diff options
Diffstat (limited to 'arch/x86/kvm/x86.h')
| -rw-r--r-- | arch/x86/kvm/x86.h | 511 |
1 files changed, 447 insertions, 64 deletions
diff --git a/arch/x86/kvm/x86.h b/arch/x86/kvm/x86.h index 6eb62e97e59f..fdab0ad49098 100644 --- a/arch/x86/kvm/x86.h +++ b/arch/x86/kvm/x86.h @@ -3,9 +3,96 @@ #define ARCH_X86_KVM_X86_H #include <linux/kvm_host.h> +#include <asm/fpu/xstate.h> +#include <asm/mce.h> #include <asm/pvclock.h> #include "kvm_cache_regs.h" #include "kvm_emulate.h" +#include "cpuid.h" + +#define KVM_MAX_MCE_BANKS 32 + +struct kvm_caps { + /* control of guest tsc rate supported? */ + bool has_tsc_control; + /* maximum supported tsc_khz for guests */ + u32 max_guest_tsc_khz; + /* number of bits of the fractional part of the TSC scaling ratio */ + u8 tsc_scaling_ratio_frac_bits; + /* maximum allowed value of TSC scaling ratio */ + u64 max_tsc_scaling_ratio; + /* 1ull << kvm_caps.tsc_scaling_ratio_frac_bits */ + u64 default_tsc_scaling_ratio; + /* bus lock detection supported? */ + bool has_bus_lock_exit; + /* notify VM exit supported? */ + bool has_notify_vmexit; + /* bit mask of VM types */ + u32 supported_vm_types; + + u64 supported_mce_cap; + u64 supported_xcr0; + u64 supported_xss; + u64 supported_perf_cap; + + u64 supported_quirks; + u64 inapplicable_quirks; +}; + +struct kvm_host_values { + /* + * The host's raw MAXPHYADDR, i.e. the number of non-reserved physical + * address bits irrespective of features that repurpose legal bits, + * e.g. MKTME. + */ + u8 maxphyaddr; + + u64 efer; + u64 xcr0; + u64 xss; + u64 s_cet; + u64 arch_capabilities; +}; + +void kvm_spurious_fault(void); + +#define SIZE_OF_MEMSLOTS_HASHTABLE \ + (sizeof(((struct kvm_memslots *)0)->id_hash) * 2 * KVM_MAX_NR_ADDRESS_SPACES) + +/* Sanity check the size of the memslot hash tables. */ +static_assert(SIZE_OF_MEMSLOTS_HASHTABLE == + (1024 * (1 + IS_ENABLED(CONFIG_X86_64)) * (1 + IS_ENABLED(CONFIG_KVM_SMM)))); + +/* + * Assert that "struct kvm_{svm,vmx,tdx}" is an order-0 or order-1 allocation. + * Spilling over to an order-2 allocation isn't fundamentally problematic, but + * isn't expected to happen in the foreseeable future (O(years)). Assert that + * the size is an order-0 allocation when ignoring the memslot hash tables, to + * help detect and debug unexpected size increases. + */ +#define KVM_SANITY_CHECK_VM_STRUCT_SIZE(x) \ +do { \ + BUILD_BUG_ON(get_order(sizeof(struct x) - SIZE_OF_MEMSLOTS_HASHTABLE) && \ + !IS_ENABLED(CONFIG_DEBUG_KERNEL) && !IS_ENABLED(CONFIG_KASAN)); \ + BUILD_BUG_ON(get_order(sizeof(struct x)) > 1 && \ + !IS_ENABLED(CONFIG_DEBUG_KERNEL) && !IS_ENABLED(CONFIG_KASAN)); \ +} while (0) + +#define KVM_NESTED_VMENTER_CONSISTENCY_CHECK(consistency_check) \ +({ \ + bool failed = (consistency_check); \ + if (failed) \ + trace_kvm_nested_vmenter_failed(#consistency_check, 0); \ + failed; \ +}) + +/* + * The first...last VMX feature MSRs that are emulated by KVM. This may or may + * not cover all known VMX MSRs, as KVM doesn't emulate an MSR until there's an + * associated feature that KVM supports for nested virtualization. + */ +#define KVM_FIRST_EMULATED_VMX_MSR MSR_IA32_VMX_BASIC +#define KVM_LAST_EMULATED_VMX_MSR MSR_IA32_VMX_VMFUNC #define KVM_DEFAULT_PLE_GAP 128 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096 @@ -15,6 +102,16 @@ #define KVM_SVM_DEFAULT_PLE_WINDOW_MAX USHRT_MAX #define KVM_SVM_DEFAULT_PLE_WINDOW 3000 +/* + * KVM's internal, non-ABI indices for synthetic MSRs. The values themselves + * are arbitrary and have no meaning, the only requirement is that they don't + * conflict with "real" MSRs that KVM supports. Use values at the upper end + * of KVM's reserved paravirtual MSR range to minimize churn, i.e. these values + * will be usable until KVM exhausts its supply of paravirtual MSR indices. + */ + +#define MSR_KVM_INTERNAL_GUEST_SSP 0x4b564dff + static inline unsigned int __grow_ple_window(unsigned int val, unsigned int base, unsigned int modifier, unsigned int max) { @@ -45,12 +142,60 @@ static inline unsigned int __shrink_ple_window(unsigned int val, return max(val, min); } -#define MSR_IA32_CR_PAT_DEFAULT 0x0007040600070406ULL +#define MSR_IA32_CR_PAT_DEFAULT \ + PAT_VALUE(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC) + +void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu); +int kvm_check_nested_events(struct kvm_vcpu *vcpu); + +/* Forcibly leave the nested mode in cases like a vCPU reset */ +static inline void kvm_leave_nested(struct kvm_vcpu *vcpu) +{ + kvm_x86_ops.nested_ops->leave_nested(vcpu); +} + +/* + * If IBRS is advertised to the vCPU, KVM must flush the indirect branch + * predictors when transitioning from L2 to L1, as L1 expects hardware (KVM in + * this case) to provide separate predictor modes. Bare metal isolates the host + * from the guest, but doesn't isolate different guests from one another (in + * this case L1 and L2). The exception is if bare metal supports same mode IBRS, + * which offers protection within the same mode, and hence protects L1 from L2. + */ +static inline void kvm_nested_vmexit_handle_ibrs(struct kvm_vcpu *vcpu) +{ + if (cpu_feature_enabled(X86_FEATURE_AMD_IBRS_SAME_MODE)) + return; + + if (guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) || + guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBRS)) + indirect_branch_prediction_barrier(); +} + +static inline bool kvm_vcpu_has_run(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.last_vmentry_cpu != -1; +} + +static inline void kvm_set_mp_state(struct kvm_vcpu *vcpu, int mp_state) +{ + vcpu->arch.mp_state = mp_state; + if (mp_state == KVM_MP_STATE_RUNNABLE) + vcpu->arch.pv.pv_unhalted = false; +} + +static inline bool kvm_is_exception_pending(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.exception.pending || + vcpu->arch.exception_vmexit.pending || + kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); +} static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu) { vcpu->arch.exception.pending = false; vcpu->arch.exception.injected = false; + vcpu->arch.exception_vmexit.pending = false; } static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector, @@ -79,15 +224,15 @@ static inline bool kvm_exception_is_soft(unsigned int nr) static inline bool is_protmode(struct kvm_vcpu *vcpu) { - return kvm_read_cr0_bits(vcpu, X86_CR0_PE); + return kvm_is_cr0_bit_set(vcpu, X86_CR0_PE); } -static inline int is_long_mode(struct kvm_vcpu *vcpu) +static inline bool is_long_mode(struct kvm_vcpu *vcpu) { #ifdef CONFIG_X86_64 - return vcpu->arch.efer & EFER_LMA; + return !!(vcpu->arch.efer & EFER_LMA); #else - return 0; + return false; #endif } @@ -95,20 +240,22 @@ static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu) { int cs_db, cs_l; + WARN_ON_ONCE(vcpu->arch.guest_state_protected); + if (!is_long_mode(vcpu)) return false; - kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); + kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); return cs_l; } -static inline bool is_la57_mode(struct kvm_vcpu *vcpu) +static inline bool is_64_bit_hypercall(struct kvm_vcpu *vcpu) { -#ifdef CONFIG_X86_64 - return (vcpu->arch.efer & EFER_LMA) && - kvm_read_cr4_bits(vcpu, X86_CR4_LA57); -#else - return 0; -#endif + /* + * If running with protected guest state, the CS register is not + * accessible. The hypercall register values will have had to been + * provided in 64-bit mode, so assume the guest is in 64-bit. + */ + return vcpu->arch.guest_state_protected || is_64_bit_mode(vcpu); } static inline bool x86_exception_has_error_code(unsigned int vector) @@ -125,25 +272,19 @@ static inline bool mmu_is_nested(struct kvm_vcpu *vcpu) return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu; } -static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) +static