summaryrefslogtreecommitdiff
path: root/block/blk-core.c
diff options
context:
space:
mode:
Diffstat (limited to 'block/blk-core.c')
-rw-r--r--block/blk-core.c3509
1 files changed, 800 insertions, 2709 deletions
diff --git a/block/blk-core.c b/block/blk-core.c
index 93a18d1d3da8..8387fe50ea15 100644
--- a/block/blk-core.c
+++ b/block/blk-core.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 1994, Karl Keyte: Added support for disk statistics
@@ -13,11 +14,13 @@
*/
#include <linux/kernel.h>
#include <linux/module.h>
-#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
+#include <linux/blk-pm.h>
+#include <linux/blk-integrity.h>
#include <linux/highmem.h>
#include <linux/mm.h>
+#include <linux/pagemap.h>
#include <linux/kernel_stat.h>
#include <linux/string.h>
#include <linux/init.h>
@@ -31,234 +34,170 @@
#include <linux/delay.h>
#include <linux/ratelimit.h>
#include <linux/pm_runtime.h>
+#include <linux/t10-pi.h>
+#include <linux/debugfs.h>
+#include <linux/bpf.h>
+#include <linux/part_stat.h>
+#include <linux/sched/sysctl.h>
+#include <linux/blk-crypto.h>
#define CREATE_TRACE_POINTS
#include <trace/events/block.h>
#include "blk.h"
+#include "blk-mq-sched.h"
+#include "blk-pm.h"
#include "blk-cgroup.h"
+#include "blk-throttle.h"
+#include "blk-ioprio.h"
+
+struct dentry *blk_debugfs_root;
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
+EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
+EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
-DEFINE_IDA(blk_queue_ida);
-
-/*
- * For the allocated request tables
- */
-static struct kmem_cache *request_cachep;
+static DEFINE_IDA(blk_queue_ida);
/*
* For queue allocation
*/
-struct kmem_cache *blk_requestq_cachep;
+static struct kmem_cache *blk_requestq_cachep;
/*
* Controlling structure to kblockd
*/
static struct workqueue_struct *kblockd_workqueue;
-static void drive_stat_acct(struct request *rq, int new_io)
+/**
+ * blk_queue_flag_set - atomically set a queue flag
+ * @flag: flag to be set
+ * @q: request queue
+ */
+void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
{
- struct hd_struct *part;
- int rw = rq_data_dir(rq);
- int cpu;
-
- if (!blk_do_io_stat(rq))
- return;
-
- cpu = part_stat_lock();
-
- if (!new_io) {
- part = rq->part;
- part_stat_inc(cpu, part, merges[rw]);
- } else {
- part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
- if (!hd_struct_try_get(part)) {
- /*
- * The partition is already being removed,
- * the request will be accounted on the disk only
- *
- * We take a reference on disk->part0 although that
- * partition will never be deleted, so we can treat
- * it as any other partition.
- */
- part = &rq->rq_disk->part0;
- hd_struct_get(part);
- }
- part_round_stats(cpu, part);
- part_inc_in_flight(part, rw);
- rq->part = part;
- }
-
- part_stat_unlock();
+ set_bit(flag, &q->queue_flags);
}
+EXPORT_SYMBOL(blk_queue_flag_set);
-void blk_queue_congestion_threshold(struct request_queue *q)
-{
- int nr;
-
- nr = q->nr_requests - (q->nr_requests / 8) + 1;
- if (nr > q->nr_requests)
- nr = q->nr_requests;
- q->nr_congestion_on = nr;
-
- nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
- if (nr < 1)
- nr = 1;
- q->nr_congestion_off = nr;
-}
+/**
+ * blk_queue_flag_clear - atomically clear a queue flag
+ * @flag: flag to be cleared
+ * @q: request queue
+ */
+void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
+{
+ clear_bit(flag, &q->queue_flags);
+}
+EXPORT_SYMBOL(blk_queue_flag_clear);
+
+#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
+static const char *const blk_op_name[] = {
+ REQ_OP_NAME(READ),
+ REQ_OP_NAME(WRITE),
+ REQ_OP_NAME(FLUSH),
+ REQ_OP_NAME(DISCARD),
+ REQ_OP_NAME(SECURE_ERASE),
+ REQ_OP_NAME(ZONE_RESET),
+ REQ_OP_NAME(ZONE_RESET_ALL),
+ REQ_OP_NAME(ZONE_OPEN),
+ REQ_OP_NAME(ZONE_CLOSE),
+ REQ_OP_NAME(ZONE_FINISH),
+ REQ_OP_NAME(ZONE_APPEND),
+ REQ_OP_NAME(WRITE_ZEROES),
+ REQ_OP_NAME(DRV_IN),
+ REQ_OP_NAME(DRV_OUT),
+};
+#undef REQ_OP_NAME
/**
- * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
- * @bdev: device
+ * blk_op_str - Return string XXX in the REQ_OP_XXX.
+ * @op: REQ_OP_XXX.
*
- * Locates the passed device's request queue and returns the address of its
- * backing_dev_info
- *
- * Will return NULL if the request queue cannot be located.
+ * Description: Centralize block layer function to convert REQ_OP_XXX into
+ * string format. Useful in the debugging and tracing bio or request. For
+ * invalid REQ_OP_XXX it returns string "UNKNOWN".
*/
-struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
+inline const char *blk_op_str(enum req_op op)
{
- struct backing_dev_info *ret = NULL;
- struct request_queue *q = bdev_get_queue(bdev);
+ const char *op_str = "UNKNOWN";
- if (q)
- ret = &q->backing_dev_info;
- return ret;
-}
-EXPORT_SYMBOL(blk_get_backing_dev_info);
+ if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
+ op_str = blk_op_name[op];
-void blk_rq_init(struct request_queue *q, struct request *rq)
-{
- memset(rq, 0, sizeof(*rq));
-
- INIT_LIST_HEAD(&rq->queuelist);
- INIT_LIST_HEAD(&rq->timeout_list);
- rq->cpu = -1;
- rq->q = q;
- rq->__sector = (sector_t) -1;
- INIT_HLIST_NODE(&rq->hash);
- RB_CLEAR_NODE(&rq->rb_node);
- rq->cmd = rq->__cmd;
- rq->cmd_len = BLK_MAX_CDB;
- rq->tag = -1;
- rq->ref_count = 1;
- rq->start_time = jiffies;
- set_start_time_ns(rq);
- rq->part = NULL;
+ return op_str;
}
-EXPORT_SYMBOL(blk_rq_init);
+EXPORT_SYMBOL_GPL(blk_op_str);
-static void req_bio_endio(struct request *rq, struct bio *bio,
- unsigned int nbytes, int error)
-{
- if (error)
- clear_bit(BIO_UPTODATE, &bio->bi_flags);
- else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
- error = -EIO;
+static const struct {
+ int errno;
+ const char *name;
+} blk_errors[] = {
+ [BLK_STS_OK] = { 0, "" },
+ [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
+ [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
+ [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
+ [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
+ [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
+ [BLK_STS_RESV_CONFLICT] = { -EBADE, "reservation conflict" },
+ [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
+ [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
+ [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
+ [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
+ [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
+ [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
- if (unlikely(rq->cmd_flags & REQ_QUIET))
- set_bit(BIO_QUIET, &bio->bi_flags);
+ /* device mapper special case, should not leak out: */
+ [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
- bio_advance(bio, nbytes);
+ /* zone device specific errors */
+ [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
+ [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
- /* don't actually finish bio if it's part of flush sequence */
- if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
- bio_endio(bio, error);
-}
+ /* Command duration limit device-side timeout */
+ [BLK_STS_DURATION_LIMIT] = { -ETIME, "duration limit exceeded" },
-void blk_dump_rq_flags(struct request *rq, char *msg)
-{
- int bit;
-
- printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
- rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
- rq->cmd_flags);
-
- printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
- (unsigned long long)blk_rq_pos(rq),
- blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
- printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
- rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
-
- if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
- printk(KERN_INFO " cdb: ");
- for (bit = 0; bit < BLK_MAX_CDB; bit++)
- printk("%02x ", rq->cmd[bit]);
- printk("\n");
- }
-}
-EXPORT_SYMBOL(blk_dump_rq_flags);
+ [BLK_STS_INVAL] = { -EINVAL, "invalid" },
-static void blk_delay_work(struct work_struct *work)
+ /* everything else not covered above: */
+ [BLK_STS_IOERR] = { -EIO, "I/O" },
+};
+
+blk_status_t errno_to_blk_status(int errno)
{
- struct request_queue *q;
+ int i;
- q = container_of(work, struct request_queue, delay_work.work);
- spin_lock_irq(q->queue_lock);
- __blk_run_queue(q);
- spin_unlock_irq(q->queue_lock);
-}
+ for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
+ if (blk_errors[i].errno == errno)
+ return (__force blk_status_t)i;
+ }
-/**
- * blk_delay_queue - restart queueing after defined interval
- * @q: The &struct request_queue in question
- * @msecs: Delay in msecs
- *
- * Description:
- * Sometimes queueing needs to be postponed for a little while, to allow
- * resources to come back. This function will make sure that queueing is
- * restarted around the specified time. Queue lock must be held.
- */
-void blk_delay_queue(struct request_queue *q, unsigned long msecs)
-{
- if (likely(!blk_queue_dead(q)))
- queue_delayed_work(kblockd_workqueue, &q->delay_work,
- msecs_to_jiffies(msecs));
+ return BLK_STS_IOERR;
}
-EXPORT_SYMBOL(blk_delay_queue);
+EXPORT_SYMBOL_GPL(errno_to_blk_status);
-/**
- * blk_start_queue - restart a previously stopped queue
- * @q: The &struct request_queue in question
- *
- * Description:
- * blk_start_queue() will clear the stop flag on the queue, and call
- * the request_fn for the queue if it was in a stopped state when
- * entered. Also see blk_stop_queue(). Queue lock must be held.
- **/
-void blk_start_queue(struct request_queue *q)
+int blk_status_to_errno(blk_status_t status)
{
- WARN_ON(!irqs_disabled());
+ int idx = (__force int)status;
- queue_flag_clear(QUEUE_FLAG_STOPPED, q);
- __blk_run_queue(q);
+ if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
+ return -EIO;
+ return blk_errors[idx].errno;
}
-EXPORT_SYMBOL(blk_start_queue);
+EXPORT_SYMBOL_GPL(blk_status_to_errno);
-/**
- * blk_stop_queue - stop a queue
- * @q: The &struct request_queue in question
- *
- * Description:
- * The Linux block layer assumes that a block driver will consume all
- * entries on the request queue when the request_fn strategy is called.
- * Often this will not happen, because of hardware limitations (queue
- * depth settings). If a device driver gets a 'queue full' response,
- * or if it simply chooses not to queue more I/O at one point, it can
- * call this function to prevent the request_fn from being called until
- * the driver has signalled it's ready to go again. This happens by calling
- * blk_start_queue() to restart queue operations. Queue lock must be held.
- **/
-void blk_stop_queue(struct request_queue *q)
+const char *blk_status_to_str(blk_status_t status)
{
- cancel_delayed_work(&q->delay_work);
- queue_flag_set(QUEUE_FLAG_STOPPED, q);
+ int idx = (__force int)status;
+
+ if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
+ return "<null>";
+ return blk_errors[idx].name;
}
-EXPORT_SYMBOL(blk_stop_queue);
+EXPORT_SYMBOL_GPL(blk_status_to_str);
/**
* blk_sync_queue - cancel any pending callbacks on a queue
@@ -270,2447 +209,876 @@ EXPORT_SYMBOL(blk_stop_queue);
* A block device may call blk_sync_queue to ensure that any
* such activity is cancelled, thus allowing it to release resources
* that the callbacks might use. The caller must already have made sure
- * that its ->make_request_fn will not re-add plugging prior to calling
+ * that its ->submit_bio will not re-add plugging prior to calling
* this function.
