summaryrefslogtreecommitdiff
path: root/block/bfq-iosched.h
diff options
context:
space:
mode:
Diffstat (limited to 'block/bfq-iosched.h')
-rw-r--r--block/bfq-iosched.h553
1 files changed, 407 insertions, 146 deletions
diff --git a/block/bfq-iosched.h b/block/bfq-iosched.h
index 63e771ab56d8..34a498e6b2a5 100644
--- a/block/bfq-iosched.h
+++ b/block/bfq-iosched.h
@@ -1,23 +1,15 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Header file for the BFQ I/O scheduler: data structures and
* prototypes of interface functions among BFQ components.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License as
- * published by the Free Software Foundation; either version 2 of the
- * License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
*/
#ifndef _BFQ_H
#define _BFQ_H
#include <linux/blktrace_api.h>
#include <linux/hrtimer.h>
-#include <linux/blk-cgroup.h>
+
+#include "blk-cgroup-rwstat.h"
#define BFQ_IOPRIO_CLASSES 3
#define BFQ_CL_IDLE_TIMEOUT (HZ/5)
@@ -28,10 +20,11 @@
#define BFQ_DEFAULT_QUEUE_IOPRIO 4
-#define BFQ_WEIGHT_LEGACY_DFL 100
#define BFQ_DEFAULT_GRP_IOPRIO 0
#define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE
+#define MAX_BFQQ_NAME_LENGTH 16
+
/*
* Soft real-time applications are extremely more latency sensitive
* than interactive ones. Over-raise the weight of the former to
@@ -39,6 +32,14 @@
*/
#define BFQ_SOFTRT_WEIGHT_FACTOR 100
+/*
+ * Maximum number of actuators supported. This constant is used simply
+ * to define the size of the static array that will contain
+ * per-actuator data. The current value is hopefully a good upper
+ * bound to the possible number of actuators of any actual drive.
+ */
+#define BFQ_MAX_ACTUATORS 8
+
struct bfq_entity;
/**
@@ -71,17 +72,29 @@ struct bfq_service_tree {
*
* bfq_sched_data is the basic scheduler queue. It supports three
* ioprio_classes, and can be used either as a toplevel queue or as an
- * intermediate queue on a hierarchical setup. @next_in_service
- * points to the active entity of the sched_data service trees that
- * will be scheduled next. It is used to reduce the number of steps
- * needed for each hierarchical-schedule update.
+ * intermediate queue in a hierarchical setup.
*
* The supported ioprio_classes are the same as in CFQ, in descending
* priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
* Requests from higher priority queues are served before all the
* requests from lower priority queues; among requests of the same
* queue requests are served according to B-WF2Q+.
- * All the fields are protected by the queue lock of the containing bfqd.
+ *
+ * The schedule is implemented by the service trees, plus the field
+ * @next_in_service, which points to the entity on the active trees
+ * that will be served next, if 1) no changes in the schedule occurs
+ * before the current in-service entity is expired, 2) the in-service
+ * queue becomes idle when it expires, and 3) if the entity pointed by
+ * in_service_entity is not a queue, then the in-service child entity
+ * of the entity pointed by in_service_entity becomes idle on
+ * expiration. This peculiar definition allows for the following
+ * optimization, not yet exploited: while a given entity is still in
+ * service, we already know which is the best candidate for next
+ * service among the other active entities in the same parent
+ * entity. We can then quickly compare the timestamps of the
+ * in-service entity with those of such best candidate.
+ *
+ * All fields are protected by the lock of the containing bfqd.
*/
struct bfq_sched_data {
/* entity in service */
@@ -96,15 +109,14 @@ struct bfq_sched_data {
};
/**
- * struct bfq_weight_counter - counter of the number of all active entities
+ * struct bfq_weight_counter - counter of the number of all active queues
* with a given weight.
