_permission(vcpu))
return 1;
- /*
- * In VMX non-root operation, when the VMCS-link pointer is -1ull,
- * any VMREAD sets the ALU flags for VMfailInvalid.
- */
- if (vmx->nested.current_vmptr == -1ull ||
- (is_guest_mode(vcpu) &&
- get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
- return nested_vmx_failInvalid(vcpu);
-
/* Decode instruction info and find the field to read */
field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
- offset = vmcs_field_to_offset(field);
- if (offset < 0)
- return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+ if (!nested_vmx_is_evmptr12_valid(vmx)) {
+ /*
+ * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
+ * any VMREAD sets the ALU flags for VMfailInvalid.
+ */
+ if (vmx->nested.current_vmptr == INVALID_GPA ||
+ (is_guest_mode(vcpu) &&
+ get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
+ return nested_vmx_failInvalid(vcpu);
- if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
- copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
+ offset = get_vmcs12_field_offset(field);
+ if (offset < 0)
+ return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+
+ if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
+ copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
- /* Read the field, zero-extended to a u64 value */
- value = vmcs12_read_any(vmcs12, field, offset);
+ /* Read the field, zero-extended to a u64 value */
+ value = vmcs12_read_any(vmcs12, field, offset);
+ } else {
+ /*
+ * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
+ * enlightened VMCS is active VMREAD/VMWRITE instructions are
+ * unsupported. Unfortunately, certain versions of Windows 11
+ * don't comply with this requirement which is not enforced in
+ * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
+ * workaround, as misbehaving guests will panic on VM-Fail.
+ * Note, enlightened VMCS is incompatible with shadow VMCS so
+ * all VMREADs from L2 should go to L1.
+ */
+ if (WARN_ON_ONCE(is_guest_mode(vcpu)))
+ return nested_vmx_failInvalid(vcpu);
+
+ offset = evmcs_field_offset(field, NULL);
+ if (offset < 0)
+ return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+
+ /* Read the field, zero-extended to a u64 value */
+ value = evmcs_read_any(nested_vmx_evmcs(vmx), field, offset);
+ }
/*
* Now copy part of this value to register or memory, as requested.
@@ -5141,12 +5782,12 @@ static int handle_vmwrite(struct kvm_vcpu *vcpu)
return 1;
/*
- * In VMX non-root operation, when the VMCS-link pointer is -1ull,
+ * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
* any VMWRITE sets the ALU flags for VMfailInvalid.
*/
- if (vmx->nested.current_vmptr == -1ull ||
+ if (vmx->nested.current_vmptr == INVALID_GPA ||
(is_guest_mode(vcpu) &&
- get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
+ get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
return nested_vmx_failInvalid(vcpu);
if (instr_info & BIT(10))
@@ -5163,7 +5804,7 @@ static int handle_vmwrite(struct kvm_vcpu *vcpu)
field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
- offset = vmcs_field_to_offset(field);
+ offset = get_vmcs12_field_offset(field);
if (offset < 0)
return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
@@ -5232,6 +5873,7 @@ static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
vmx->nested.need_vmcs12_to_shadow_sync = true;
}
vmx->nested.dirty_vmcs12 = true;
+ vmx->nested.force_msr_bitmap_recalc = true;
}
/* Emulate the VMPTRLD instruction */
@@ -5254,14 +5896,14 @@ static int handle_vmptrld(struct kvm_vcpu *vcpu)
return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
/* Forbid normal VMPTRLD if Enlightened version was used */
- if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
+ if (nested_vmx_is_evmptr12_valid(vmx))
return 1;
if (vmx->nested.current_vmptr != vmptr) {
- struct kvm_host_map map;
- struct vmcs12 *new_vmcs12;
+ struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
+ struct vmcs_hdr hdr;
- if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
+ if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
/*
* Reads from an unbacked page return all 1s,
* which means that the 32 bits located at the
@@ -5272,12 +5914,16 @@ static int handle_vmptrld(struct kvm_vcpu *vcpu)
VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
}
- new_vmcs12 = map.hva;
+ if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
+ offsetof(struct vmcs12, hdr),
+ sizeof(hdr))) {
+ return nested_vmx_fail(vcpu,
+ VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
+ }
- if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
- (new_vmcs12->hdr.shadow_vmcs &&
+ if (hdr.revision_id != VMCS12_REVISION ||
+ (hdr.shadow_vmcs &&
!nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
- kvm_vcpu_unmap(vcpu, &map, false);
return nested_vmx_fail(vcpu,
VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
}
@@ -5288,8 +5934,11 @@ static int handle_vmptrld(struct kvm_vcpu *vcpu)
* Load VMCS12 from guest memory since it is not already
* cached.