*
* This function does not cancel any asynchronous activity arising
- * out of elevator or throttling code. That would require elevaotor_exit()
+ * out of elevator or throttling code. That would require elevator_exit()
* and blkcg_exit_queue() to be called with queue lock initialized.
*
*/
void blk_sync_queue(struct request_queue *q)
{
- del_timer_sync(&q->timeout);
- cancel_delayed_work_sync(&q->delay_work);
+ timer_delete_sync(&q->timeout);
+ cancel_work_sync(&q->timeout_work);
}
EXPORT_SYMBOL(blk_sync_queue);
/**
- * __blk_run_queue_uncond - run a queue whether or not it has been stopped
- * @q: The queue to run
- *
- * Description:
- * Invoke request handling on a queue if there are any pending requests.
- * May be used to restart request handling after a request has completed.
- * This variant runs the queue whether or not the queue has been
- * stopped. Must be called with the queue lock held and interrupts
- * disabled. See also @blk_run_queue.
+ * blk_set_pm_only - increment pm_only counter
+ * @q: request queue pointer
*/
-inline void __blk_run_queue_uncond(struct request_queue *q)
+void blk_set_pm_only(struct request_queue *q)
{
- if (unlikely(blk_queue_dead(q)))
- return;
-
- /*
- * Some request_fn implementations, e.g. scsi_request_fn(), unlock
- * the queue lock internally. As a result multiple threads may be
- * running such a request function concurrently. Keep track of the
- * number of active request_fn invocations such that blk_drain_queue()
- * can wait until all these request_fn calls have finished.
- */
- q->request_fn_active++;
- q->request_fn(q);
- q->request_fn_active--;
+ atomic_inc(&q->pm_only);
}
+EXPORT_SYMBOL_GPL(blk_set_pm_only);
-/**
- * __blk_run_queue - run a single device queue
- * @q: The queue to run
- *
- * Description:
- * See @blk_run_queue. This variant must be called with the queue lock
- * held and interrupts disabled.
- */
-void __blk_run_queue(struct request_queue *q)
+void blk_clear_pm_only(struct request_queue *q)
{
- if (unlikely(blk_queue_stopped(q)))
- return;
+ int pm_only;
- __blk_run_queue_uncond(q);
+ pm_only = atomic_dec_return(&q->pm_only);
+ WARN_ON_ONCE(pm_only < 0);
+ if (pm_only == 0)
+ wake_up_all(&q->mq_freeze_wq);
}
-EXPORT_SYMBOL(__blk_run_queue);
+EXPORT_SYMBOL_GPL(blk_clear_pm_only);
-/**
- * blk_run_queue_async - run a single device queue in workqueue context
- * @q: The queue to run
- *
- * Description:
- * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
- * of us. The caller must hold the queue lock.
- */
-void blk_run_queue_async(struct request_queue *q)
+static void blk_free_queue_rcu(struct rcu_head *rcu_head)
{
- if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
- mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
+ struct request_queue *q = container_of(rcu_head,
+ struct request_queue, rcu_head);
+
+ percpu_ref_exit(&q->q_usage_counter);
+ kmem_cache_free(blk_requestq_cachep, q);
}
-EXPORT_SYMBOL(blk_run_queue_async);
-/**
- * blk_run_queue - run a single device queue
- * @q: The queue to run
- *
- * Description:
- * Invoke request handling on this queue, if it has pending work to do.
- * May be used to restart queueing when a request has completed.
- */
-void blk_run_queue(struct request_queue *q)
+static void blk_free_queue(struct request_queue *q)
{
- unsigned long flags;
+ blk_free_queue_stats(q->stats);
+ if (queue_is_mq(q))
+ blk_mq_release(q);
- spin_lock_irqsave(q->queue_lock, flags);
- __blk_run_queue(q);
- spin_unlock_irqrestore(q->queue_lock, flags);
+ ida_free(&blk_queue_ida, q->id);
+ lockdep_unregister_key(&q->io_lock_cls_key);
+ lockdep_unregister_key(&q->q_lock_cls_key);
+ call_rcu(&q->rcu_head, blk_free_queue_rcu);
}
-EXPORT_SYMBOL(blk_run_queue);
+/**
+ * blk_put_queue - decrement the request_queue refcount
+ * @q: the request_queue structure to decrement the refcount for
+ *
+ * Decrements the refcount of the request_queue and free it when the refcount
+ * reaches 0.
+ */
void blk_put_queue(struct request_queue *q)
{
- kobject_put(&q->kobj);
+ if (refcount_dec_and_test(&q->refs))
+ blk_free_queue(q);
}
EXPORT_SYMBOL(blk_put_queue);
-/**
- * __blk_drain_queue - drain requests from request_queue
- * @q: queue to drain
- * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
- *
- * Drain requests from @q. If @drain_all is set, all requests are drained.
- * If not, only ELVPRIV requests are drained. The caller is responsible
- * for ensuring that no new requests which need to be drained are queued.
- */
-static void __blk_drain_queue(struct request_queue *q, bool drain_all)
- __releases(q->queue_lock)
- __acquires(q->queue_lock)
+bool blk_queue_start_drain(struct request_queue *q)
{
- int i;
-
- lockdep_assert_held(q->queue_lock);
-
- while (true) {
- bool drain = false;
-
- /*
- * The caller might be trying to drain @q before its
- * elevator is initialized.
- */
- if (q->elevator)
- elv_drain_elevator(q);
-
- blkcg_drain_queue(q);
-
- /*
- * This function might be called on a queue which failed
- * driver init after queue creation or is not yet fully
- * active yet. Some drivers (e.g. fd and loop) get unhappy
- * in such cases. Kick queue iff dispatch queue has
- * something on it and @q has request_fn set.
- */
- if (!list_empty(&q->queue_head) && q->request_fn)
- __blk_run_queue(q);
-
- drain |= q->nr_rqs_elvpriv;
- drain |= q->request_fn_active;
-
- /*
- * Unfortunately, requests are queued at and tracked from
- * multiple places and there's no single counter which can
- * be drained. Check all the queues and counters.
- */
- if (drain_all) {
- drain |= !list_empty(&q->queue_head);
- for (i = 0; i < 2; i++) {
- drain |= q->nr_rqs[i];
- drain |= q->in_flight[i];
- drain |= !list_empty(&q->flush_queue[i]);
- }
- }
-
- if (!drain)
- break;
-
- spin_unlock_irq(q->queue_lock);
-
- msleep(10);
-
- spin_lock_irq(q->queue_lock);
- }
-
/*
- * With queue marked dead, any woken up waiter will fail the
- * allocation path, so the wakeup chaining is lost and we're
- * left with hung waiters. We need to wake up those waiters.
+ * When queue DYING flag is set, we need to block new req
+ * entering queue, so we call blk_freeze_queue_start() to
+ * prevent I/O from crossing blk_queue_enter().
*/
- if (q->request_fn) {
- struct request_list *rl;
+ bool freeze = __blk_freeze_queue_start(q, current);
+ if (queue_is_mq(q))
+ blk_mq_wake_waiters(q);
+ /* Make blk_queue_enter() reexamine the DYING flag. */
+ wake_up_all(&q->mq_freeze_wq);
- blk_queue_for_each_rl(rl, q)
- for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
- wake_up_all(&rl->wait[i]);
- }
+ return freeze;
}
/**
- * blk_queue_bypass_start - enter queue bypass mode
- * @q: queue of interest
- *
- * In bypass mode, only the dispatch FIFO queue of @q is used. This
- * function makes @q enter bypass mode and drains all requests which were
- * throttled or issued before. On return, it's guaranteed that no request
- * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
- * inside queue or RCU read lock.
+ * blk_queue_enter() - try to increase q->q_usage_counter
+ * @q: request queue pointer
+ * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
*/
-void blk_queue_bypass_start(struct request_queue *q)
+int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
{
- bool drain;
-
- spin_lock_irq(q->queue_lock);
- drain = !q->bypass_depth++;
- queue_flag_set(QUEUE_FLAG_BYPASS, q);
- spin_unlock_irq(q->queue_lock);
+ const bool pm = flags & BLK_MQ_REQ_PM;
- if (drain) {
- spin_lock_irq(q->queue_lock);
- __blk_drain_queue(q, false);
- spin_unlock_irq(q->queue_lock);
+ while (!blk_try_enter_queue(q, pm)) {
+ if (flags & BLK_MQ_REQ_NOWAIT)
+ return -EAGAIN;
- /* ensure blk_queue_bypass() is %true inside RCU read lock */
- synchronize_rcu();
+ /*
+ * read pair of barrier in blk_freeze_queue_start(), we need to
+ * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
+ * reading .mq_freeze_depth or queue dying flag, otherwise the
+ * following wait may never return if the two reads are
+ * reordered.
+ */
+ smp_rmb();
+ wait_event(q->mq_freeze_wq,
+ (!q->mq_freeze_depth &&
+ blk_pm_resume_queue(pm, q)) ||
+ blk_queue_dying(q));
+ if (blk_queue_dying(q))
+ return -ENODEV;
}
-}
-EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
-/**
- * blk_queue_bypass_end - leave queue bypass mode
- * @q: queue of interest
- *
- * Leave bypass mode and restore the normal queueing behavior.
- */
-void blk_queue_bypass_end(struct request_queue *q)
-{
- spin_lock_irq(q->queue_lock);
- if (!--q->bypass_depth)
- queue_flag_clear(QUEUE_FLAG_BYPASS, q);
- WARN_ON_ONCE(q->bypass_depth < 0);
- spin_unlock_irq(q->queue_lock);
+ rwsem_acquire_read(&q->q_lockdep_map, 0, 0, _RET_IP_);
+ rwsem_release(&q->q_lockdep_map, _RET_IP_);
+ return 0;
}
-EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
-/**
- * blk_cleanup_queue - shutdown a request queue
- * @q: request queue to shutdown
- *
- * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
- * put it. All future requests will be failed immediately with -ENODEV.
- */
-void blk_cleanup_queue(struct request_queue *q)
+int __bio_queue_enter(struct request_queue *q, struct bio *bio)
{
- spinlock_t *lock = q->queue_lock;
-
- /* mark @q DYING, no new request or merges will be allowed afterwards */
- mutex_lock(&q->sysfs_lock);
- queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
- spin_lock_irq(lock);
+ while (!blk_try_enter_queue(q, false)) {
+ struct gendisk *disk = bio->bi_bdev->bd_disk;
- /*
- * A dying queue is permanently in bypass mode till released. Note
- * that, unlike blk_queue_bypass_start(), we aren't performing
- * synchronize_rcu() after entering bypass mode to avoid the delay
- * as some drivers create and destroy a lot of queues while
- * probing. This is still safe because blk_release_queue() will be
- * called only after the queue refcnt drops to zero and nothing,
- * RCU or not, would be traversing the queue by then.
- */
- q->bypass_depth++;
- queue_flag_set(QUEUE_FLAG_BYPASS, q);
+ if (bio->bi_opf & REQ_NOWAIT) {
+ if (test_bit(GD_DEAD, &disk->state))
+ goto dead;
+ bio_wouldblock_error(bio);
+ return -EAGAIN;
+ }
- queue_flag_set(QUEUE_FLAG_NOMERGES, q);
- queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
- queue_flag_set(QUEUE_FLAG_DYING, q);
- spin_unlock_irq(lock);
- mutex_unlock(&q->sysfs_lock);
+ /*
+ * read pair of barrier in blk_freeze_queue_start(), we need to
+ * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
+ * reading .mq_freeze_depth or queue dying flag, otherwise the
+ * following wait may never return if the two reads are
+ * reordered.