*/
struct bfq_weight_counter {
- unsigned int weight; /* weight of the entities this counter refers to */
- unsigned int num_active; /* nr of active entities with this weight */
+ unsigned int weight; /* weight of the queues this counter refers to */
+ unsigned int num_active; /* nr of active queues with this weight */
/*
- * Weights tree member (see bfq_data's @queue_weights_tree and
- * @group_weights_tree)
+ * Weights tree member (see bfq_data's @queue_weights_tree)
*/
struct rb_node weights_node;
};
@@ -129,7 +141,7 @@ struct bfq_weight_counter {
*
* Unless cgroups are used, the weight value is calculated from the
* ioprio to export the same interface as CFQ. When dealing with
- * ``well-behaved'' queues (i.e., queues that do not spend too much
+ * "well-behaved" queues (i.e., queues that do not spend too much
* time to consume their budget and have true sequential behavior, and
* when there are no external factors breaking anticipation) the
* relative weights at each level of the cgroups hierarchy should be
@@ -139,14 +151,12 @@ struct bfq_weight_counter {
struct bfq_entity {
/* service_tree member */
struct rb_node rb_node;
- /* pointer to the weight counter associated with this entity */
- struct bfq_weight_counter *weight_counter;
/*
* Flag, true if the entity is on a tree (either the active or
* the idle one of its service_tree) or is in service.
*/
- bool on_st;
+ bool on_st_or_in_serv;
/* B-WF2Q+ start and finish timestamps [sectors/weight] */
u64 start, finish;
@@ -166,6 +176,12 @@ struct bfq_entity {
/* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */
int budget;
+ /* Number of requests allocated in the subtree of this entity */
+ int allocated;
+
+ /* device weight, if non-zero, it overrides the default weight of
+ * bfq_group_data */
+ int dev_weight;
/* weight of the queue */
int weight;
/* next weight if a change is in progress */
@@ -187,6 +203,14 @@ struct bfq_entity {
/* flag, set to request a weight, ioprio or ioprio_class change */
int prio_changed;
+
+#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ /* flag, set if the entity is counted in groups_with_pending_reqs */
+ bool in_groups_with_pending_reqs;
+#endif
+
+ /* last child queue of entity created (for non-leaf entities) */
+ struct bfq_queue *last_bfqq_created;
};
struct bfq_group;
@@ -210,16 +234,20 @@ struct bfq_ttime {
* struct bfq_queue - leaf schedulable entity.
*
* A bfq_queue is a leaf request queue; it can be associated with an
- * io_context or more, if it is async or shared between cooperating
- * processes. @cgroup holds a reference to the cgroup, to be sure that it
- * does not disappear while a bfqq still references it (mostly to avoid
- * races between request issuing and task migration followed by cgroup
- * destruction).
- * All the fields are protected by the queue lock of the containing bfqd.
+ * io_context or more, if it is async or shared between cooperating
+ * processes. Besides, it contains I/O requests for only one actuator
+ * (an io_context is associated with a different bfq_queue for each
+ * actuator it generates I/O for). @cgroup holds a reference to the
+ * cgroup, to be sure that it does not disappear while a bfqq still
+ * references it (mostly to avoid races between request issuing and
+ * task migration followed by cgroup destruction). All the fields are
+ * protected by the queue lock of the containing bfqd.
*/
struct bfq_queue {
/* reference counter */
int ref;
+ /* counter of references from other queues for delayed stable merge */
+ int stable_ref;
/* parent bfq_data */
struct bfq_data *bfqd;
@@ -228,6 +256,13 @@ struct bfq_queue {
/* next ioprio and ioprio class if a change is in progress */
unsigned short new_ioprio, new_ioprio_class;
+ /* last total-service-time sample, see bfq_update_inject_limit() */
+ u64 last_serv_time_ns;
+ /* limit for request injection */
+ unsigned int inject_limit;
+ /* last time the inject limit has been decreased, in jiffies */
+ unsigned long decrease_time_jif;
+
/*
* Shared bfq_queue if queue is cooperating with one or more
* other queues.
@@ -244,8 +279,6 @@ struct bfq_queue {
struct request *next_rq;
/* number of sync and async requests queued */
int queued[2];
- /* number of requests currently allocated */
- int allocated;
/* number of pending metadata requests */
int meta_pending;
/* fifo list of requests in sort_list */
@@ -254,6 +287,9 @@ struct bfq_queue {
/* entity representing this queue in the scheduler */
struct bfq_entity entity;
+ /* pointer to the weight counter associated with this entity */
+ struct bfq_weight_counter *weight_counter;
+
/* maximum budget allowed from the feedback mechanism */
int max_budget;
/* budget expiration (in jiffies) */
@@ -271,6 +307,11 @@ struct bfq_queue {
/* associated @bfq_ttime struct */
struct bfq_ttime ttime;
+ /* when bfqq started to do I/O within the last observation window */
+ u64 io_start_time;
+ /* how long bfqq has remained empty during the last observ. window */
+ u64 tot_idle_time;
+
/* bit vector: a 1 for each seeky requests in history */
u32 seek_history;
@@ -325,6 +366,11 @@ struct bfq_queue {
* last transition from idle to backlogged.