*/
- memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
- kvm_vcpu_unmap(vcpu, &map, false);
+ if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
+ VMCS12_SIZE)) {
+ return nested_vmx_fail(vcpu,
+ VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
+ }
set_current_vmptr(vmx, vmptr);
}
@@ -5310,7 +5959,7 @@ static int handle_vmptrst(struct kvm_vcpu *vcpu)
if (!nested_vmx_check_permission(vcpu))
return 1;
- if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
+ if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu))))
return 1;
if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
@@ -5325,14 +5974,6 @@ static int handle_vmptrst(struct kvm_vcpu *vcpu)
return nested_vmx_succeed(vcpu);
}
-#define EPTP_PA_MASK GENMASK_ULL(51, 12)
-
-static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
-{
- return VALID_PAGE(root_hpa) &&
- ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
-}
-
/* Emulate the INVEPT instruction */
static int handle_invept(struct kvm_vcpu *vcpu)
{
@@ -5345,7 +5986,7 @@ static int handle_invept(struct kvm_vcpu *vcpu)
struct {
u64 eptp, gpa;
} operand;
- int i, r;
+ int i, r, gpr_index;
if (!(vmx->nested.msrs.secondary_ctls_high &
SECONDARY_EXEC_ENABLE_EPT) ||
@@ -5358,7 +5999,8 @@ static int handle_invept(struct kvm_vcpu *vcpu)
return 1;
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
- type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
+ gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
+ type = kvm_register_read(vcpu, gpr_index);
types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
@@ -5388,7 +6030,7 @@ static int handle_invept(struct kvm_vcpu *vcpu)
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
roots_to_free = 0;
- if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
+ if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
operand.eptp))
roots_to_free |= KVM_MMU_ROOT_CURRENT;
@@ -5408,7 +6050,7 @@ static int handle_invept(struct kvm_vcpu *vcpu)
}
if (roots_to_free)
- kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
+ kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
return nested_vmx_succeed(vcpu);
}
@@ -5425,7 +6067,7 @@ static int handle_invvpid(struct kvm_vcpu *vcpu)
u64 gla;
} operand;
u16 vpid02;
- int r;
+ int r, gpr_index;
if (!(vmx->nested.msrs.secondary_ctls_high &
SECONDARY_EXEC_ENABLE_VPID) ||
@@ -5438,7 +6080,8 @@ static int handle_invvpid(struct kvm_vcpu *vcpu)
return 1;
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
- type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
+ gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
+ type = kvm_register_read(vcpu, gpr_index);
types = (vmx->nested.msrs.vpid_caps &
VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
@@ -5461,11 +6104,21 @@ static int handle_invvpid(struct kvm_vcpu *vcpu)
return nested_vmx_fail(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+ /*
+ * Always flush the effective vpid02, i.e. never flush the current VPID
+ * and never explicitly flush vpid01. INVVPID targets a VPID, not a
+ * VMCS, and so whether or not the current vmcs12 has VPID enabled is
+ * irrelevant (and there may not be a loaded vmcs12).
+ */
vpid02 = nested_get_vpid02(vcpu);
switch (type) {
case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
+ /*
+ * LAM doesn't apply to addresses that are inputs to TLB
+ * invalidation.
+ */
if (!operand.vpid ||
- is_noncanonical_address(operand.gla, vcpu))
+ is_noncanonical_invlpg_address(operand.gla, vcpu))
return nested_vmx_fail(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
vpid_sync_vcpu_addr(vpid02, operand.gla);
@@ -5496,7 +6149,7 @@ static int handle_invvpid(struct kvm_vcpu *vcpu)
* TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
*/
if (!enable_ept)
- kvm_mmu_free_guest_mode_roots(vcpu, &vcpu->arch.root_mmu);
+ kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
return nested_vmx_succeed(vcpu);
}
@@ -5541,11 +6194,10 @@ static int handle_vmfunc(struct kvm_vcpu *vcpu)
u32 function = kvm_rax_read(vcpu);
/*
- * VMFUNC is only supported for nested guests, but we always enable the
- * secondary control for simplicity; for non-nested mode, fake that we
- * didn't by injecting #UD.