+ */
+ smp_rmb();
+ wait_event(q->mq_freeze_wq,
+ (!q->mq_freeze_depth &&
+ blk_pm_resume_queue(false, q)) ||
+ test_bit(GD_DEAD, &disk->state));
+ if (test_bit(GD_DEAD, &disk->state))
+ goto dead;
+ }
- /*
- * Drain all requests queued before DYING marking. Set DEAD flag to
- * prevent that q->request_fn() gets invoked after draining finished.
- */
- spin_lock_irq(lock);
- __blk_drain_queue(q, true);
- queue_flag_set(QUEUE_FLAG_DEAD, q);
- spin_unlock_irq(lock);
-
- /* @q won't process any more request, flush async actions */
- del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
- blk_sync_queue(q);
-
- spin_lock_irq(lock);
- if (q->queue_lock != &q->__queue_lock)
- q->queue_lock = &q->__queue_lock;
- spin_unlock_irq(lock);
-
- /* @q is and will stay empty, shutdown and put */
- blk_put_queue(q);
+ rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
+ rwsem_release(&q->io_lockdep_map, _RET_IP_);
+ return 0;
+dead:
+ bio_io_error(bio);
+ return -ENODEV;
}
-EXPORT_SYMBOL(blk_cleanup_queue);
-int blk_init_rl(struct request_list *rl, struct request_queue *q,
- gfp_t gfp_mask)
+void blk_queue_exit(struct request_queue *q)
{
- if (unlikely(rl->rq_pool))
- return 0;
-
- rl->q = q;
- rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
- rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
- init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
- init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
+ percpu_ref_put(&q->q_usage_counter);
+}
- rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
- mempool_free_slab, request_cachep,
- gfp_mask, q->node);
- if (!rl->rq_pool)
- return -ENOMEM;
+static void blk_queue_usage_counter_release(struct percpu_ref *ref)
+{
+ struct request_queue *q =
+ container_of(ref, struct request_queue, q_usage_counter);
- return 0;
+ wake_up_all(&q->mq_freeze_wq);
}
-void blk_exit_rl(struct request_list *rl)
+static void blk_rq_timed_out_timer(struct timer_list *t)
{
- if (rl->rq_pool)
- mempool_destroy(rl->rq_pool);
+ struct request_queue *q = timer_container_of(q, t, timeout);
+
+ kblockd_schedule_work(&q->timeout_work);
}
-struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
+static void blk_timeout_work(struct work_struct *work)
{
- return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
}
-EXPORT_SYMBOL(blk_alloc_queue);
-struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
+struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id)
{
struct request_queue *q;
- int err;
+ int error;
- q = kmem_cache_alloc_node(blk_requestq_cachep,
- gfp_mask | __GFP_ZERO, node_id);
+ q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
+ node_id);
if (!q)
- return NULL;
+ return ERR_PTR(-ENOMEM);
- q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
- if (q->id < 0)
+ q->last_merge = NULL;
+
+ q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
+ if (q->id < 0) {
+ error = q->id;
goto fail_q;
+ }
+
+ q->stats = blk_alloc_queue_stats();
+ if (!q->stats) {
+ error = -ENOMEM;
+ goto fail_id;
+ }
+
+ error = blk_set_default_limits(lim);
+ if (error)
+ goto fail_stats;
+ q->limits = *lim;
- q->backing_dev_info.ra_pages =
- (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
- q->backing_dev_info.state = 0;
- q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
- q->backing_dev_info.name = "block";
q->node = node_id;
- err = bdi_init(&q->backing_dev_info);
- if (err)
- goto fail_id;
+ atomic_set(&q->nr_active_requests_shared_tags, 0);
- setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
- laptop_mode_timer_fn, (unsigned long) q);
- setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
- INIT_LIST_HEAD(&q->queue_head);
- INIT_LIST_HEAD(&q->timeout_list);
+ timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
+ INIT_WORK(&q->timeout_work, blk_timeout_work);
INIT_LIST_HEAD(&q->icq_list);
-#ifdef CONFIG_BLK_CGROUP
- INIT_LIST_HEAD(&q->blkg_list);
-#endif
- INIT_LIST_HEAD(&q->flush_queue[0]);
- INIT_LIST_HEAD(&q->flush_queue[1]);
- INIT_LIST_HEAD(&q->flush_data_in_flight);
- INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
-
- kobject_init(&q->kobj, &blk_queue_ktype);
+ refcount_set(&q->refs, 1);
+ mutex_init(&q->debugfs_mutex);
+ mutex_init(&q->elevator_lock);
mutex_init(&q->sysfs_lock);
- spin_lock_init(&q->__queue_lock);
+ mutex_init(&q->limits_lock);
+ mutex_init(&q->rq_qos_mutex);
+ spin_lock_init(&q->queue_lock);
- /*
- * By default initialize queue_lock to internal lock and driver can
- * override it later if need be.
- */
- q->queue_lock = &q->__queue_lock;
+ init_waitqueue_head(&q->mq_freeze_wq);
+ mutex_init(&q->mq_freeze_lock);
+
+ blkg_init_queue(q);
/*
- * A queue starts its life with bypass turned on to avoid
- * unnecessary bypass on/off overhead and nasty surprises during
- * init. The initial bypass will be finished when the queue is
- * registered by blk_register_queue().
+ * Init percpu_ref in atomic mode so that it's faster to shutdown.
+ * See blk_register_queue() for details.
*/
- q->bypass_depth = 1;
- __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
-
- if (blkcg_init_queue(q))
- goto fail_id;
+ error = percpu_ref_init(&q->q_usage_counter,
+ blk_queue_usage_counter_release,
+ PERCPU_REF_INIT_ATOMIC, GFP_KERNEL);
+ if (error)
+ goto fail_stats;
+ lockdep_register_key(&q->io_lock_cls_key);
+ lockdep_register_key(&q->q_lock_cls_key);
+ lockdep_init_map(&q->io_lockdep_map, "&q->q_usage_counter(io)",
+ &q->io_lock_cls_key, 0);
+ lockdep_init_map(&q->q_lockdep_map, "&q->q_usage_counter(queue)",
+ &q->q_lock_cls_key, 0);
+
+ /* Teach lockdep about lock ordering (reclaim WRT queue freeze lock). */
+ fs_reclaim_acquire(GFP_KERNEL);
+ rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
+ rwsem_release(&q->io_lockdep_map, _RET_IP_);
+ fs_reclaim_release(GFP_KERNEL);
+
+ q->nr_requests = BLKDEV_DEFAULT_RQ;
return q;
+fail_stats:
+ blk_free_queue_stats(q->stats);
fail_id:
- ida_simple_remove(&blk_queue_ida, q->id);
+ ida_free(&blk_queue_ida, q->id);
fail_q:
kmem_cache_free(blk_requestq_cachep, q);
- return NULL;
+ return ERR_PTR(error);
}
-EXPORT_SYMBOL(blk_alloc_queue_node);
/**
- * blk_init_queue - prepare a request queue for use with a block device
- * @rfn: The function to be called to process requests that have been
- * placed on the queue.
- * @lock: Request queue spin lock
- *
- * Description:
- * If a block device wishes to use the standard request handling procedures,
- * which sorts requests and coalesces adjacent requests, then it must
- * call blk_init_queue(). The function @rfn will be called when there
- * are requests on the queue that need to be processed. If the device
- * supports plugging, then @rfn may not be called immediately when requests
- * are available on the queue, but may be called at some time later instead.
- * Plugged queues are generally unplugged when a buffer belonging to one
- * of the requests on the queue is needed, or due to memory pressure.
- *
- * @rfn is not required, or even expected, to remove all requests off the
- * queue, but only as many as it can handle at a time. If it does leave
- * requests on the queue, it is responsible for arranging that the requests
- * get dealt with eventually.
+ * blk_get_queue - increment the request_queue refcount
+ * @q: the request_queue structure to increment the refcount for
*
- * The queue spin lock must be held while manipulating the requests on the
- * request queue; this lock will be taken also from interrupt context, so irq
- * disabling is needed for it.
+ * Increment the refcount of the request_queue kobject.
*
- * Function returns a pointer to the initialized request queue, or %NULL if
- * it didn't succeed.
- *
- * Note:
- * blk_init_queue() must be paired with a blk_cleanup_queue() call
- * when the block device is deactivated (such as at module unload).
- **/
-
-struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
-{
- return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
-}
-EXPORT_SYMBOL(blk_init_queue);
-
-struct request_queue *
-blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
-{
- struct request_queue *uninit_q, *q;
-
- uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
- if (!uninit_q)
- return NULL;
-
- q = blk_init_allocated_queue(uninit_q, rfn, lock);
- if (!q)
- blk_cleanup_queue(uninit_q);
-
- return q;
-}
-EXPORT_SYMBOL(blk_init_queue_node);
-
-struct request_queue *
-blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
- spinlock_t *lock)
-{
- if (!q)
- return NULL;
-
- if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
- return NULL;
-
- q->request_fn = rfn;
- q->prep_rq_fn = NULL;
- q->unprep_rq_fn = NULL;
- q->queue_flags |= QUEUE_FLAG_DEFAULT;
-
- /* Override internal queue lock with supplied lock pointer */
- if (lock)
- q->queue_lock = lock;
-
- /*
- * This also sets hw/phys segments, boundary and size
- */
- blk_queue_make_request(q, blk_queue_bio);
-
- q->sg_reserved_size = INT_MAX;
-
- /* init elevator */
- if (elevator_init(q, NULL))
- return NULL;
- return q;
-}
-EXPORT_SYMBOL(blk_init_allocated_queue);
-
+ * Context: Any context.
+ */
bool blk_get_queue(struct request_queue *q)
{
- if (likely(!blk_queue_dying(q))) {
- __blk_get_queue(q);
- return true;
- }
-
- return false;
+ if (unlikely(blk_queue_dying(q)))
+ return false;
+ refcount_inc(&q->refs);
+ return true;
}
EXPORT_SYMBOL(blk_get_queue);
-static inline void blk_free_request(struct request_list *rl, struct request *rq)
-{
- if (rq->cmd_flags & REQ_ELVPRIV) {
- elv_put_request(rl->q, rq);
- if (rq->elv.icq)
- put_io_context(rq->elv.icq->ioc);
- }
+#ifdef CONFIG_FAIL_MAKE_REQUEST
- mempool_free(rq, rl->rq_pool);
-}
+static DECLARE_FAULT_ATTR(fail_make_request);
-/*
- * ioc_batching returns true if the ioc is a valid batching request and
- * should be given priority access to a request.
- */
-static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
+static int __init setup_fail_make_request(char *str)
{
- if (!ioc)
- return 0;
-
- /*
- * Make sure the process is able to allocate at least 1 request
- * even if the batch times out, otherwise we could theoretically
- * lose wakeups.
- */
- return ioc->nr_batch_requests == q->nr_batching ||
- (ioc->nr_batch_requests > 0
- && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
+ return setup_fault_attr(&fail_make_request, str);
}
+__setup("fail_make_request=", setup_fail_make_request);
-/*
- * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
- * will cause the process to be a "batcher" on all queues in the system. This
- * is the behaviour we want though - once it gets a wakeup it should be given
- * a nice run.