inline bool is_pae(struct kvm_vcpu *vcpu) { - ++vcpu->stat.tlb_flush; - kvm_x86_ops.tlb_flush_current(vcpu); + return kvm_is_cr4_bit_set(vcpu, X86_CR4_PAE); } -static inline int is_pae(struct kvm_vcpu *vcpu) +static inline bool is_pse(struct kvm_vcpu *vcpu) { - return kvm_read_cr4_bits(vcpu, X86_CR4_PAE); + return kvm_is_cr4_bit_set(vcpu, X86_CR4_PSE); } -static inline int is_pse(struct kvm_vcpu *vcpu) +static inline bool is_paging(struct kvm_vcpu *vcpu) { - return kvm_read_cr4_bits(vcpu, X86_CR4_PSE); -} - -static inline int is_paging(struct kvm_vcpu *vcpu) -{ - return likely(kvm_read_cr0_bits(vcpu, X86_CR0_PG)); + return likely(kvm_is_cr0_bit_set(vcpu, X86_CR0_PG)); } static inline bool is_pae_paging(struct kvm_vcpu *vcpu) @@ -153,17 +294,55 @@ static inline bool is_pae_paging(struct kvm_vcpu *vcpu) static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu) { - return kvm_read_cr4_bits(vcpu, X86_CR4_LA57) ? 57 : 48; + return kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 57 : 48; +} + +static inline u8 max_host_virt_addr_bits(void) +{ + return kvm_cpu_cap_has(X86_FEATURE_LA57) ? 57 : 48; +} + +/* + * x86 MSRs which contain linear addresses, x86 hidden segment bases, and + * IDT/GDT bases have static canonicality checks, the size of which depends + * only on the CPU's support for 5-level paging, rather than on the state of + * CR4.LA57. This applies to both WRMSR and to other instructions that set + * their values, e.g. SGDT. + * + * KVM passes through most of these MSRS and also doesn't intercept the + * instructions that set the hidden segment bases. + * + * Because of this, to be consistent with hardware, even if the guest doesn't + * have LA57 enabled in its CPUID, perform canonicality checks based on *host* + * support for 5 level paging. + * + * Finally, instructions which are related to MMU invalidation of a given + * linear address, also have a similar static canonical check on address. + * This allows for example to invalidate 5-level addresses of a guest from a + * host which uses 4-level paging. + */ +static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu, + unsigned int flags) +{ + if (flags & (X86EMUL_F_INVLPG | X86EMUL_F_MSR | X86EMUL_F_DT_LOAD)) + return !__is_canonical_address(la, max_host_virt_addr_bits()); + else + return !__is_canonical_address(la, vcpu_virt_addr_bits(vcpu)); +} + +static inline bool is_noncanonical_msr_address(u64 la, struct kvm_vcpu *vcpu) +{ + return is_noncanonical_address(la, vcpu, X86EMUL_F_MSR); } -static inline u64 get_canonical(u64 la, u8 vaddr_bits) +static inline bool is_noncanonical_base_address(u64 la, struct kvm_vcpu *vcpu) { - return ((int64_t)la << (64 - vaddr_bits)) >> (64 - vaddr_bits); + return is_noncanonical_address(la, vcpu, X86EMUL_F_DT_LOAD); } -static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu) +static inline bool is_noncanonical_invlpg_address(u64 la, struct kvm_vcpu *vcpu) { - return get_canonical(la, vcpu_virt_addr_bits(vcpu)) != la; + return is_noncanonical_address(la, vcpu, X86EMUL_F_INVLPG); } static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu, @@ -221,19 +400,19 @@ static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) return false; } -static inline unsigned long kvm_register_readl(struct kvm_vcpu *vcpu, int reg) +static inline unsigned long kvm_register_read(struct kvm_vcpu *vcpu, int reg) { - unsigned long val = kvm_register_read(vcpu, reg); + unsigned long val = kvm_register_read_raw(vcpu, reg); return is_64_bit_mode(vcpu) ? val : (u32)val; } -static inline void kvm_register_writel(struct kvm_vcpu *vcpu, +static inline void kvm_register_write(struct kvm_vcpu *vcpu, int reg, unsigned long val) { if (!is_64_bit_mode(vcpu)) val = (u32)val; - return kvm_register_write(vcpu, reg, val); + return kvm_register_write_raw(vcpu, reg, val); } static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk) @@ -241,16 +420,26 @@ static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk) return !