+ * VMFUNC should never execute cleanly while L1 is active; KVM supports
+ * VMFUNC for nested VMs, but not for L1.
*/
- if (!is_guest_mode(vcpu)) {
+ if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
@@ -5580,7 +6232,7 @@ fail:
* nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
* EXIT_REASON_VMFUNC as the exit reason.
*/
- nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
+ nested_vmx_vmexit(vcpu, vmx->vt.exit_reason.full,
vmx_get_intr_info(vcpu),
vmx_get_exit_qual(vcpu));
return 1;
@@ -5597,7 +6249,7 @@ bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
gpa_t bitmap, last_bitmap;
u8 b;
- last_bitmap = (gpa_t)-1;
+ last_bitmap = INVALID_GPA;
b = -1;
while (size > 0) {
@@ -5651,19 +6303,26 @@ static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12,
union vmx_exit_reason exit_reason)
{
- u32 msr_index = kvm_rcx_read(vcpu);
+ u32 msr_index;
gpa_t bitmap;
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
return true;
+ if (exit_reason.basic == EXIT_REASON_MSR_READ_IMM ||
+ exit_reason.basic == EXIT_REASON_MSR_WRITE_IMM)
+ msr_index = vmx_get_exit_qual(vcpu);
+ else
+ msr_index = kvm_rcx_read(vcpu);
+
/*
* The MSR_BITMAP page is divided into four 1024-byte bitmaps,
* for the four combinations of read/write and low/high MSR numbers.
* First we need to figure out which of the four to use:
*/
bitmap = vmcs12->msr_bitmap;
- if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
+ if (exit_reason.basic == EXIT_REASON_MSR_WRITE ||
+ exit_reason.basic == EXIT_REASON_MSR_WRITE_IMM)
bitmap += 2048;
if (msr_index >= 0xc0000000) {
msr_index -= 0xc0000000;
@@ -5760,7 +6419,7 @@ static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
{
u32 encls_leaf;
- if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
+ if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX) ||
!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
return false;
@@ -5826,7 +6485,8 @@ static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
if (is_nmi(intr_info))
return true;
else if (is_page_fault(intr_info))
- return vcpu->arch.apf.host_apf_flags || !enable_ept;
+ return vcpu->arch.apf.host_apf_flags ||
+ vmx_need_pf_intercept(vcpu);
else if (is_debug(intr_info) &&
vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
@@ -5837,6 +6497,8 @@ static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
else if (is_alignment_check(intr_info) &&
!vmx_guest_inject_ac(vcpu))
return true;
+ else if (is_ve_fault(intr_info))
+ return true;
return false;
case EXIT_REASON_EXTERNAL_INTERRUPT:
return true;
@@ -5869,6 +6531,19 @@ static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
case EXIT_REASON_VMFUNC:
/* VM functions are emulated through L2->L0 vmexits. */
return true;
+ case EXIT_REASON_BUS_LOCK:
+ /*
+ * At present, bus lock VM exit is never exposed to L1.
+ * Handle L2's bus locks in L0 directly.
+ */
+ return true;
+#ifdef CONFIG_KVM_HYPERV
+ case EXIT_REASON_VMCALL:
+ /* Hyper-V L2 TLB flush hypercall is handled by L0 */
+ return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
+ nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
+ kvm_hv_is_tlb_flush_hcall(vcpu);
+#endif
default:
break;
}
@@ -5946,6 +6621,8 @@ static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
case EXIT_REASON_MSR_READ:
case EXIT_REASON_MSR_WRITE:
+ case EXIT_REASON_MSR_READ_IMM:
+ case EXIT_REASON_MSR_WRITE_IMM:
return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
case EXIT_REASON_INVALID_STATE:
return true;
@@ -5980,20 +6657,34 @@ static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
case EXIT_REASON_XSETBV:
return true;
- case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
+ case EXIT_REASON_XSAVES:
+ case EXIT_REASON_XRSTORS:
/*
- * This should never happen, since it is not possible to
- * set XSS to a non-zero value---neither in L1 nor in L2.