- */
-static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
+bool should_fail_request(struct block_device *part, unsigned int bytes)
{
- if (!ioc || ioc_batching(q, ioc))
- return;
-
- ioc->nr_batch_requests = q->nr_batching;
- ioc->last_waited = jiffies;
+ return bdev_test_flag(part, BD_MAKE_IT_FAIL) &&
+ should_fail(&fail_make_request, bytes);
}
-static void __freed_request(struct request_list *rl, int sync)
-{
- struct request_queue *q = rl->q;
-
- /*
- * bdi isn't aware of blkcg yet. As all async IOs end up root
- * blkcg anyway, just use root blkcg state.
- */
- if (rl == &q->root_rl &&
- rl->count[sync] < queue_congestion_off_threshold(q))
- blk_clear_queue_congested(q, sync);
-
- if (rl->count[sync] + 1 <= q->nr_requests) {
- if (waitqueue_active(&rl->wait[sync]))
- wake_up(&rl->wait[sync]);
-
- blk_clear_rl_full(rl, sync);
- }
-}
-
-/*
- * A request has just been released. Account for it, update the full and
- * congestion status, wake up any waiters. Called under q->queue_lock.
- */
-static void freed_request(struct request_list *rl, unsigned int flags)
+static int __init fail_make_request_debugfs(void)
{
- struct request_queue *q = rl->q;
- int sync = rw_is_sync(flags);
-
- q->nr_rqs[sync]--;
- rl->count[sync]--;
- if (flags & REQ_ELVPRIV)
- q->nr_rqs_elvpriv--;
-
- __freed_request(rl, sync);
+ struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
+ NULL, &fail_make_request);
- if (unlikely(rl->starved[sync ^ 1]))
- __freed_request(rl, sync ^ 1);
+ return PTR_ERR_OR_ZERO(dir);
}
-/*
- * Determine if elevator data should be initialized when allocating the
- * request associated with @bio.
- */
-static bool blk_rq_should_init_elevator(struct bio *bio)
-{
- if (!bio)
- return true;
-
- /*
- * Flush requests do not use the elevator so skip initialization.
- * This allows a request to share the flush and elevator data.
- */
- if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
- return false;
-
- return true;
-}
+late_initcall(fail_make_request_debugfs);
+#endif /* CONFIG_FAIL_MAKE_REQUEST */
-/**
- * rq_ioc - determine io_context for request allocation
- * @bio: request being allocated is for this bio (can be %NULL)
- *
- * Determine io_context to use for request allocation for @bio. May return
- * %NULL if %current->io_context doesn't exist.
- */
-static struct io_context *rq_ioc(struct bio *bio)
+static inline void bio_check_ro(struct bio *bio)
{
-#ifdef CONFIG_BLK_CGROUP
- if (bio && bio->bi_ioc)
- return bio->bi_ioc;
-#endif
- return current->io_context;
-}
+ if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
+ if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
+ return;
-/**
- * __get_request - get a free request
- * @rl: request list to allocate from
- * @rw_flags: RW and SYNC flags
- * @bio: bio to allocate request for (can be %NULL)
- * @gfp_mask: allocation mask
- *
- * Get a free request from @q. This function may fail under memory
- * pressure or if @q is dead.
- *
- * Must be callled with @q->queue_lock held and,
- * Returns %NULL on failure, with @q->queue_lock held.
- * Returns !%NULL on success, with @q->queue_lock *not held*.
- */
-static struct request *__get_request(struct request_list *rl, int rw_flags,
- struct bio *bio, gfp_t gfp_mask)
-{
- struct request_queue *q = rl->q;
- struct request *rq;
- struct elevator_type *et = q->elevator->type;
- struct io_context *ioc = rq_ioc(bio);
- struct io_cq *icq = NULL;
- const bool is_sync = rw_is_sync(rw_flags) != 0;
- int may_queue;
+ if (bdev_test_flag(bio->bi_bdev, BD_RO_WARNED))
+ return;
- if (unlikely(blk_queue_dying(q)))
- return NULL;
+ bdev_set_flag(bio->bi_bdev, BD_RO_WARNED);
- may_queue = elv_may_queue(q, rw_flags);
- if (may_queue == ELV_MQUEUE_NO)
- goto rq_starved;
-
- if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
- if (rl->count[is_sync]+1 >= q->nr_requests) {
- /*
- * The queue will fill after this allocation, so set
- * it as full, and mark this process as "batching".
- * This process will be allowed to complete a batch of
- * requests, others will be blocked.
- */
- if (!blk_rl_full(rl, is_sync)) {
- ioc_set_batching(q, ioc);
- blk_set_rl_full(rl, is_sync);
- } else {
- if (may_queue != ELV_MQUEUE_MUST
- && !ioc_batching(q, ioc)) {
- /*
- * The queue is full and the allocating
- * process is not a "batcher", and not
- * exempted by the IO scheduler
- */
- return NULL;
- }
- }
- }
/*
- * bdi isn't aware of blkcg yet. As all async IOs end up
- * root blkcg anyway, just use root blkcg state.
+ * Use ioctl to set underlying disk of raid/dm to read-only
+ * will trigger this.
*/
- if (rl == &q->root_rl)
- blk_set_queue_congested(q, is_sync);
- }
-
- /*
- * Only allow batching queuers to allocate up to 50% over the defined
- * limit of requests, otherwise we could have thousands of requests
- * allocated with any setting of ->nr_requests
- */
- if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
- return NULL;
-
- q->nr_rqs[is_sync]++;
- rl->count[is_sync]++;
- rl->starved[is_sync] = 0;
-
- /*
- * Decide whether the new request will be managed by elevator. If
- * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
- * prevent the current elevator from being destroyed until the new
- * request is freed. This guarantees icq's won't be destroyed and
- * makes creating new ones safe.
- *
- * Also, lookup icq while holding queue_lock. If it doesn't exist,
- * it will be created after releasing queue_lock.
- */
- if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
- rw_flags |= REQ_ELVPRIV;
- q->nr_rqs_elvpriv++;
- if (et->icq_cache && ioc)
- icq = ioc_lookup_icq(ioc, q);
- }
-
- if (blk_queue_io_stat(q))
- rw_flags |= REQ_IO_STAT;
- spin_unlock_irq(q->queue_lock);
-
- /* allocate and init request */
- rq = mempool_alloc(rl->rq_pool, gfp_mask);
- if (!rq)
- goto fail_alloc;
-
- blk_rq_init(q, rq);
- blk_rq_set_rl(rq, rl);
- rq->cmd_flags = rw_flags | REQ_ALLOCED;
-
- /* init elvpriv */
- if (rw_flags & REQ_ELVPRIV) {
- if (unlikely(et->icq_cache && !icq)) {
- if (ioc)
- icq = ioc_create_icq(ioc, q, gfp_mask);
- if (!icq)
- goto fail_elvpriv;
- }
-
- rq->elv.icq = icq;
- if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
- goto fail_elvpriv;
-
- /* @rq->elv.icq holds io_context until @rq is freed */
- if (icq)
- get_io_context(icq->ioc);
- }
-out:
- /*
- * ioc may be NULL here, and ioc_batching will be false. That's
- * OK, if the queue is under the request limit then requests need
- * not count toward the nr_batch_requests limit. There will always
- * be some limit enforced by BLK_BATCH_TIME.
- */
- if (ioc_batching(q, ioc))
- ioc->nr_batch_requests--;
-
- trace_block_getrq(q, bio, rw_flags & 1);
- return rq;
-
-fail_elvpriv:
- /*
- * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
- * and may fail indefinitely under memory pressure and thus
- * shouldn't stall IO. Treat this request as !elvpriv. This will
- * disturb iosched and blkcg but weird is bettern than dead.
- */
- printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
- dev_name(q->backing_dev_info.dev));
-
- rq->cmd_flags &= ~REQ_ELVPRIV;
- rq->elv.icq = NULL;
-
- spin_lock_irq(q->queue_lock);
- q->nr_rqs_elvpriv--;
- spin_unlock_irq(q->queue_lock);
- goto out;
-
-fail_alloc:
- /*
- * Allocation failed presumably due to memory. Undo anything we
- * might have messed up.
- *
- * Allocating task should really be put onto the front of the wait
- * queue, but this is pretty rare.
- */
- spin_lock_irq(q->queue_lock);
- freed_request(rl, rw_flags);
-
- /*
- * in the very unlikely event that allocation failed and no
- * requests for this direction was pending, mark us starved so that
- * freeing of a request in the other direction will notice
- * us. another possible fix would be to split the rq mempool into
- * READ and WRITE
- */
-rq_starved:
- if (unlikely(rl->count[is_sync] == 0))
- rl->starved[is_sync] = 1;
- return NULL;
-}
-
-/**
- * get_request - get a free request
- * @q: request_queue to allocate request from
- * @rw_flags: RW and SYNC flags
- * @bio: bio to allocate request for (can be %NULL)
- * @gfp_mask: allocation mask
- *
- * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
- * function keeps retrying under memory pressure and fails iff @q is dead.
- *
- * Must be callled with @q->queue_lock held and,
- * Returns %NULL on failure, with @q->queue_lock held.
- * Returns !%NULL on success, with @q->queue_lock *not held*.
- */
-static struct request *get_request(struct request_queue *q, int rw_flags,
- struct bio *bio, gfp_t gfp_mask)
-{
- const bool is_sync = rw_is_sync(rw_flags) != 0;
- DEFINE_WAIT(wait);
- struct request_list *rl;
- struct request *rq;
-
- rl = blk_get_rl(q, bio); /* transferred to @rq on success */
-retry:
- rq = __get_request(rl, rw_flags, bio, gfp_mask);
- if (rq)
- return rq;
-
- if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
- blk_put_rl(rl);
- return NULL;
+ pr_warn("Trying to write to read-only block-device %pg\n",
+ bio->bi_bdev);
}
-
- /* wait on @rl and retry */
- prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
- TASK_UNINTERRUPTIBLE);
-
- trace_block_sleeprq(q, bio, rw_flags & 1);
-
- spin_unlock_irq(q->queue_lock);
- io_schedule();
-
- /*
- * After sleeping, we become a "batching" process and will be able
- * to allocate at least one request, and up to a big batch of them
- * for a small period time. See ioc_batching, ioc_set_batching
- */
- ioc_set_batching(q, current->io_context);
-
- spin_lock_irq(q->queue_lock);
- finish_wait(&rl->wait[is_sync], &wait);
-
- goto retry;
}
-struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
+int should_fail_bio(struct bio *bio)
{
- struct request *rq;
-
- BUG_ON(rw != READ && rw != WRITE);
-
- /* create ioc upfront */
- create_io_context(gfp_mask, q->node);
-
- spin_lock_irq(q->queue_lock);
- rq = get_request(q, rw, NULL, gfp_mask);
- if (!rq)
- spin_unlock_irq(q->queue_lock);
- /* q->queue_lock is unlocked at this point */
-
- return rq;
+ if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
+ return -EIO;
+ return 0;
}
-EXPORT_SYMBOL(blk_get_request);
+ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
-/**
- * blk_make_request - given a bio, allocate a corresponding struct request.
- * @q: target request queue
- * @bio: The bio describing the memory mappings that will be submitted for IO.
- * It may be a chained-bio properly constructed by block/bio layer.
- * @gfp_mask: gfp flags to be used for memory allocation
- *
- * blk_make_request is the parallel of generic_make_request for BLOCK_PC
- * type commands. Where the struct request needs to be farther initialized by
- * the caller. It is passed a &struct bio, which describes the memory info of
- * the I/O transfer.
- *
- * The caller of blk_make_request must make sure that bi_io_vec
- * are set to describe the memory buffers. That bio_data_dir() will return
- * the needed direction of the request. (And all bio's in the passed bio-chain
- * are properly set accordingly)
- *
- * If called under none-sleepable conditions, mapped bio buffers must not
- * need bouncing, by calling the appropriate masked or flagged allocator,
- * suitable for the target device. Otherwise the call to blk_queue_bounce will
- * BUG.