(kvm->arch.disabled_quirks & quirk); } -static inline bool kvm_vcpu_latch_init(struct kvm_vcpu *vcpu) +static __always_inline void kvm_request_l1tf_flush_l1d(void) { - return is_smm(vcpu) || kvm_x86_ops.apic_init_signal_blocked(vcpu); +#if IS_ENABLED(CONFIG_CPU_MITIGATIONS) && IS_ENABLED(CONFIG_KVM_INTEL) + /* + * Use a raw write to set the per-CPU flag, as KVM will ensure a flush + * even if preemption is currently enabled.. If the current vCPU task + * is migrated to a different CPU (or userspace runs the vCPU on a + * different task) before the next VM-Entry, then kvm_arch_vcpu_load() + * will request a flush on the new CPU. + */ + raw_cpu_write(irq_stat.kvm_cpu_l1tf_flush_l1d, 1); +#endif } -void kvm_set_pending_timer(struct kvm_vcpu *vcpu); void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip); -void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr); u64 get_kvmclock_ns(struct kvm *kvm); +uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm); +bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp); +int kvm_guest_time_update(struct kvm_vcpu *v); int kvm_read_guest_virt(struct kvm_vcpu *vcpu, gva_t addr, void *val, unsigned int bytes, @@ -262,27 +451,57 @@ int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, int handle_ud(struct kvm_vcpu *vcpu); -void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu); +void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, + struct kvm_queued_exception *ex); -void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu); -u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn); -bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data); int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data); int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata); -bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, - int page_num); -bool kvm_vector_hashing_enabled(void); +void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code); +int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, + void *insn, int insn_len); int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, int emulation_type, void *insn, int insn_len); -fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu); +fastpath_t handle_fastpath_wrmsr(struct kvm_vcpu *vcpu); +fastpath_t handle_fastpath_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg); +fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu); +fastpath_t handle_fastpath_invd(struct kvm_vcpu *vcpu); + +extern struct kvm_caps kvm_caps; +extern struct kvm_host_values kvm_host; + +extern bool enable_pmu; + +/* + * Get a filtered version of KVM's supported XCR0 that strips out dynamic + * features for which the current process doesn't (yet) have permission to use. + * This is intended to be used only when enumerating support to userspace, + * e.g. in KVM_GET_SUPPORTED_CPUID and KVM_CAP_XSAVE2, it does NOT need to be + * used to check/restrict guest behavior as KVM rejects KVM_SET_CPUID{2} if + * userspace attempts to enable unpermitted features. + */ +static inline u64 kvm_get_filtered_xcr0(void) +{ + u64 permitted_xcr0 = kvm_caps.supported_xcr0; + + BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA); -extern u64 host_xcr0; -extern u64 supported_xcr0; -extern u64 supported_xss; + if (permitted_xcr0 & XFEATURE_MASK_USER_DYNAMIC) { + permitted_xcr0 &= xstate_get_guest_group_perm(); + + /* + * Treat XTILE_CFG as unsupported if the current process isn't + * allowed to use XTILE_DATA, as attempting to set XTILE_CFG in + * XCR0 without setting XTILE_DATA is architecturally illegal. + */ + if (!