*/
unsigned long service_from_backlogged;
+ /*
+ * Cumulative service received from the @bfq_queue since its
+ * last transition to weight-raised state.
+ */
+ unsigned long service_from_wr;
/*
* Value of wr start time when switching to soft rt
@@ -332,27 +378,49 @@ struct bfq_queue {
unsigned long wr_start_at_switch_to_srt;
unsigned long split_time; /* time of last split */
+
+ unsigned long first_IO_time; /* time of first I/O for this queue */
+ unsigned long creation_time; /* when this queue is created */
+
+ /*
+ * Pointer to the waker queue for this queue, i.e., to the
+ * queue Q such that this queue happens to get new I/O right
+ * after some I/O request of Q is completed. For details, see
+ * the comments on the choice of the queue for injection in
+ * bfq_select_queue().
+ */
+ struct bfq_queue *waker_bfqq;
+ /* pointer to the curr. tentative waker queue, see bfq_check_waker() */
+ struct bfq_queue *tentative_waker_bfqq;
+ /* number of times the same tentative waker has been detected */
+ unsigned int num_waker_detections;
+ /* time when we started considering this waker */
+ u64 waker_detection_started;
+
+ /* node for woken_list, see below */
+ struct hlist_node woken_list_node;
+ /*
+ * Head of the list of the woken queues for this queue, i.e.,
+ * of the list of the queues for which this queue is a waker
+ * queue. This list is used to reset the waker_bfqq pointer in
+ * the woken queues when this queue exits.
+ */
+ struct hlist_head woken_list;
+
+ /* index of the actuator this queue is associated with */
+ unsigned int actuator_idx;
};
/**
- * struct bfq_io_cq - per (request_queue, io_context) structure.
- */
-struct bfq_io_cq {
- /* associated io_cq structure */
- struct io_cq icq; /* must be the first member */
- /* array of two process queues, the sync and the async */
- struct bfq_queue *bfqq[2];
- /* per (request_queue, blkcg) ioprio */
- int ioprio;
-#ifdef CONFIG_BFQ_GROUP_IOSCHED
- uint64_t blkcg_serial_nr; /* the current blkcg serial */
-#endif
+* struct bfq_data - bfqq data unique and persistent for associated bfq_io_cq
+*/
+struct bfq_iocq_bfqq_data {
/*
- * Snapshot of the idle window before merging; taken to
- * remember this value while the queue is merged, so as to be
- * able to restore it in case of split.
+ * Snapshot of the has_short_time flag before merging; taken
+ * to remember its values while the queue is merged, so as to
+ * be able to restore it in case of split.
*/
- bool saved_idle_window;
+ bool saved_has_short_ttime;
/*
* Same purpose as the previous two fields for the I/O bound
* classification of a queue.
@@ -360,7 +428,7 @@ struct bfq_io_cq {
bool saved_IO_bound;
/*
- * Same purpose as the previous fields for the value of the
+ * Same purpose as the previous fields for the values of the
* field keeping the queue's belonging to a large burst
*/
bool saved_in_large_burst;
@@ -371,18 +439,69 @@ struct bfq_io_cq {
bool was_in_burst_list;
/*
+ * Save the weight when a merge occurs, to be able
+ * to restore it in case of split. If the weight is not
+ * correctly resumed when the queue is recycled,
+ * then the weight of the recycled queue could differ
+ * from the weight of the original queue.
+ */
+ unsigned int saved_weight;
+
+ u64 saved_io_start_time;
+ u64 saved_tot_idle_time;
+
+ /*
* Similar to previous fields: save wr information.
*/
unsigned long saved_wr_coeff;
unsigned long saved_last_wr_start_finish;
+ unsigned long saved_service_from_wr;
unsigned long saved_wr_start_at_switch_to_srt;
- unsigned int saved_wr_cur_max_time;
struct bfq_ttime saved_ttime;
+ unsigned int saved_wr_cur_max_time;
+
+ /* Save also injection state */
+ unsigned int saved_inject_limit;
+ unsigned long saved_decrease_time_jif;
+ u64 saved_last_serv_time_ns;
+
+ /* candidate queue for a stable merge (due to close creation time) */
+ struct bfq_queue *stable_merge_bfqq;
+
+ bool stably_merged; /* non splittable if true */
};
-enum bfq_device_speed {
- BFQ_BFQD_FAST,
- BFQ_BFQD_SLOW,
+/**
+ * struct bfq_io_cq - per (request_queue, io_context) structure.