- * If if it were, XSS would have to be checked against
- * the XSS exit bitmap in vmcs12.
+ * Always forward XSAVES/XRSTORS to L1 as KVM doesn't utilize
+ * XSS-bitmap, and always loads vmcs02 with vmcs12's XSS-bitmap
+ * verbatim, i.e. any exit is due to L1's bitmap. WARN if
+ * XSAVES isn't enabled, as the CPU is supposed to inject #UD
+ * in that case, before consulting the XSS-bitmap.
*/
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
+ WARN_ON_ONCE(!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES));
+ return true;
case EXIT_REASON_UMWAIT:
case EXIT_REASON_TPAUSE:
return nested_cpu_has2(vmcs12,
SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
case EXIT_REASON_ENCLS:
return nested_vmx_exit_handled_encls(vcpu, vmcs12);
+ case EXIT_REASON_NOTIFY:
+ /* Notify VM exit is not exposed to L1 */
+ return false;
+ case EXIT_REASON_SEAMCALL:
+ case EXIT_REASON_TDCALL:
+ /*
+ * SEAMCALL and TDCALL unconditionally VM-Exit, but aren't
+ * virtualized by KVM for L1 hypervisors, i.e. L1 should
+ * never want or expect such an exit.
+ */
+ return false;
default:
return true;
}
@@ -6006,7 +6697,7 @@ static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
- union vmx_exit_reason exit_reason = vmx->exit_reason;
+ union vmx_exit_reason exit_reason = vmx->vt.exit_reason;
unsigned long exit_qual;
u32 exit_intr_info;
@@ -6025,7 +6716,7 @@ bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
goto reflect_vmexit;
}
- trace_kvm_nested_vmexit(exit_reason.full, vcpu, KVM_ISA_VMX);
+ trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
/* If L0 (KVM) wants the exit, it trumps L1's desires. */
if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
@@ -6066,8 +6757,8 @@ static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
.format = KVM_STATE_NESTED_FORMAT_VMX,
.size = sizeof(kvm_state),
.hdr.vmx.flags = 0,
- .hdr.vmx.vmxon_pa = -1ull,
- .hdr.vmx.vmcs12_pa = -1ull,
+ .hdr.vmx.vmxon_pa = INVALID_GPA,
+ .hdr.vmx.vmcs12_pa = INVALID_GPA,
.hdr.vmx.preemption_timer_deadline = 0,
};
struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
@@ -6079,7 +6770,7 @@ static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
vmx = to_vmx(vcpu);
vmcs12 = get_vmcs12(vcpu);
- if (nested_vmx_allowed(vcpu) &&
+ if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX) &&
(vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
@@ -6088,12 +6779,12 @@ static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
/* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
- if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
+ if (nested_vmx_is_evmptr12_set(vmx))
kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
if (is_guest_mode(vcpu) &&
nested_cpu_has_shadow_vmcs(vmcs12) &&
- vmcs12->vmcs_link_pointer != -1ull)
+ vmcs12->vmcs_link_pointer != INVALID_GPA)
kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
}
@@ -6144,7 +6835,7 @@ static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
} else {
copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
if (!vmx->nested.need_vmcs12_to_shadow_sync) {
- if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
+ if (nested_vmx_is_evmptr12_valid(vmx))
/*
* L1 hypervisor is not obliged to keep eVMCS
* clean fields data always up-to-date while
@@ -6169,7 +6860,7 @@ static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
return -EFAULT;
if (nested_cpu_has_shadow_vmcs(vmcs12) &&
- vmcs12->vmcs_link_pointer != -1ull) {
+ vmcs12->vmcs_link_pointer != INVALID_GPA) {
if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
get_shadow_vmcs12(vcpu), VMCS12_SIZE))
return -EFAULT;
@@ -6178,9 +6869,6 @@ out:
return kvm_state.size;
}
-/*
- * Forcibly leave nested mode in order to be able to reset the VCPU later on.
- */
void vmx_leave_nested(struct kvm_vcpu *vcpu)
{
if (is_guest_mode(vcpu)) {
@@ -6204,11 +6892,11 @@ static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
return -EINVAL;
- if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
+ if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
if (kvm_state->hdr.vmx.smm.flags)
return -EINVAL;
- if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
+ if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
return -EINVAL;
/*
@@ -6217,13 +6905,13 @@ static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
* code was changed such that flag signals vmcs12 should
* be copied into eVMCS in guest memory.