- *
- * WARNING: When allocating/cloning a bio-chain, careful consideration should be
- * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
- * anything but the first bio in the chain. Otherwise you risk waiting for IO
- * completion of a bio that hasn't been submitted yet, thus resulting in a
- * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
- * of bio_alloc(), as that avoids the mempool deadlock.
- * If possible a big IO should be split into smaller parts when allocation
- * fails. Partial allocation should not be an error, or you risk a live-lock.
+/*
+ * Check whether this bio extends beyond the end of the device or partition.
+ * This may well happen - the kernel calls bread() without checking the size of
+ * the device, e.g., when mounting a file system.
*/
-struct request *blk_make_request(struct request_queue *q, struct bio *bio,
- gfp_t gfp_mask)
-{
- struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
-
- if (unlikely(!rq))
- return ERR_PTR(-ENOMEM);
-
- for_each_bio(bio) {
- struct bio *bounce_bio = bio;
- int ret;
-
- blk_queue_bounce(q, &bounce_bio);
- ret = blk_rq_append_bio(q, rq, bounce_bio);
- if (unlikely(ret)) {
- blk_put_request(rq);
- return ERR_PTR(ret);
- }
+static inline int bio_check_eod(struct bio *bio)
+{
+ sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
+ unsigned int nr_sectors = bio_sectors(bio);
+
+ if (nr_sectors &&
+ (nr_sectors > maxsector ||
+ bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
+ if (!maxsector)
+ return -EIO;
+ pr_info_ratelimited("%s: attempt to access beyond end of device\n"
+ "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
+ current->comm, bio->bi_bdev, bio->bi_opf,
+ bio->bi_iter.bi_sector, nr_sectors, maxsector);
+ return -EIO;
}
-
- return rq;
+ return 0;
}
-EXPORT_SYMBOL(blk_make_request);
-/**
- * blk_requeue_request - put a request back on queue
- * @q: request queue where request should be inserted
- * @rq: request to be inserted
- *
- * Description:
- * Drivers often keep queueing requests until the hardware cannot accept
- * more, when that condition happens we need to put the request back
- * on the queue. Must be called with queue lock held.
+/*
+ * Remap block n of partition p to block n+start(p) of the disk.
*/
-void blk_requeue_request(struct request_queue *q, struct request *rq)
+static int blk_partition_remap(struct bio *bio)
{
- blk_delete_timer(rq);
- blk_clear_rq_complete(rq);
- trace_block_rq_requeue(q, rq);
-
- if (blk_rq_tagged(rq))
- blk_queue_end_tag(q, rq);
-
- BUG_ON(blk_queued_rq(rq));
-
- elv_requeue_request(q, rq);
-}
-EXPORT_SYMBOL(blk_requeue_request);
+ struct block_device *p = bio->bi_bdev;
-static void add_acct_request(struct request_queue *q, struct request *rq,
- int where)
-{
- drive_stat_acct(rq, 1);
- __elv_add_request(q, rq, where);
-}
-
-static void part_round_stats_single(int cpu, struct hd_struct *part,
- unsigned long now)
-{
- if (now == part->stamp)
- return;
-
- if (part_in_flight(part)) {
- __part_stat_add(cpu, part, time_in_queue,
- part_in_flight(part) * (now - part->stamp));
- __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
+ if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
+ return -EIO;
+ if (bio_sectors(bio)) {
+ bio->bi_iter.bi_sector += p->bd_start_sect;
+ trace_block_bio_remap(bio, p->bd_dev,
+ bio->bi_iter.bi_sector -
+ p->bd_start_sect);
}
- part->stamp = now;
-}
-
-/**
- * part_round_stats() - Round off the performance stats on a struct disk_stats.
- * @cpu: cpu number for stats access
- * @part: target partition
- *
- * The average IO queue length and utilisation statistics are maintained
- * by observing the current state of the queue length and the amount of
- * time it has been in this state for.
- *
- * Normally, that accounting is done on IO completion, but that can result
- * in more than a second's worth of IO being accounted for within any one
- * second, leading to >100% utilisation. To deal with that, we call this
- * function to do a round-off before returning the results when reading
- * /proc/diskstats. This accounts immediately for all queue usage up to
- * the current jiffies and restarts the counters again.
- */
-void part_round_stats(int cpu, struct hd_struct *part)
-{
- unsigned long now = jiffies;
-
- if (part->partno)
- part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
- part_round_stats_single(cpu, part, now);
-}
-EXPORT_SYMBOL_GPL(part_round_stats);
-
-#ifdef CONFIG_PM_RUNTIME
-static void blk_pm_put_request(struct request *rq)
-{
- if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
- pm_runtime_mark_last_busy(rq->q->dev);
+ bio_set_flag(bio, BIO_REMAPPED);
+ return 0;
}
-#else
-static inline void blk_pm_put_request(struct request *rq) {}
-#endif
/*
- * queue lock must be held
+ * Check write append to a zoned block device.
*/
-void __blk_put_request(struct request_queue *q, struct request *req)
+static inline blk_status_t blk_check_zone_append(struct request_queue *q,
+ struct bio *bio)
{
- if (unlikely(!q))
- return;
- if (unlikely(--req->ref_count))
- return;
-
- blk_pm_put_request(req);
+ int nr_sectors = bio_sectors(bio);
- elv_completed_request(q, req);
+ /* Only applicable to zoned block devices */
+ if (!bdev_is_zoned(bio->bi_bdev))
+ return BLK_STS_NOTSUPP;
- /* this is a bio leak */
- WARN_ON(req->bio != NULL);
+ /* The bio sector must point to the start of a sequential zone */
+ if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector))
+ return BLK_STS_IOERR;
/*
- * Request may not have originated from ll_rw_blk. if not,
- * it didn't come out of our reserved rq pools
+ * Not allowed to cross zone boundaries. Otherwise, the BIO will be
+ * split and could result in non-contiguous sectors being written in
+ * different zones.
*/
- if (req->cmd_flags & REQ_ALLOCED) {
- unsigned int flags = req->cmd_flags;
- struct request_list *rl = blk_rq_rl(req);
+ if (nr_sectors > q->limits.chunk_sectors)
+ return BLK_STS_IOERR;
- BUG_ON(!list_empty(&req->queuelist));
- BUG_ON(!hlist_unhashed(&req->hash));
+ /* Make sure the BIO is small enough and will not get split */
+ if (nr_sectors > q->limits.max_zone_append_sectors)
+ return BLK_STS_IOERR;
- blk_free_request(rl, req);
- freed_request(rl, flags);
- blk_put_rl(rl);
- }
-}
-EXPORT_SYMBOL_GPL(__blk_put_request);
+ bio->bi_opf |= REQ_NOMERGE;
-void blk_put_request(struct request *req)
-{
- unsigned long flags;
- struct request_queue *q = req->q;
-
- spin_lock_irqsave(q->queue_lock, flags);
- __blk_put_request(q, req);
- spin_unlock_irqrestore(q->queue_lock, flags);
+ return BLK_STS_OK;
}
-EXPORT_SYMBOL(blk_put_request);
-/**
- * blk_add_request_payload - add a payload to a request
- * @rq: request to update
- * @page: page backing the payload
- * @len: length of the payload.
- *
- * This allows to later add a payload to an already submitted request by
- * a block driver. The driver needs to take care of freeing the payload
- * itself.
- *
- * Note that this is a quite horrible hack and nothing but handling of
- * discard requests should ever use it.
- */
-void blk_add_request_payload(struct request *rq, struct page *page,
- unsigned int len)
+static void __submit_bio(struct bio *bio)
{
- struct bio *bio = rq->bio;
+ /* If plug is not used, add new plug here to cache nsecs time. */
+ struct blk_plug plug;
- bio->bi_io_vec->bv_page = page;
- bio->bi_io_vec->bv_offset = 0;
- bio->bi_io_vec->bv_len = len;
+ if (unlikely(!blk_crypto_bio_prep(&bio)))
+ return;
- bio->bi_size = len;
- bio->bi_vcnt = 1;
- bio->bi_phys_segments = 1;
+ blk_start_plug(&plug);
+
+ if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO)) {
+ blk_mq_submit_bio(bio);
+ } else if (likely(bio_queue_enter(bio) == 0)) {
+ struct gendisk *disk = bio->bi_bdev->bd_disk;
+
+ if ((bio->bi_opf & REQ_POLLED) &&
+ !(disk->queue->limits.features & BLK_FEAT_POLL)) {
+ bio->bi_status = BLK_STS_NOTSUPP;
+ bio_endio(bio);
+ } else {
+ disk->fops->submit_bio(bio);
+ }
+ blk_queue_exit(disk->queue);
+ }
- rq->__data_len = rq->resid_len = len;
- rq->nr_phys_segments = 1;
- rq->buffer = bio_data(bio);
+ blk_finish_plug(&plug);
}
-EXPORT_SYMBOL_GPL(blk_add_request_payload);
-static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
- struct bio *bio)
+/*
+ * The loop in this function may be a bit non-obvious, and so deserves some
+ * explanation:
+ *
+ * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
+ * that), so we have a list with a single bio.
+ * - We pretend that we have just taken it off a longer list, so we assign
+ * bio_list to a pointer to the bio_list_on_stack, thus initialising the
+ * bio_list of new bios to be added. ->submit_bio() may indeed add some more
+ * bios through a recursive call to submit_bio_noacct. If it did, we find a
+ * non-NULL value in bio_list and re-enter the loop from the top.
+ * - In this case we really did just take the bio off the top of the list (no
+ * pretending) and so remove it from bio_list, and call into ->submit_bio()
+ * again.
+ *
+ * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
+ * bio_list_on_stack[1] contains bios that were submitted before the current
+ * ->submit_bio(), but that haven't been processed yet.
+ */
+static void __submit_bio_noacct(struct bio *bio)
{
- const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
-
- if (!ll_back_merge_fn(q, req, bio))
- return false;
-
- trace_block_bio_backmerge(q, req, bio);
+ struct bio_list bio_list_on_stack[2];
- if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
- blk_rq_set_mixed_merge(req);
-
- req->biotail->bi_next = bio;
- req->biotail = bio;
- req->__data_len += bio->bi_size;
- req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
-
- drive_stat_acct(req, 0);
- return true;
-}
+ BUG_ON(bio->bi_next);
-static bool bio_attempt_front_merge(struct request_queue *q,
- struct request *req, struct bio *bio)
-{
- const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
+ bio_list_init(&bio_list_on_stack[0]);
+ current->bio_list = bio_list_on_stack;
- if (!ll_front_merge_fn(q, req, bio))
- return false;
+ do {
+ struct request_queue *q = bdev_get_queue(bio->bi_bdev);
+ struct bio_list lower, same;
- trace_block_bio_frontmerge(q, req, bio);
+ /*
+ * Create a fresh bio_list for all subordinate requests.
+ */
+ bio_list_on_stack[1] = bio_list_on_stack[0];
+ bio_list_init(&bio_list_on_stack[0]);
- if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
- blk_rq_set_mixed_merge(req);
+ __submit_bio(bio);
- bio->bi_next = req->bio;
- req->bio = bio;
+ /*
+ * Sort new bios into those for a lower level and those for the
+ * same level.
+ */
+ bio_list_init(&lower);
+ bio_list_init(&same);
+ while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
+ if (q == bdev_get_queue(bio->bi_bdev))
+ bio_list_add(&same, bio);
+ else
+ bio_list_add(&lower, bio);
- /*
- * may not be valid. if the low level driver said
- * it didn't need a bounce buffer then it better
- * not touch req->buffer either...