+ */
+struct bfq_io_cq {
+ /* associated io_cq structure */
+ struct io_cq icq; /* must be the first member */
+ /*
+ * Matrix of associated process queues: first row for async
+ * queues, second row sync queues. Each row contains one
+ * column for each actuator. An I/O request generated by the
+ * process is inserted into the queue pointed by bfqq[i][j] if
+ * the request is to be served by the j-th actuator of the
+ * drive, where i==0 or i==1, depending on whether the request
+ * is async or sync. So there is a distinct queue for each
+ * actuator.
+ */
+ struct bfq_queue *bfqq[2][BFQ_MAX_ACTUATORS];
+ /* per (request_queue, blkcg) ioprio */
+ int ioprio;
+#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ uint64_t blkcg_serial_nr; /* the current blkcg serial */
+#endif
+
+ /*
+ * Persistent data for associated synchronous process queues
+ * (one queue per actuator, see field bfqq above). In
+ * particular, each of these queues may undergo a merge.
+ */
+ struct bfq_iocq_bfqq_data bfqq_data[BFQ_MAX_ACTUATORS];
+
+ unsigned int requests; /* Number of requests this process has in flight */
};
/**
@@ -407,28 +526,78 @@ struct bfq_data {
* weight-raised @bfq_queue (see the comments to the functions
* bfq_weights_tree_[add|remove] for further details).
*/
- struct rb_root queue_weights_tree;
+ struct rb_root_cached queue_weights_tree;
+
+#ifdef CONFIG_BFQ_GROUP_IOSCHED
/*
- * rbtree of non-queue @bfq_entity weight counters, sorted by
- * weight. Used to keep track of whether all @bfq_groups have
- * the same weight. The tree contains one counter for each
- * distinct weight associated to some active @bfq_group (see
- * the comments to the functions bfq_weights_tree_[add|remove]
- * for further details).
+ * Number of groups with at least one process that
+ * has at least one request waiting for completion. Note that
+ * this accounts for also requests already dispatched, but not
+ * yet completed. Therefore this number of groups may differ
+ * (be larger) than the number of active groups, as a group is
+ * considered active only if its corresponding entity has
+ * queues with at least one request queued. This
+ * number is used to decide whether a scenario is symmetric.
+ * For a detailed explanation see comments on the computation
+ * of the variable asymmetric_scenario in the function
+ * bfq_better_to_idle().
+ *
+ * However, it is hard to compute this number exactly, for
+ * groups with multiple processes. Consider a group
+ * that is inactive, i.e., that has no process with
+ * pending I/O inside BFQ queues. Then suppose that
+ * num_groups_with_pending_reqs is still accounting for this
+ * group, because the group has processes with some
+ * I/O request still in flight. num_groups_with_pending_reqs
+ * should be decremented when the in-flight request of the
+ * last process is finally completed (assuming that
+ * nothing else has changed for the group in the meantime, in
+ * terms of composition of the group and active/inactive state of child
+ * groups and processes). To accomplish this, an additional
+ * pending-request counter must be added to entities, and must
+ * be updated correctly. To avoid this additional field and operations,
+ * we resort to the following tradeoff between simplicity and
+ * accuracy: for an inactive group that is still counted in
+ * num_groups_with_pending_reqs, we decrement
+ * num_groups_with_pending_reqs when the first
+ * process of the group remains with no request waiting for
+ * completion.
+ *
+ * Even this simpler decrement strategy requires a little
+ * carefulness: to avoid multiple decrements, we flag a group,
+ * more precisely an entity representing a group, as still
+ * counted in num_groups_with_pending_reqs when it becomes
+ * inactive. Then, when the first queue of the
+ * entity remains with no request waiting for completion,
+ * num_groups_with_pending_reqs is decremented, and this flag
+ * is reset. After this flag is reset for the entity,
+ * num_groups_with_pending_reqs won't be decremented any
+ * longer in case a new queue of the entity remains
+ * with no request waiting for completion.
*/
- struct rb_root group_weights_tree;
+ unsigned int num_groups_with_pending_reqs;
+#endif
/*
- * Number of bfq_queues containing requests (including the
- * queue in service, even if it is idling).
+ * Per-class (RT, BE, IDLE) number of bfq_queues containing
+ * requests (including the queue in service, even if it is
+ * idling).