*
- * To preserve backwards compatability, allow user
+ * To preserve backwards compatibility, allow user
* to set this flag even when there is no VMXON region.
*/
if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
return -EINVAL;
} else {
- if (!nested_vmx_allowed(vcpu))
+ if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
return -EINVAL;
if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
@@ -6257,12 +6945,13 @@ static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
return -EINVAL;
if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
- (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
+ (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX) ||
+ !vmx->nested.enlightened_vmcs_enabled))
return -EINVAL;
vmx_leave_nested(vcpu);
- if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
+ if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
return 0;
vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
@@ -6275,18 +6964,19 @@ static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
/* See vmx_has_valid_vmcs12. */
if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
(kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
- (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
+ (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
return -EINVAL;
else
return 0;
}
- if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
+ if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
!page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
return -EINVAL;
set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
+#ifdef CONFIG_KVM_HYPERV
} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
/*
* nested_vmx_handle_enlightened_vmptrld() cannot be called
@@ -6296,6 +6986,7 @@ static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
*/
vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
+#endif
} else {
return -EINVAL;
}
@@ -6326,7 +7017,7 @@ static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
ret = -EINVAL;
if (nested_cpu_has_shadow_vmcs(vmcs12) &&
- vmcs12->vmcs_link_pointer != -1ull) {
+ vmcs12->vmcs_link_pointer != INVALID_GPA) {
struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
if (kvm_state->size <
@@ -6359,10 +7050,14 @@ static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
goto error_guest_mode;
vmx->nested.dirty_vmcs12 = true;
+ vmx->nested.force_msr_bitmap_recalc = true;
ret = nested_vmx_enter_non_root_mode(vcpu, false);
if (ret)
goto error_guest_mode;
+ if (vmx->nested.mtf_pending)
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
return 0;
error_guest_mode:
@@ -6401,7 +7096,7 @@ static u64 nested_vmx_calc_vmcs_enum_msr(void)
max_idx = 0;
for (i = 0; i < nr_vmcs12_fields; i++) {
/* The vmcs12 table is very, very sparsely populated. */
- if (!vmcs_field_to_offset_table[i])
+ if (!vmcs12_field_offsets[i])
continue;
idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
@@ -6412,39 +7107,13 @@ static u64 nested_vmx_calc_vmcs_enum_msr(void)
return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
}
-/*
- * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
- * returned for the various VMX controls MSRs when nested VMX is enabled.
- * The same values should also be used to verify that vmcs12 control fields are
- * valid during nested entry from L1 to L2.
- * Each of these control msrs has a low and high 32-bit half: A low bit is on
- * if the corresponding bit in the (32-bit) control field *must* be on, and a
- * bit in the high half is on if the corresponding bit in the control field
- * may be on. See also vmx_control_verify().
- */
-void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
+static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
+ struct nested_vmx_msrs *msrs)
{
- /*
- * Note that as a general rule, the high half of the MSRs (bits in
- * the control fields which may be 1) should be initialized by the
- * intersection of the underlying hardware's MSR (i.e., features which
- * can be supported) and the list of features we want to expose -
- * because they are known to be properly supported in our code.
- * Also, usually, the low half of the MSRs (bits which must be 1) can
- * be set to 0, meaning that L1 may turn off any of these bits. The
- * reason is that if one of these bits is necessary, it will appear
- * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
- * fields of vmcs01 and vmcs02, will turn these bits off - and
- * nested_vmx_l1_wants_exit() will not pass related exits to L1.
- * These rules have exceptions below.