(permitted_xcr0 & XFEATURE_MASK_XTILE_DATA)) + permitted_xcr0 &= ~XFEATURE_MASK_XTILE_CFG; + } + return permitted_xcr0; +} static inline bool kvm_mpx_supported(void) { - return (supported_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR)) + return (kvm_caps.supported_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR)) == (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); } @@ -292,7 +511,21 @@ extern bool enable_vmware_backdoor; extern int pi_inject_timer; -extern struct static_key kvm_no_apic_vcpu; +extern bool report_ignored_msrs; + +extern bool eager_page_split; + +static inline void kvm_pr_unimpl_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data) +{ + if (report_ignored_msrs) + vcpu_unimpl(vcpu, "Unhandled WRMSR(0x%x) = 0x%llx\n", msr, data); +} + +static inline void kvm_pr_unimpl_rdmsr(struct kvm_vcpu *vcpu, u32 msr) +{ + if (report_ignored_msrs) + vcpu_unimpl(vcpu, "Unhandled RDMSR(0x%x)\n", msr); +} static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) { @@ -314,38 +547,56 @@ static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) __rem; \ }) +static inline void kvm_disable_exits(struct kvm *kvm, u64 mask) +{ + kvm->arch.disabled_exits |= mask; +} + static inline bool kvm_mwait_in_guest(struct kvm *kvm) { - return kvm->arch.mwait_in_guest; + return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_MWAIT; } static inline bool kvm_hlt_in_guest(struct kvm *kvm) { - return kvm->arch.hlt_in_guest; + return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_HLT; } static inline bool kvm_pause_in_guest(struct kvm *kvm) { - return kvm->arch.pause_in_guest; + return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_PAUSE; } static inline bool kvm_cstate_in_guest(struct kvm *kvm) { - return kvm->arch.cstate_in_guest; + return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_CSTATE; +} + +static inline bool kvm_aperfmperf_in_guest(struct kvm *kvm) +{ + return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_APERFMPERF; } -DECLARE_PER_CPU(struct kvm_vcpu *, current_vcpu); +static inline bool kvm_notify_vmexit_enabled(struct kvm *kvm) +{ + return kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_ENABLED; +} -static inline void kvm_before_interrupt(struct kvm_vcpu *vcpu) +static __always_inline void kvm_before_interrupt(struct kvm_vcpu *vcpu, + enum kvm_intr_type intr) { - __this_cpu_write(current_vcpu, vcpu); + WRITE_ONCE(vcpu->arch.handling_intr_from_guest, (u8)intr); } -static inline void kvm_after_interrupt(struct kvm_vcpu *vcpu) +static __always_inline void kvm_after_interrupt(struct kvm_vcpu *vcpu) { - __this_cpu_write(current_vcpu, NULL); + WRITE_ONCE(vcpu->arch.handling_intr_from_guest, 0); } +static inline bool kvm_handling_nmi_from_guest(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.handling_intr_from_guest == KVM_HANDLING_NMI; +} static inline bool kvm_pat_valid(u64 data) { @@ -360,10 +611,142 @@ static inline bool kvm_dr7_valid(u64 data) /* Bits [63:32] are reserved */ return !(data >> 32); } +static inline bool kvm_dr6_valid(u64 data) +{ + /* Bits [63:32] are reserved */ + return !(data >> 32); +} -void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu); -void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu); -u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu); -bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu); +/* + * Trigger machine check on the host. We assume all the MSRs are already set up + * by the CPU and that we still run on the same CPU as the MCE occurred on. + * We pass a fake environment to the machine check handler because we want + * the guest to be always treated like user space, no matter what context + * it used internally. + */ +static inline void kvm_machine_check(void) +{ +#if defined(CONFIG_X86_MCE) + struct pt_regs regs = { + .cs = 3, /* Fake ring 3 no matter what the guest ran on */ + .flags = X86_EFLAGS_IF, + }; + do_machine_check(®s); +#endif +} + +int