*/
- int busy_queues;
+ unsigned int busy_queues[3];
/* number of weight-raised busy @bfq_queues */
int wr_busy_queues;
/* number of queued requests */
int queued;
/* number of requests dispatched and waiting for completion */
- int rq_in_driver;
+ int tot_rq_in_driver;
+ /*
+ * number of requests dispatched and waiting for completion
+ * for each actuator
+ */
+ int rq_in_driver[BFQ_MAX_ACTUATORS];
+
+ /* true if the device is non rotational and performs queueing */
+ bool nonrot_with_queueing;
/*
* Maximum number of requests in driver in the last
@@ -455,9 +624,38 @@ struct bfq_data {
/* on-disk position of the last served request */
sector_t last_position;
+ /* position of the last served request for the in-service queue */
+ sector_t in_serv_last_pos;
+
/* time of last request completion (ns) */
u64 last_completion;
+ /* bfqq owning the last completed rq */
+ struct bfq_queue *last_completed_rq_bfqq;
+
+ /* last bfqq created, among those in the root group */
+ struct bfq_queue *last_bfqq_created;
+
+ /* time of last transition from empty to non-empty (ns) */
+ u64 last_empty_occupied_ns;
+
+ /*
+ * Flag set to activate the sampling of the total service time
+ * of a just-arrived first I/O request (see
+ * bfq_update_inject_limit()). This will cause the setting of
+ * waited_rq when the request is finally dispatched.
+ */
+ bool wait_dispatch;
+ /*
+ * If set, then bfq_update_inject_limit() is invoked when
+ * waited_rq is eventually completed.
+ */
+ struct request *waited_rq;
+ /*
+ * True if some request has been injected during the last service hole.
+ */
+ bool rqs_injected;
+
/* time of first rq dispatch in current observation interval (ns) */
u64 first_dispatch;
/* time of last rq dispatch in current observation interval (ns) */
@@ -467,6 +665,7 @@ struct bfq_data {
ktime_t last_budget_start;
/* beginning of the last idle slice */
ktime_t last_idling_start;
+ unsigned long last_idling_start_jiffies;
/* number of samples in current observation interval */
int peak_rate_samples;
@@ -480,7 +679,7 @@ struct bfq_data {
u64 delta_from_first;
/*
* Current estimate of the device peak rate, measured in
- * [BFQ_RATE_SHIFT * sectors/usec]. The left-shift by
+ * [(sectors/usec) / 2^BFQ_RATE_SHIFT]. The left-shift by
* BFQ_RATE_SHIFT is performed to increase precision in
* fixed-point calculations.
*/
@@ -489,8 +688,13 @@ struct bfq_data {
/* maximum budget allotted to a bfq_queue before rescheduling */
int bfq_max_budget;
- /* list of all the bfq_queues active on the device */
- struct list_head active_list;
+ /*
+ * List of all the bfq_queues active for a specific actuator
+ * on the device. Keeping active queues separate on a
+ * per-actuator basis helps implementing per-actuator
+ * injection more efficiently.
+ */
+ struct list_head active_list[BFQ_MAX_ACTUATORS];
/* list of all the bfq_queues idle on the device */
struct list_head idle_list;
@@ -520,14 +724,6 @@ struct bfq_data {
unsigned int bfq_timeout;
/*
- * Number of consecutive requests that must be issued within
- * the idle time slice to set again idling to a queue which
- * was marked as non-I/O-bound (see the definition of the
- * IO_bound flag for further details).
- */
- unsigned int bfq_requests_within_timer;
-
- /*
* Force device idling whenever needed to provide accurate
* service guarantees, without caring about throughput
* issues. CAVEAT: this may even increase latencies, in case
@@ -572,8 +768,6 @@ struct bfq_data {
* is multiplied.
*/
unsigned int bfq_wr_coeff;
- /* maximum duration of a weight-raising period (jiffies) */
- unsigned int bfq_wr_max_time;
/* Maximum weight-raising duration for soft real-time processes */
unsigned int bfq_wr_rt_max_time;
@@ -592,12 +786,11 @@ struct bfq_data {
/* Max service-rate for a soft real-time queue, in sectors/sec */
unsigned int bfq_wr_max_softrt_rate;
/*
- * Cached value of the product R*T, used for computing the
- * maximum duration of weight raising automatically.
+ * Cached value of the product ref_rate*ref_wr_duration, used
+ * for computing the maximum duration of weight raising
+ * automatically.