- */
- req->buffer = bio_data(bio);
- req->__sector = bio->bi_sector;
- req->__data_len += bio->bi_size;
- req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
+ /*
+ * Now assemble so we handle the lowest level first.
+ */
+ bio_list_merge(&bio_list_on_stack[0], &lower);
+ bio_list_merge(&bio_list_on_stack[0], &same);
+ bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
+ } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
- drive_stat_acct(req, 0);
- return true;
+ current->bio_list = NULL;
}
-/**
- * attempt_plug_merge - try to merge with %current's plugged list
- * @q: request_queue new bio is being queued at
- * @bio: new bio being queued
- * @request_count: out parameter for number of traversed plugged requests
- *
- * Determine whether @bio being queued on @q can be merged with a request
- * on %current's plugged list. Returns %true if merge was successful,
- * otherwise %false.
- *
- * Plugging coalesces IOs from the same issuer for the same purpose without
- * going through @q->queue_lock. As such it's more of an issuing mechanism
- * than scheduling, and the request, while may have elvpriv data, is not
- * added on the elevator at this point. In addition, we don't have
- * reliable access to the elevator outside queue lock. Only check basic
- * merging parameters without querying the elevator.
- */
-static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
- unsigned int *request_count)
+static void __submit_bio_noacct_mq(struct bio *bio)
{
- struct blk_plug *plug;
- struct request *rq;
- bool ret = false;
+ struct bio_list bio_list[2] = { };
- plug = current->plug;
- if (!plug)
- goto out;
- *request_count = 0;
-
- list_for_each_entry_reverse(rq, &plug->list, queuelist) {
- int el_ret;
-
- if (rq->q == q)
- (*request_count)++;
-
- if (rq->q != q || !blk_rq_merge_ok(rq, bio))
- continue;
-
- el_ret = blk_try_merge(rq, bio);
- if (el_ret == ELEVATOR_BACK_MERGE) {
- ret = bio_attempt_back_merge(q, rq, bio);
- if (ret)
- break;
- } else if (el_ret == ELEVATOR_FRONT_MERGE) {
- ret = bio_attempt_front_merge(q, rq, bio);
- if (ret)
- break;
- }
- }
-out:
- return ret;
-}
-
-void init_request_from_bio(struct request *req, struct bio *bio)
-{
- req->cmd_type = REQ_TYPE_FS;
+ current->bio_list = bio_list;
- req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
- if (bio->bi_rw & REQ_RAHEAD)
- req->cmd_flags |= REQ_FAILFAST_MASK;
+ do {
+ __submit_bio(bio);
+ } while ((bio = bio_list_pop(&bio_list[0])));
- req->errors = 0;
- req->__sector = bio->bi_sector;
- req->ioprio = bio_prio(bio);
- blk_rq_bio_prep(req->q, req, bio);
+ current->bio_list = NULL;
}
-void blk_queue_bio(struct request_queue *q, struct bio *bio)
+void submit_bio_noacct_nocheck(struct bio *bio, bool split)
{
- const bool sync = !!(bio->bi_rw & REQ_SYNC);
- struct blk_plug *plug;
- int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
- struct request *req;
- unsigned int request_count = 0;
+ blk_cgroup_bio_start(bio);
- /*
- * low level driver can indicate that it wants pages above a
- * certain limit bounced to low memory (ie for highmem, or even
- * ISA dma in theory)
- */
- blk_queue_bounce(q, &bio);
-
- if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
- bio_endio(bio, -EIO);
- return;
- }
-
- if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
- spin_lock_irq(q->queue_lock);
- where = ELEVATOR_INSERT_FLUSH;
- goto get_rq;
- }
-
- /*
- * Check if we can merge with the plugged list before grabbing
- * any locks.
- */
- if (attempt_plug_merge(q, bio, &request_count))
- return;
-
- spin_lock_irq(q->queue_lock);
-
- el_ret = elv_merge(q, &req, bio);
- if (el_ret == ELEVATOR_BACK_MERGE) {
- if (bio_attempt_back_merge(q, req, bio)) {
- elv_bio_merged(q, req, bio);
- if (!attempt_back_merge(q, req))
- elv_merged_request(q, req, el_ret);
- goto out_unlock;
- }
- } else if (el_ret == ELEVATOR_FRONT_MERGE) {
- if (bio_attempt_front_merge(q, req, bio)) {
- elv_bio_merged(q, req, bio);
- if (!attempt_front_merge(q, req))
- elv_merged_request(q, req, el_ret);
- goto out_unlock;
- }
- }
-
-get_rq:
- /*
- * This sync check and mask will be re-done in init_request_from_bio(),
- * but we need to set it earlier to expose the sync flag to the
- * rq allocator and io schedulers.
- */
- rw_flags = bio_data_dir(bio);
- if (sync)
- rw_flags |= REQ_SYNC;
-
- /*
- * Grab a free request. This is might sleep but can not fail.
- * Returns with the queue unlocked.
- */
- req = get_request(q, rw_flags, bio, GFP_NOIO);
- if (unlikely(!req)) {
- bio_endio(bio, -ENODEV); /* @q is dead */
- goto out_unlock;
+ if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
+ trace_block_bio_queue(bio);
+ /*
+ * Now that enqueuing has been traced, we need to trace
+ * completion as well.
+ */
+ bio_set_flag(bio, BIO_TRACE_COMPLETION);
}
/*
- * After dropping the lock and possibly sleeping here, our request
- * may now be mergeable after it had proven unmergeable (above).
- * We don't worry about that case for efficiency. It won't happen
- * often, and the elevators are able to handle it.
+ * We only want one ->submit_bio to be active at a time, else stack
+ * usage with stacked devices could be a problem. Use current->bio_list
+ * to collect a list of requests submitted by a ->submit_bio method
+ * while it is active, and then process them after it returned.
*/
- init_request_from_bio(req, bio);
-
- if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
- req->cpu = raw_smp_processor_id();
-
- plug = current->plug;
- if (plug) {
- /*
- * If this is the first request added after a plug, fire
- * of a plug trace. If others have been added before, check
- * if we have multiple devices in this plug. If so, make a
- * note to sort the list before dispatch.
- */
- if (list_empty(&plug->list))
- trace_block_plug(q);
- else {
- if (request_count >= BLK_MAX_REQUEST_COUNT) {
- blk_flush_plug_list(plug, false);
- trace_block_plug(q);
- }
- }
- list_add_tail(&req->queuelist, &plug->list);
- drive_stat_acct(req, 1);
+ if (current->bio_list) {
+ if (split)
+ bio_list_add_head(&current->bio_list[0], bio);
+ else
+ bio_list_add(&current->bio_list[0], bio);
+ } else if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO)) {
+ __submit_bio_noacct_mq(bio);
} else {
- spin_lock_irq(q->queue_lock);
- add_acct_request(q, req, where);
- __blk_run_queue(q);
-out_unlock:
- spin_unlock_irq(q->queue_lock);
- }
-}
-EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
-
-/*
- * If bio->bi_dev is a partition, remap the location
- */
-static inline void blk_partition_remap(struct bio *bio)
-{
- struct block_device *bdev = bio->bi_bdev;
-
- if (bio_sectors(bio) && bdev != bdev->bd_contains) {
- struct hd_struct *p = bdev->bd_part;
-
- bio->bi_sector += p->start_sect;
- bio->bi_bdev = bdev->bd_contains;
-
- trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
- bdev->bd_dev,
- bio->bi_sector - p->start_sect);
+ __submit_bio_noacct(bio);
}
}
-static void handle_bad_sector(struct bio *bio)
+static blk_status_t blk_validate_atomic_write_op_size(struct request_queue *q,
+ struct bio *bio)
{
- char b[BDEVNAME_SIZE];
-
- printk(KERN_INFO "attempt to access beyond end of device\n");
- printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
- bdevname(bio->bi_bdev, b),
- bio->bi_rw,
- (unsigned long long)bio_end_sector(bio),
- (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
-
- set_bit(BIO_EOF, &bio->bi_flags);
-}
-
-#ifdef CONFIG_FAIL_MAKE_REQUEST
+ if (bio->bi_iter.bi_size > queue_atomic_write_unit_max_bytes(q))
+ return BLK_STS_INVAL;
-static DECLARE_FAULT_ATTR(fail_make_request);
+ if (bio->bi_iter.bi_size % queue_atomic_write_unit_min_bytes(q))
+ return BLK_STS_INVAL;
-static int __init setup_fail_make_request(char *str)
-{
- return setup_fault_attr(&fail_make_request, str);
-}
-__setup("fail_make_request=", setup_fail_make_request);
-
-static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
-{
- return part->make_it_fail && should_fail(&fail_make_request, bytes);
+ return BLK_STS_OK;
}
-static int __init fail_make_request_debugfs(void)
-{
- struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
- NULL, &fail_make_request);
-
- return IS_ERR(dir) ? PTR_ERR(dir) : 0;
-}
-
-late_initcall(fail_make_request_debugfs);
-
-#else /* CONFIG_FAIL_MAKE_REQUEST */
-
-static inline bool should_fail_request(struct hd_struct *part,
- unsigned int bytes)
-{
- return false;
-}
-
-#endif /* CONFIG_FAIL_MAKE_REQUEST */
-
-/*
- * Check whether this bio extends beyond the end of the device.
+/**
+ * submit_bio_noacct - re-submit a bio to the block device layer for I/O
+ * @bio: The bio describing the location in memory and on the device.
+ *
+ * This is a version of submit_bio() that shall only be used for I/O that is
+ * resubmitted to lower level drivers by stacking block drivers. All file
+ * systems and other upper level users of the block layer should use
+ * submit_bio() instead.
*/
-static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
-{
- sector_t maxsector;
-
- if (!nr_sectors)
- return 0;
-
- /* Test device or partition size, when known. */
- maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
- if (maxsector) {
- sector_t sector = bio->bi_sector;
-
- if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
- /*
- * This may well happen - the kernel calls bread()
- * without checking the size of the device, e.g., when
- * mounting a device.
- */
- handle_bad_sector(bio);
- return 1;
- }
- }
-
- return 0;
-}
-
-static noinline_for_stack bool
-generic_make_request_checks(struct bio *bio)
+void submit_bio_noacct(struct bio *bio)
{
- struct request_queue *q;
- int nr_sectors = bio_sectors(bio);
- int err = -EIO;
- char b[BDEVNAME_SIZE];
- struct hd_struct *part;
+ struct block_device *bdev = bio->bi_bdev;
+ struct request_queue *q = bdev_get_queue(bdev);
+ blk_status_t status = BLK_STS_IOERR;
might_sleep();
- if (bio_check_eod(bio, nr_sectors))
- goto end_io;
-
- q = bdev_get_queue(bio->bi_bdev);
- if (unlikely(!q)) {
- printk(KERN_ERR
- "generic_make_request: Trying to access "
- "nonexistent block-device %s (%Lu)\n",
- bdevname(bio->bi_bdev, b),
- (long long) bio->bi_sector);
- goto end_io;
- }
-
- if (likely(bio_is_rw(bio) &&
- nr_sectors > queue_max_hw_sectors(q))) {
- printk(KERN_ERR "bio too big device %s (%u > %u)\n",
- bdevname(bio->bi_bdev, b),
- bio_sectors(bio),
- queue_max_hw_sectors(q));
- goto end_io;
- }
-
- part = bio->bi_bdev->bd_part;
- if (should_fail_request(part, bio->bi_size) ||
- should_fail_request(&part_to_disk(part)->part0,
- bio->bi_size))
- goto end_io;
-
/*
- * If this device has partitions, remap block n
- * of partition p to block n+start(p) of the disk.
+ * For a REQ_NOWAIT based request, return -EOPNOTSUPP
+ * if queue does not support NOWAIT.