kvm_spec_ctrl_test_value(u64 value); +int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, + struct x86_exception *e); +int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva); +bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type); + +enum kvm_msr_access { + MSR_TYPE_R = BIT(0), + MSR_TYPE_W = BIT(1), + MSR_TYPE_RW = MSR_TYPE_R | MSR_TYPE_W, +}; + +/* + * Internal error codes that are used to indicate that MSR emulation encountered + * an error that should result in #GP in the guest, unless userspace handles it. + * Note, '1', '0', and negative numbers are off limits, as they are used by KVM + * as part of KVM's lightly documented internal KVM_RUN return codes. + * + * UNSUPPORTED - The MSR isn't supported, either because it is completely + * unknown to KVM, or because the MSR should not exist according + * to the vCPU model. + * + * FILTERED - Access to the MSR is denied by a userspace MSR filter. + */ +#define KVM_MSR_RET_UNSUPPORTED 2 +#define KVM_MSR_RET_FILTERED 3 + +static inline bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) +{ + return !(cr4 & vcpu->arch.cr4_guest_rsvd_bits); +} + +#define __cr4_reserved_bits(__cpu_has, __c) \ +({ \ + u64 __reserved_bits = CR4_RESERVED_BITS; \ + \ + if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \ + __reserved_bits |= X86_CR4_OSXSAVE; \ + if (!__cpu_has(__c, X86_FEATURE_SMEP)) \ + __reserved_bits |= X86_CR4_SMEP; \ + if (!__cpu_has(__c, X86_FEATURE_SMAP)) \ + __reserved_bits |= X86_CR4_SMAP; \ + if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \ + __reserved_bits |= X86_CR4_FSGSBASE; \ + if (!__cpu_has(__c, X86_FEATURE_PKU)) \ + __reserved_bits |= X86_CR4_PKE; \ + if (!__cpu_has(__c, X86_FEATURE_LA57)) \ + __reserved_bits |= X86_CR4_LA57; \ + if (!__cpu_has(__c, X86_FEATURE_UMIP)) \ + __reserved_bits |= X86_CR4_UMIP; \ + if (!__cpu_has(__c, X86_FEATURE_VMX)) \ + __reserved_bits |= X86_CR4_VMXE; \ + if (!__cpu_has(__c, X86_FEATURE_PCID)) \ + __reserved_bits |= X86_CR4_PCIDE; \ + if (!__cpu_has(__c, X86_FEATURE_LAM)) \ + __reserved_bits |= X86_CR4_LAM_SUP; \ + if (!__cpu_has(__c, X86_FEATURE_SHSTK) && \ + !__cpu_has(__c, X86_FEATURE_IBT)) \ + __reserved_bits |= X86_CR4_CET; \ + __reserved_bits; \ +}) + +int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes, + void *dst); +int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes, + void *dst); +int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, + unsigned int port, void *data, unsigned int count, + int in); + +static inline bool user_exit_on_hypercall(struct kvm *kvm, unsigned long hc_nr) +{ + return kvm->arch.hypercall_exit_enabled & BIT(hc_nr); +} + +int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl, + int (*complete_hypercall)(struct kvm_vcpu *)); + +#define __kvm_emulate_hypercall(_vcpu, cpl, complete_hypercall) \ +({ \ + int __ret; \ + __ret = ____kvm_emulate_hypercall(_vcpu, cpl, complete_hypercall); \ + \ + if (__ret > 0) \ + __ret = complete_hypercall(_vcpu); \ + __ret; \ +}) + +int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); + +#define CET_US_RESERVED_BITS GENMASK(9, 6) +#define CET_US_SHSTK_MASK_BITS GENMASK(1, 0) +#define CET_US_IBT_MASK_BITS (GENMASK_ULL(5, 2) | GENMASK_ULL(63, 10)) +#define CET_US_LEGACY_BITMAP_BASE(data) ((data) >> 12) + +static inline bool kvm_is_valid_u_s_cet(struct kvm_vcpu *vcpu, u64 data) +{ + if (data & CET_US_RESERVED_BITS) + return false; + if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) && + (data & CET_US_SHSTK_MASK_BITS)) + return false; + if (!guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) && + (data & CET_US_IBT_MASK_BITS)) + return false; + if (!IS_ALIGNED(CET_US_LEGACY_BITMAP_BASE(data), 4)) + return false; + /* IBT can be suppressed iff the TRACKER isn't WAIT_ENDBR. */ + if ((data & CET_SUPPRESS) && (data & CET_WAIT_ENDBR)) + return false; + + return true; +} #endif |