*/
- u64 RT_prod;
- /* device-speed class for the low-latency heuristic */
- enum bfq_device_speed device_speed;
+ u64 rate_dur_prod;
/* fallback dummy bfqq for extreme OOM conditions */
struct bfq_queue oom_bfqq;
@@ -615,6 +808,48 @@ struct bfq_data {
struct bfq_io_cq *bio_bic;
/* bfqq associated with the task issuing current bio for merging */
struct bfq_queue *bio_bfqq;
+
+ /*
+ * Depth limits used in bfq_limit_depth (see comments on the
+ * function)
+ */
+ unsigned int async_depths[2][2];
+
+ /*
+ * Number of independent actuators. This is equal to 1 in
+ * case of single-actuator drives.
+ */
+ unsigned int num_actuators;
+ /*
+ * Disk independent access ranges for each actuator
+ * in this device.
+ */
+ sector_t sector[BFQ_MAX_ACTUATORS];
+ sector_t nr_sectors[BFQ_MAX_ACTUATORS];
+ struct blk_independent_access_range ia_ranges[BFQ_MAX_ACTUATORS];
+
+ /*
+ * If the number of I/O requests queued in the device for a
+ * given actuator is below next threshold, then the actuator
+ * is deemed as underutilized. If this condition is found to
+ * hold for some actuator upon a dispatch, but (i) the
+ * in-service queue does not contain I/O for that actuator,
+ * while (ii) some other queue does contain I/O for that
+ * actuator, then the head I/O request of the latter queue is
+ * returned (injected), instead of the head request of the
+ * currently in-service queue.
+ *
+ * We set the threshold, empirically, to the minimum possible
+ * value for which an actuator is fully utilized, or close to
+ * be fully utilized. By doing so, injected I/O 'steals' as
+ * few drive-queue slots as possibile to the in-service
+ * queue. This reduces as much as possible the probability
+ * that the service of I/O from the in-service bfq_queue gets
+ * delayed because of slot exhaustion, i.e., because all the
+ * slots of the drive queue are filled with I/O injected from
+ * other queues (NCQ provides for 32 slots).
+ */
+ unsigned int actuator_load_threshold;
};
enum bfqq_state_flags {
@@ -626,7 +861,7 @@ enum bfqq_state_flags {
* without idling the device
*/
BFQQF_fifo_expire, /* FIFO checked in this slice */
- BFQQF_idle_window, /* slice idling enabled */
+ BFQQF_has_short_ttime, /* queue has a short think time */
BFQQF_sync, /* synchronous queue */
BFQQF_IO_bound, /*
* bfqq has timed-out at least once
@@ -642,7 +877,7 @@ enum bfqq_state_flags {
* update
*/
BFQQF_coop, /* bfqq is shared */
- BFQQF_split_coop /* shared bfqq will be split */
+ BFQQF_split_coop, /* shared bfqq will be split */
};
#define BFQ_BFQQ_FNS(name) \
@@ -655,7 +890,7 @@ BFQ_BFQQ_FNS(busy);
BFQ_BFQQ_FNS(wait_request);
BFQ_BFQQ_FNS(non_blocking_wait_rq);
BFQ_BFQQ_FNS(fifo_expire);
-BFQ_BFQQ_FNS(idle_window);
+BFQ_BFQQ_FNS(has_short_ttime);
BFQ_BFQQ_FNS(sync);
BFQ_BFQQ_FNS(IO_bound);
BFQ_BFQQ_FNS(in_large_burst);
@@ -676,8 +911,16 @@ enum bfqq_expiration {
BFQQE_PREEMPTED /* preemption in progress */
};
+struct bfq_stat {
+ struct percpu_counter cpu_cnt;
+ atomic64_t aux_cnt;
+};
+
struct bfqg_stats {
-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ /* basic stats */
+ struct blkg_rwstat bytes;
+ struct blkg_rwstat ios;
+#ifdef CONFIG_BFQ_CGROUP_DEBUG
/* number of ios merged */
struct blkg_rwstat merged;
/* total time spent on device in ns, may not be accurate w/ queueing */
@@ -687,25 +930,25 @@ struct bfqg_stats {
/* number of IOs queued up */
struct blkg_rwstat queued;
/* total disk time and nr sectors dispatched by this group */
- struct blkg_stat time;
+ struct bfq_stat time;
/* sum of number of ios queued across all samples */
- struct blkg_stat avg_queue_size_sum;
+ struct bfq_stat avg_queue_size_sum;
/* count of samples taken for average */
- struct blkg_stat avg_queue_size_samples;
+ struct bfq_stat avg_queue_size_samples;
/* how many times this group has been removed from service tree */
- struct blkg_stat dequeue;
+ struct bfq_stat dequeue;
/* total time spent waiting for it to be assigned a timeslice. */
- struct blkg_stat group_wait_time;
+ struct bfq_stat group_wait_time;
/* time spent idling for this blkcg_gq */
- struct blkg_stat idle_time;
+ struct bfq_stat idle_time;