*/
- blk_partition_remap(bio);
+ if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
+ goto not_supported;
- if (bio_check_eod(bio, nr_sectors))
+ if (should_fail_bio(bio))
goto end_io;
+ bio_check_ro(bio);
+ if (!bio_flagged(bio, BIO_REMAPPED)) {
+ if (unlikely(bio_check_eod(bio)))
+ goto end_io;
+ if (bdev_is_partition(bdev) &&
+ unlikely(blk_partition_remap(bio)))
+ goto end_io;
+ }
/*
- * Filter flush bio's early so that make_request based
- * drivers without flush support don't have to worry
- * about them.
+ * Filter flush bio's early so that bio based drivers without flush
+ * support don't have to worry about them.
*/
- if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
- bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
- if (!nr_sectors) {
- err = 0;
+ if (op_is_flush(bio->bi_opf)) {
+ if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
+ bio_op(bio) != REQ_OP_ZONE_APPEND))
goto end_io;
+ if (!bdev_write_cache(bdev)) {
+ bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
+ if (!bio_sectors(bio)) {
+ status = BLK_STS_OK;
+ goto end_io;
+ }
}
}
- if ((bio->bi_rw & REQ_DISCARD) &&
- (!blk_queue_discard(q) ||
- ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
- err = -EOPNOTSUPP;
- goto end_io;
- }
-
- if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
- err = -EOPNOTSUPP;
- goto end_io;
+ switch (bio_op(bio)) {
+ case REQ_OP_READ:
+ break;
+ case REQ_OP_WRITE:
+ if (bio->bi_opf & REQ_ATOMIC) {
+ status = blk_validate_atomic_write_op_size(q, bio);
+ if (status != BLK_STS_OK)
+ goto end_io;
+ }
+ break;
+ case REQ_OP_FLUSH:
+ /*
+ * REQ_OP_FLUSH can't be submitted through bios, it is only
+ * synthetized in struct request by the flush state machine.
+ */
+ goto not_supported;
+ case REQ_OP_DISCARD:
+ if (!bdev_max_discard_sectors(bdev))
+ goto not_supported;
+ break;
+ case REQ_OP_SECURE_ERASE:
+ if (!bdev_max_secure_erase_sectors(bdev))
+ goto not_supported;
+ break;
+ case REQ_OP_ZONE_APPEND:
+ status = blk_check_zone_append(q, bio);
+ if (status != BLK_STS_OK)
+ goto end_io;
+ break;
+ case REQ_OP_WRITE_ZEROES:
+ if (!q->limits.max_write_zeroes_sectors)
+ goto not_supported;
+ break;
+ case REQ_OP_ZONE_RESET:
+ case REQ_OP_ZONE_OPEN:
+ case REQ_OP_ZONE_CLOSE:
+ case REQ_OP_ZONE_FINISH:
+ case REQ_OP_ZONE_RESET_ALL:
+ if (!bdev_is_zoned(bio->bi_bdev))
+ goto not_supported;
+ break;
+ case REQ_OP_DRV_IN:
+ case REQ_OP_DRV_OUT:
+ /*
+ * Driver private operations are only used with passthrough
+ * requests.
+ */
+ fallthrough;
+ default:
+ goto not_supported;
}
- /*
- * Various block parts want %current->io_context and lazy ioc
- * allocation ends up trading a lot of pain for a small amount of
- * memory. Just allocate it upfront. This may fail and block
- * layer knows how to live with it.
- */
- create_io_context(GFP_ATOMIC, q->node);
-
- if (blk_throtl_bio(q, bio))
- return false; /* throttled, will be resubmitted later */
-
- trace_block_bio_queue(q, bio);
- return true;
+ if (blk_throtl_bio(bio))
+ return;
+ submit_bio_noacct_nocheck(bio, false);
+ return;
+not_supported:
+ status = BLK_STS_NOTSUPP;
end_io:
- bio_endio(bio, err);
- return false;
+ bio->bi_status = status;
+ bio_endio(bio);
}
+EXPORT_SYMBOL(submit_bio_noacct);
-/**
- * generic_make_request - hand a buffer to its device driver for I/O
- * @bio: The bio describing the location in memory and on the device.
- *
- * generic_make_request() is used to make I/O requests of block
- * devices. It is passed a &struct bio, which describes the I/O that needs
- * to be done.
- *
- * generic_make_request() does not return any status. The
- * success/failure status of the request, along with notification of
- * completion, is delivered asynchronously through the bio->bi_end_io
- * function described (one day) else where.
- *
- * The caller of generic_make_request must make sure that bi_io_vec
- * are set to describe the memory buffer, and that bi_dev and bi_sector are
- * set to describe the device address, and the
- * bi_end_io and optionally bi_private are set to describe how
- * completion notification should be signaled.
- *
- * generic_make_request and the drivers it calls may use bi_next if this
- * bio happens to be merged with someone else, and may resubmit the bio to
- * a lower device by calling into generic_make_request recursively, which
- * means the bio should NOT be touched after the call to ->make_request_fn.
- */
-void generic_make_request(struct bio *bio)
+static void bio_set_ioprio(struct bio *bio)
{
- struct bio_list bio_list_on_stack;
-
- if (!generic_make_request_checks(bio))
- return;
-
- /*
- * We only want one ->make_request_fn to be active at a time, else
- * stack usage with stacked devices could be a problem. So use
- * current->bio_list to keep a list of requests submited by a
- * make_request_fn function. current->bio_list is also used as a
- * flag to say if generic_make_request is currently active in this
- * task or not. If it is NULL, then no make_request is active. If
- * it is non-NULL, then a make_request is active, and new requests
- * should be added at the tail
- */
- if (current->bio_list) {
- bio_list_add(current->bio_list, bio);
- return;
- }
-
- /* following loop may be a bit non-obvious, and so deserves some
- * explanation.
- * Before entering the loop, bio->bi_next is NULL (as all callers
- * ensure that) so we have a list with a single bio.
- * We pretend that we have just taken it off a longer list, so
- * we assign bio_list to a pointer to the bio_list_on_stack,
- * thus initialising the bio_list of new bios to be
- * added. ->make_request() may indeed add some more bios
- * through a recursive call to generic_make_request. If it
- * did, we find a non-NULL value in bio_list and re-enter the loop
- * from the top. In this case we really did just take the bio
- * of the top of the list (no pretending) and so remove it from
- * bio_list, and call into ->make_request() again.
- */
- BUG_ON(bio->bi_next);
- bio_list_init(&bio_list_on_stack);
- current->bio_list = &bio_list_on_stack;
- do {
- struct request_queue *q = bdev_get_queue(bio->bi_bdev);
-
- q->make_request_fn(q, bio);
-
- bio = bio_list_pop(current->bio_list);
- } while (bio);
- current->bio_list = NULL; /* deactivate */
+ /* Nobody set ioprio so far? Initialize it based on task's nice value */
+ if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
+ bio->bi_ioprio = get_current_ioprio();
+ blkcg_set_ioprio(bio);
}
-EXPORT_SYMBOL(generic_make_request);
/**
* submit_bio - submit a bio to the block device layer for I/O
- * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
* @bio: The &struct bio which describes the I/O
*
- * submit_bio() is very similar in purpose to generic_make_request(), and
- * uses that function to do most of the work. Both are fairly rough
- * interfaces; @bio must be presetup and ready for I/O.
+ * submit_bio() is used to submit I/O requests to block devices. It is passed a
+ * fully set up &struct bio that describes the I/O that needs to be done. The
+ * bio will be sent to the device described by the bi_bdev field.
*
+ * The success/failure status of the request, along with notification of
+ * completion, is delivered asynchronously through the ->bi_end_io() callback
+ * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has
+ * been called.
*/
-void submit_bio(int rw, struct bio *bio)
+void submit_bio(struct bio *bio)
{
- bio->bi_rw |= rw;
-
- /*
- * If it's a regular read/write or a barrier with data attached,
- * go through the normal accounting stuff before submission.
- */
- if (bio_has_data(bio)) {
- unsigned int count;
-
- if (unlikely(rw & REQ_WRITE_SAME))
- count = bdev_logical_block_size(bio->bi_bdev) >> 9;
- else
- count = bio_sectors(bio);
-
- if (rw & WRITE) {
- count_vm_events(PGPGOUT, count);
- } else {
- task_io_account_read(bio->bi_size);
- count_vm_events(PGPGIN, count);
- }
-
- if (unlikely(block_dump)) {
- char b[BDEVNAME_SIZE];
- printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
- current->comm, task_pid_nr(current),
- (rw & WRITE) ? "WRITE" : "READ",
- (unsigned long long)bio->bi_sector,
- bdevname(bio->bi_bdev, b),
- count);
- }
+ if (bio_op(bio) == REQ_OP_READ) {
+ task_io_account_read(bio->bi_iter.bi_size);
+ count_vm_events(PGPGIN, bio_sectors(bio));
+ } else if (bio_op(bio) == REQ_OP_WRITE) {
+ count_vm_events(PGPGOUT, bio_sectors(bio));
}
- generic_make_request(bio);
+ bio_set_ioprio(bio);
+ submit_bio_noacct(bio);
}
EXPORT_SYMBOL(submit_bio);
/**
- * blk_rq_check_limits - Helper function to check a request for the queue limit
- * @q: the queue
- * @rq: the request being checked
+ * bio_poll - poll for BIO completions
+ * @bio: bio to poll for
+ * @iob: batches of IO
+ * @flags: BLK_POLL_* flags that control the behavior
*
- * Description:
- * @rq may have been made based on weaker limitations of upper-level queues
- * in request stacking drivers, and it may violate the limitation of @q.
- * Since the block layer and the underlying device driver trust @rq
- * after it is inserted to @q, it should be checked against @q before
- * the insertion using this generic function.
+ * Poll for completions on queue associated with the bio. Returns number of
+ * completed entries found.
*
- * This function should also be useful for request stacking drivers
- * in some cases below, so export this function.
- * Request stacking drivers like request-based dm may change the queue
- * limits while requests are in the queue (e.g. dm's table swapping).
- * Such request stacking drivers should check those requests agaist
- * the new queue limits again when they dispatch those requests,
- * although such checkings are also done against the old queue limits
- * when submitting requests.
- */
-int blk_rq_check_limits(struct request_queue *q, struct request *rq)
-{
- if (!rq_mergeable(rq))
- return 0;
-
- if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
- printk(KERN_ERR "%s: over max size limit.\n", __func__);
- return -EIO;
- }
-
- /*
- * queue's settings related to segment counting like q->bounce_pfn
- * may differ from that of other stacking queues.
- * Recalculate it to check the request correctly on this queue's
- * limitation.
- */
- blk_recalc_rq_segments(rq);
- if (rq->nr_phys_segments > queue_max_segments(q)) {
- printk(KERN_ERR "%s: over max segments limit.\n", __func__);
- return -EIO;
- }
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(blk_rq_check_limits);
-
-/**
- * blk_insert_cloned_request - Helper for stacking drivers to submit a request
- * @q: the queue to submit the request
- * @rq: the request being queued
+ * Note: the caller must either be the context that submitted @bio, or
+ * be in a RCU critical section to prevent freeing of @bio.