- */
-
- /* pin-based controls */
- rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
- msrs->pinbased_ctls_low,
- msrs->pinbased_ctls_high);
- msrs->pinbased_ctls_low |=
+ msrs->pinbased_ctls_low =
PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+
+ msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
msrs->pinbased_ctls_high &=
PIN_BASED_EXT_INTR_MASK |
PIN_BASED_NMI_EXITING |
@@ -6453,52 +7122,67 @@ void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
msrs->pinbased_ctls_high |=
PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
PIN_BASED_VMX_PREEMPTION_TIMER;
+}
- /* exit controls */
- rdmsr(MSR_IA32_VMX_EXIT_CTLS,
- msrs->exit_ctls_low,
- msrs->exit_ctls_high);
+static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
+ struct nested_vmx_msrs *msrs)
+{
msrs->exit_ctls_low =
VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
+ msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
msrs->exit_ctls_high &=
#ifdef CONFIG_X86_64
VM_EXIT_HOST_ADDR_SPACE_SIZE |
#endif
VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
- VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
+ VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_CET_STATE;
msrs->exit_ctls_high |=
VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
- VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
+ VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
+ VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
+
+ if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
+ !kvm_cpu_cap_has(X86_FEATURE_IBT))
+ msrs->exit_ctls_high &= ~VM_EXIT_LOAD_CET_STATE;
/* We support free control of debug control saving. */
msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
+}
- /* entry controls */
- rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
- msrs->entry_ctls_low,
- msrs->entry_ctls_high);
+static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
+ struct nested_vmx_msrs *msrs)
+{
msrs->entry_ctls_low =
VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
+
+ msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
msrs->entry_ctls_high &=
#ifdef CONFIG_X86_64
VM_ENTRY_IA32E_MODE |
#endif
VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
- VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
+ VM_ENTRY_LOAD_CET_STATE;
msrs->entry_ctls_high |=
- (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
+ (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
+ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
+
+ if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
+ !kvm_cpu_cap_has(X86_FEATURE_IBT))
+ msrs->entry_ctls_high &= ~VM_ENTRY_LOAD_CET_STATE;
/* We support free control of debug control loading. */
msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
+}
- /* cpu-based controls */
- rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
- msrs->procbased_ctls_low,
- msrs->procbased_ctls_high);
+static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
+ struct nested_vmx_msrs *msrs)
+{
msrs->procbased_ctls_low =
CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+
+ msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
msrs->procbased_ctls_high &=
CPU_BASED_INTR_WINDOW_EXITING |
CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
@@ -6526,18 +7210,15 @@ void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
/* We support free control of CR3 access interception. */
msrs->procbased_ctls_low &=
~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
+}
- /*
- * secondary cpu-based controls. Do not include those that
- * depend on CPUID bits, they are added later by
- * vmx_vcpu_after_set_cpuid.
- */
- if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
- rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
- msrs->secondary_ctls_low,
- msrs->secondary_ctls_high);
-
+static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
+ struct vmcs_config *vmcs_conf,
+ struct nested_vmx_msrs *msrs)
+{
msrs->secondary_ctls_low = 0;
+
+ msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
msrs->secondary_ctls_high &=
SECONDARY_EXEC_DESC |
SECONDARY_EXEC_ENABLE_RDTSCP |
@@ -6547,9 +7228,11 @@ void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
SECONDARY_EXEC_RDRAND_EXITING |
SECONDARY_EXEC_ENABLE_INVPCID |
+ SECONDARY_EXEC_ENABLE_VMFUNC |
SECONDARY_EXEC_RDSEED_EXITING |
- SECONDARY_EXEC_XSAVES |
- SECONDARY_EXEC_TSC_SCALING;
+ SECONDARY_EXEC_ENABLE_XSAVES |
+ SECONDARY_EXEC_TSC_SCALING |
+ SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
/*
* We can emulate "VMCS shadowing," even if the hardware
@@ -6578,18 +7261,13 @@ void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
SECONDARY_EXEC_ENABLE_PML;
msrs->ept_caps |= VMX_EPT_AD_BIT;
}
- }
- if (cpu_has_vmx_vmfunc()) {
- msrs->secondary_ctls_high |=
- SECONDARY_EXEC_ENABLE_VMFUNC;
/*
- * Advertise EPTP switching unconditionally
- * since we emulate it
+ * Advertise EPTP switching irrespective of hardware support,
+ * KVM emulates it in software so long as VMFUNC is supported.
*/
- if (enable_ept)
- msrs->vmfunc_controls =
- VMX_VMFUNC_EPTP_SWITCHING;
+ if (cpu_has_vmx_vmfunc())
+ msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
}
/*
@@ -6615,34 +7293,40 @@ void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
if (enable_sgx)
msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
+}
- /* miscellaneous data */
- rdmsr(MSR_IA32_VMX_MISC,
- msrs->misc_low,
- msrs->misc_high);
- msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
+static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
+ struct nested_vmx_msrs *msrs)
+{
+ msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
msrs->misc_low |=
- MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
+ VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
VMX_MISC_ACTIVITY_HLT |
VMX_MISC_ACTIVITY_WAIT_SIPI;
msrs->misc_high = 0;
+}
+static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
+{
/*
* This MSR reports some information about VMX support. We
* should return information about the VMX we emulate for the
* guest, and the VMCS structure we give it - not about the
* VMX support of the underlying hardware.