/* total time with empty current active q with other requests queued */
- struct blkg_stat empty_time;
+ struct bfq_stat empty_time;
/* fields after this shouldn't be cleared on stat reset */
- uint64_t start_group_wait_time;
- uint64_t start_idle_time;
- uint64_t start_empty_time;
+ u64 start_group_wait_time;
+ u64 start_idle_time;
+ u64 start_empty_time;
uint16_t flags;
-#endif /* CONFIG_BFQ_GROUP_IOSCHED */
+#endif /* CONFIG_BFQ_CGROUP_DEBUG */
};
#ifdef CONFIG_BFQ_GROUP_IOSCHED
@@ -759,23 +1002,21 @@ struct bfq_group {
/* must be the first member */
struct blkg_policy_data pd;
- /* cached path for this blkg (see comments in bfq_bic_update_cgroup) */
- char blkg_path[128];
-
/* reference counter (see comments in bfq_bic_update_cgroup) */
- int ref;
+ refcount_t ref;
struct bfq_entity entity;
struct bfq_sched_data sched_data;
- void *bfqd;
+ struct bfq_data *bfqd;
- struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
- struct bfq_queue *async_idle_bfqq;
+ struct bfq_queue *async_bfqq[2][IOPRIO_NR_LEVELS][BFQ_MAX_ACTUATORS];
+ struct bfq_queue *async_idle_bfqq[BFQ_MAX_ACTUATORS];
struct bfq_entity *my_entity;
int active_entities;
+ int num_queues_with_pending_reqs;
struct rb_root rq_pos_tree;
@@ -784,17 +1025,16 @@ struct bfq_group {
#else
struct bfq_group {
+ struct bfq_entity entity;
struct bfq_sched_data sched_data;
- struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
- struct bfq_queue *async_idle_bfqq;
+ struct bfq_queue *async_bfqq[2][IOPRIO_NR_LEVELS][BFQ_MAX_ACTUATORS];
+ struct bfq_queue *async_idle_bfqq[BFQ_MAX_ACTUATORS];
struct rb_root rq_pos_tree;
};
#endif
-struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
-
/* --------------- main algorithm interface ----------------- */
#define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \
@@ -802,19 +1042,20 @@ struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
extern const int bfq_timeout;
-struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync);
-void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync);
+struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync,
+ unsigned int actuator_idx);
+void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync,
+ unsigned int actuator_idx);
struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic);
-void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq);
-void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
- struct rb_root *root);
-void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity,
- struct rb_root *root);
+void bfq_weights_tree_add(struct bfq_queue *bfqq);
+void bfq_weights_tree_remove(struct bfq_queue *bfqq);
void bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
bool compensate, enum bfqq_expiration reason);
void bfq_put_queue(struct bfq_queue *bfqq);
+void bfq_put_cooperator(struct bfq_queue *bfqq);
void bfq_end_wr_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
+void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq);
void bfq_schedule_dispatch(struct bfq_data *bfqd);
void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
@@ -822,25 +1063,28 @@ void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
/* ---------------- cgroups-support interface ---------------- */
-void bfqg_stats_update_io_add(struct bfq_group *bfqg, struct bfq_queue *bfqq,
- unsigned int op);
-void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op);
-void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op);
-void bfqg_stats_update_completion(struct bfq_group *bfqg, uint64_t start_time,
- uint64_t io_start_time, unsigned int op);
+void bfqg_stats_update_legacy_io(struct request_queue *q, struct request *rq);
+void bfqg_stats_update_io_remove(struct bfq_group *bfqg, blk_opf_t opf);
+void bfqg_stats_update_io_merged(struct bfq_group *bfqg, blk_opf_t opf);
+void bfqg_stats_update_completion(struct bfq_group *bfqg, u64 start_time_ns,
+ u64 io_start_time_ns, blk_opf_t opf);
void bfqg_stats_update_dequeue(struct bfq_group *bfqg);
-void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg);
-void bfqg_stats_update_idle_time(struct bfq_group *bfqg);
void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg);
-void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg);
void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
struct bfq_group *bfqg);
+#ifdef CONFIG_BFQ_CGROUP_DEBUG
+void bfqg_stats_update_io_add(struct bfq_group *bfqg, struct bfq_queue *bfqq,
+ blk_opf_t opf);
+void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg);
+void bfqg_stats_update_idle_time(struct bfq_group *bfqg);
+void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg);
+#endif
+
void bfq_init_entity(struct bfq_entity *entity, struct bfq_group *bfqg);
void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio);
void bfq_end_wr_async(struct bfq_data *bfqd);
-struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
- struct blkcg *blkcg);
+struct bfq_group *bfq_bio_bfqg(struct bfq_data *bfqd, struct bio *bio);
struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd, int node);
@@ -883,8 +1127,8 @@ extern struct blkcg_policy blkcg_policy_bfq;
for (parent = NULL; entity ; entity = parent)
#endif /* CONFIG_BFQ_GROUP_IOSCHED */
-struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq);
struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
+unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd);
struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity);
struct bfq_entity *bfq_entity_of(struct rb_node *node);
unsigned short bfq_ioprio_to_weight(int ioprio);
@@ -901,37 +1145,54 @@ bool __bfq_deactivate_entity(struct bfq_entity *entity,
bool ins_into_idle_tree);
bool next_queue_may_preempt(struct bfq_data *bfqd);
struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd);
-void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd);
+bool __bfq_bfqd_reset_in_service(struct bfq_data *bfqd);
void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
bool ins_into_idle_tree, bool expiration);
void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
-void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
-void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
- bool expiration);
-void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq);
+void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ bool expiration);
+void bfq_del_bfqq_busy(struct bfq_queue *bfqq, bool expiration);
+void bfq_add_bfqq_busy(struct bfq_queue *bfqq);
+void bfq_add_bfqq_in_groups_with_pending_reqs(struct bfq_queue *bfqq);
+void bfq_del_bfqq_in_groups_with_pending_reqs(struct bfq_queue *bfqq);
+void bfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq,
+ struct bfq_queue *new_bfqq);
/* --------------- end of interface of B-WF2Q+ ---------------- */
/* Logging facilities. */
+static inline void bfq_bfqq_name(struct bfq_queue *bfqq, char *str, int len)
+{
+ char type = bfq_bfqq_sync(bfqq) ? 'S' : 'A';
+
+ if (bfqq->pid != -1)
+ snprintf(str, len, "bfq%d%c", bfqq->pid, type);
+ else
+ snprintf(str, len, "bfqSHARED-%c", type);
+}
+
#ifdef CONFIG_BFQ_GROUP_IOSCHED
struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \
- blk_add_trace_msg((bfqd)->queue, "bfq%d%c %s " fmt, (bfqq)->pid,\
- bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
- bfqq_group(bfqq)->blkg_path, ##args); \
+ char pid_str[MAX_BFQQ_NAME_LENGTH]; \
+ if (likely(!blk_trace_note_message_enabled((bfqd)->queue))) \
+ break; \
+ bfq_bfqq_name((bfqq), pid_str, MAX_BFQQ_NAME_LENGTH); \
+ blk_add_cgroup_trace_msg((bfqd)->queue, \
+ &bfqg_to_blkg(bfqq_group(bfqq))->blkcg->css, \
+ "%s " fmt, pid_str, ##args); \
} while (0)
-#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) \
- blk_add_trace_msg((bfqd)->queue, "%s " fmt, (bfqg)->blkg_path, ##args)
-
#else /* CONFIG_BFQ_GROUP_IOSCHED */
-#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
- blk_add_trace_msg((bfqd)->queue, "bfq%d%c " fmt, (bfqq)->pid, \
- bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
- ##args)
-#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0)
+#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \
+ char pid_str[MAX_BFQQ_NAME_LENGTH]; \
+ if (likely(!blk_trace_note_message_enabled((bfqd)->queue))) \
+ break; \
+ bfq_bfqq_name((bfqq), pid_str, MAX_BFQQ_NAME_LENGTH); \
+ blk_add_trace_msg((bfqd)->queue, "%s " fmt, pid_str, ##args); \
+} while (0)
#endif /* CONFIG_BFQ_GROUP_IOSCHED */