*/
- msrs->basic =
- VMCS12_REVISION |
- VMX_BASIC_TRUE_CTLS |
- ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
- (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
+ msrs->basic = vmx_basic_encode_vmcs_info(VMCS12_REVISION, VMCS12_SIZE,
+ X86_MEMTYPE_WB);
+ msrs->basic |= VMX_BASIC_TRUE_CTLS;
if (cpu_has_vmx_basic_inout())
msrs->basic |= VMX_BASIC_INOUT;
+ if (cpu_has_vmx_basic_no_hw_errcode_cc())
+ msrs->basic |= VMX_BASIC_NO_HW_ERROR_CODE_CC;
+}
+static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
+{
/*
* These MSRs specify bits which the guest must keep fixed on
* while L1 is in VMXON mode (in L1's root mode, or running an L2).
@@ -6654,8 +7338,56 @@ void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
/* These MSRs specify bits which the guest must keep fixed off. */
- rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
- rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
+ rdmsrq(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
+ rdmsrq(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
+
+ if (vmx_umip_emulated())
+ msrs->cr4_fixed1 |= X86_CR4_UMIP;
+}
+
+/*
+ * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
+ * returned for the various VMX controls MSRs when nested VMX is enabled.
+ * The same values should also be used to verify that vmcs12 control fields are
+ * valid during nested entry from L1 to L2.
+ * Each of these control msrs has a low and high 32-bit half: A low bit is on
+ * if the corresponding bit in the (32-bit) control field *must* be on, and a
+ * bit in the high half is on if the corresponding bit in the control field
+ * may be on. See also vmx_control_verify().
+ */
+void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
+{
+ struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
+
+ /*
+ * Note that as a general rule, the high half of the MSRs (bits in
+ * the control fields which may be 1) should be initialized by the
+ * intersection of the underlying hardware's MSR (i.e., features which
+ * can be supported) and the list of features we want to expose -
+ * because they are known to be properly supported in our code.
+ * Also, usually, the low half of the MSRs (bits which must be 1) can
+ * be set to 0, meaning that L1 may turn off any of these bits. The
+ * reason is that if one of these bits is necessary, it will appear
+ * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
+ * fields of vmcs01 and vmcs02, will turn these bits off - and
+ * nested_vmx_l1_wants_exit() will not pass related exits to L1.
+ * These rules have exceptions below.
+ */
+ nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
+
+ nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
+
+ nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
+
+ nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
+
+ nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
+
+ nested_vmx_setup_misc_data(vmcs_conf, msrs);
+
+ nested_vmx_setup_basic(msrs);
+
+ nested_vmx_setup_cr_fixed(msrs);
msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
}
@@ -6700,8 +7432,8 @@ __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
- exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff;
- exit_handlers[EXIT_REASON_VMON] = handle_vmon;
+ exit_handlers[EXIT_REASON_VMOFF] = handle_vmxoff;
+ exit_handlers[EXIT_REASON_VMON] = handle_vmxon;
exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
@@ -6710,13 +7442,18 @@ __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
}
struct kvm_x86_nested_ops vmx_nested_ops = {
+ .leave_nested = vmx_leave_nested,
+ .is_exception_vmexit = nested_vmx_is_exception_vmexit,
.check_events = vmx_check_nested_events,
- .hv_timer_pending = nested_vmx_preemption_timer_pending,
+ .has_events = vmx_has_nested_events,
.triple_fault = nested_vmx_triple_fault,
.get_state = vmx_get_nested_state,
.set_state = vmx_set_nested_state,
.get_nested_state_pages = vmx_get_nested_state_pages,
.write_log_dirty = nested_vmx_write_pml_buffer,
+#ifdef CONFIG_KVM_HYPERV
.enable_evmcs = nested_enable_evmcs,
.get_evmcs_version = nested_get_evmcs_version,
+ .hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
+#endif
};