*/
-int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
+int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
{
- unsigned long flags;
- int where = ELEVATOR_INSERT_BACK;
-
- if (blk_rq_check_limits(q, rq))
- return -EIO;
-
- if (rq->rq_disk &&
- should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
- return -EIO;
-
- spin_lock_irqsave(q->queue_lock, flags);
- if (unlikely(blk_queue_dying(q))) {
- spin_unlock_irqrestore(q->queue_lock, flags);
- return -ENODEV;
- }
-
- /*
- * Submitting request must be dequeued before calling this function
- * because it will be linked to another request_queue
- */
- BUG_ON(blk_queued_rq(rq));
-
- if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
- where = ELEVATOR_INSERT_FLUSH;
-
- add_acct_request(q, rq, where);
- if (where == ELEVATOR_INSERT_FLUSH)
- __blk_run_queue(q);
- spin_unlock_irqrestore(q->queue_lock, flags);
+ blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
+ struct block_device *bdev;
+ struct request_queue *q;
+ int ret = 0;
- return 0;
-}
-EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
+ bdev = READ_ONCE(bio->bi_bdev);
+ if (!bdev)
+ return 0;
-/**
- * blk_rq_err_bytes - determine number of bytes till the next failure boundary
- * @rq: request to examine
- *
- * Description:
- * A request could be merge of IOs which require different failure
- * handling. This function determines the number of bytes which
- * can be failed from the beginning of the request without
- * crossing into area which need to be retried further.
- *
- * Return:
- * The number of bytes to fail.
- *
- * Context:
- * queue_lock must be held.
- */
-unsigned int blk_rq_err_bytes(const struct request *rq)
-{
- unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
- unsigned int bytes = 0;
- struct bio *bio;
+ q = bdev_get_queue(bdev);
+ if (cookie == BLK_QC_T_NONE)
+ return 0;
- if (!(rq->cmd_flags & REQ_MIXED_MERGE))
- return blk_rq_bytes(rq);
+ blk_flush_plug(current->plug, false);
/*
- * Currently the only 'mixing' which can happen is between
- * different fastfail types. We can safely fail portions
- * which have all the failfast bits that the first one has -
- * the ones which are at least as eager to fail as the first
- * one.
+ * We need to be able to enter a frozen queue, similar to how
+ * timeouts also need to do that. If that is blocked, then we can
+ * have pending IO when a queue freeze is started, and then the
+ * wait for the freeze to finish will wait for polled requests to
+ * timeout as the poller is preventer from entering the queue and
+ * completing them. As long as we prevent new IO from being queued,
+ * that should be all that matters.
*/
- for (bio = rq->bio; bio; bio = bio->bi_next) {
- if ((bio->bi_rw & ff) != ff)
- break;
- bytes += bio->bi_size;
- }
-
- /* this could lead to infinite loop */
- BUG_ON(blk_rq_bytes(rq) && !bytes);
- return bytes;
-}
-EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
+ if (!percpu_ref_tryget(&q->q_usage_counter))
+ return 0;
+ if (queue_is_mq(q)) {
+ ret = blk_mq_poll(q, cookie, iob, flags);
+ } else {
+ struct gendisk *disk = q->disk;
-static void blk_account_io_completion(struct request *req, unsigned int bytes)
-{
- if (blk_do_io_stat(req)) {
- const int rw = rq_data_dir(req);
- struct hd_struct *part;
- int cpu;
-
- cpu = part_stat_lock();
- part = req->part;
- part_stat_add(cpu, part, sectors[rw], bytes >> 9);
- part_stat_unlock();
- }
-}
-
-static void blk_account_io_done(struct request *req)
-{
- /*
- * Account IO completion. flush_rq isn't accounted as a
- * normal IO on queueing nor completion. Accounting the
- * containing request is enough.
- */
- if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
- unsigned long duration = jiffies - req->start_time;
- const int rw = rq_data_dir(req);
- struct hd_struct *part;
- int cpu;
-
- cpu = part_stat_lock();
- part = req->part;
-
- part_stat_inc(cpu, part, ios[rw]);
- part_stat_add(cpu, part, ticks[rw], duration);
- part_round_stats(cpu, part);
- part_dec_in_flight(part, rw);
-
- hd_struct_put(part);
- part_stat_unlock();
+ if ((q->limits.features & BLK_FEAT_POLL) && disk &&
+ disk->fops->poll_bio)
+ ret = disk->fops->poll_bio(bio, iob, flags);
}
+ blk_queue_exit(q);
+ return ret;
}
+EXPORT_SYMBOL_GPL(bio_poll);
-#ifdef CONFIG_PM_RUNTIME
/*
- * Don't process normal requests when queue is suspended
- * or in the process of suspending/resuming
- */
-static struct request *blk_pm_peek_request(struct request_queue *q,
- struct request *rq)
-{
- if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
- (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
- return NULL;
- else
- return rq;
-}
-#else
-static inline struct request *blk_pm_peek_request(struct request_queue *q,
- struct request *rq)
-{
- return rq;
-}
-#endif
-
-/**
- * blk_peek_request - peek at the top of a request queue
- * @q: request queue to peek at
- *
- * Description:
- * Return the request at the top of @q. The returned request
- * should be started using blk_start_request() before LLD starts
- * processing it.
- *
- * Return:
- * Pointer to the request at the top of @q if available. Null
- * otherwise.
- *
- * Context:
- * queue_lock must be held.
- */
-struct request *blk_peek_request(struct request_queue *q)
-{
- struct request *rq;
- int ret;
-
- while ((rq = __elv_next_request(q)) != NULL) {
-
- rq = blk_pm_peek_request(q, rq);
- if (!rq)
- break;
-
- if (!(rq->cmd_flags & REQ_STARTED)) {
- /*
- * This is the first time the device driver
- * sees this request (possibly after
- * requeueing). Notify IO scheduler.
- */
- if (rq->cmd_flags & REQ_SORTED)
- elv_activate_rq(q, rq);
-
- /*
- * just mark as started even if we don't start
- * it, a request that has been delayed should
- * not be passed by new incoming requests
- */
- rq->cmd_flags |= REQ_STARTED;
- trace_block_rq_issue(q, rq);
- }
-
- if (!q->boundary_rq || q->boundary_rq == rq) {
- q->end_sector = rq_end_sector(rq);
- q->boundary_rq = NULL;
- }
-
- if (rq->cmd_flags & REQ_DONTPREP)
- break;
-
- if (q->dma_drain_size && blk_rq_bytes(rq)) {
- /*
- * make sure space for the drain appears we
- * know we can do this because max_hw_segments
- * has been adjusted to be one fewer than the
- * device can handle
- */
- rq->nr_phys_segments++;
- }
-
- if (!q->prep_rq_fn)
- break;
-
- ret = q->prep_rq_fn(q, rq);
- if (ret == BLKPREP_OK) {
- break;
- } else if (ret == BLKPREP_DEFER) {
- /*
- * the request may have been (partially) prepped.
- * we need to keep this request in the front to
- * avoid resource deadlock. REQ_STARTED will
- * prevent other fs requests from passing this one.
- */
- if (q->dma_drain_size && blk_rq_bytes(rq) &&
- !(rq->cmd_flags & REQ_DONTPREP)) {
- /*
- * remove the space for the drain we added
- * so that we don't add it again
- */
- --rq->nr_phys_segments;
- }
-
- rq = NULL;
- break;
- } else if (ret == BLKPREP_KILL) {
- rq->cmd_flags |= REQ_QUIET;
- /*
- * Mark this request as started so we don't trigger
- * any debug logic in the end I/O path.
- */
- blk_start_request(rq);
- __blk_end_request_all(rq, -EIO);
- } else {
- printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
- break;
- }
- }
-
- return rq;
-}
-EXPORT_SYMBOL(blk_peek_request);
-
-void blk_dequeue_request(struct request *rq)
-{
- struct request_queue *q = rq->q;
-
- BUG_ON(list_empty(&rq->queuelist));
- BUG_ON(ELV_ON_HASH(rq));
-
- list_del_init(&rq->queuelist);
-
- /*
- * the time frame between a request being removed from the lists
- * and to it is freed is accounted as io that is in progress at
- * the driver side.
- */
- if (blk_account_rq(rq)) {
- q->in_flight[rq_is_sync(rq)]++;
- set_io_start_time_ns(rq);
- }
-}
-
-/**
- * blk_start_request - start request processing on the driver
- * @req: request to dequeue
- *
- * Description:
- * Dequeue @req and start timeout timer on it. This hands off the
- * request to the driver.
- *
- * Block internal functions which don't want to start timer should
- * call blk_dequeue_request().
- *
- * Context:
- * queue_lock must be held.
- */
-void blk_start_request(struct request *req)
-{
- blk_dequeue_request(req);
-
- /*
- * We are now handing the request to the hardware, initialize
- * resid_len to full count and add the timeout handler.
- */
- req->resid_len = blk_rq_bytes(req);
- if (unlikely(blk_bidi_rq(req)))
- req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
-
- blk_add_timer(req);
-}
-EXPORT_SYMBOL(blk_start_request);
-
-/**
- * blk_fetch_request - fetch a request from a request queue
- * @q: request queue to fetch a request from
- *
- * Description:
- * Return the request at the top of @q. The request is started on
- * return and LLD can start processing it immediately.
- *
- * Return:
- * Pointer to the request at the top of @q if available. Null
- * otherwise.
- *
- * Context:
- * queue_lock must be held.
+ * Helper to implement file_operations.iopoll. Requires the bio to be stored
+ * in iocb->private, and cleared before freeing the bio.
*/
-struct request *blk_fetch_request(struct request_queue *q)
+int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
+ unsigned int flags)
{
- struct request *rq;
-
- rq = blk_peek_request(q);
- if (rq)
- blk_start_request(rq);
- return rq;
-}
-EXPORT_SYMBOL(blk_fetch_request);
-
-/**
- * blk_update_request - Special helper function for request stacking drivers
- * @req: the request being processed
- * @error: %0 for success, < %0 for error
- * @nr_bytes: number of bytes to complete @req
- *
- * Description:
- * Ends I/O on a number of bytes attached to @req, but doesn't complete
- * the request structure even if @req doesn't have leftover.
- * If @req has leftover, sets it up for the next range of segments.
- *
- * This special helper function is only for request stacking drivers
- * (e.g. request-based dm) so that they can handle partial completion.
- * Actual device drivers should use blk_end_request instead.
- *
- * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
- * %false return from this function.
- *
- * Return:
- * %false - this request doesn't have any more data
- * %true - this request has more data
- **/
-bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
-{
- int total_bytes;
-
- if (!req->bio)
- return false;
-
- trace_block_rq_complete(req->q, req);
+ struct bio *bio;
+ int ret = 0;
/*
- * For fs requests, rq is just carrier of independent bio's
- * and each partial completion should be handled separately.
- * Reset per-request error on each partial completion.
+ * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
+ * point to a freshly allocated bio at this point. If that happens
+ * we have a few cases to consider:
*
- * TODO: tj: This is too subtle. It would be better to let
- * low level drivers do what they see fit.
- */
- if (req->cmd_type == REQ_TYPE_FS)
- req->errors = 0;
-
- if (error && req->cmd_type == REQ_TYPE_FS &&
- !(req->cmd_flags & REQ_QUIET)) {
- char *error_type;
-
- switch (error) {
- case -ENOLINK:
- error_type = "recoverable transport";
- break;
- case -EREMOTEIO:
- error_type = "critical target";
- break;
- case -EBADE:
- error_type = "critical nexus";
- break;
- case -ETIMEDOUT:
- error_type = "timeout";
- break;
- case -EIO:
- default:
- error_type = "I/O";
- break;
- }
- printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
- error_type, req->rq_disk ?
- req->rq_disk->disk_name : "?",
- (unsigned long long)blk_rq_pos(req));
-
- }
-
- blk_account_io_completion(req, nr_bytes);
-
- total_bytes = 0;
- while (req->bio) {
- struct bio *bio = req->bio;
- unsigned bio_bytes = min(bio->bi_size, nr_bytes);
-
- if (bio_bytes == bio->bi_size)
- req->bio = bio->bi_next;
-
- req_bio_endio(req, bio, bio_bytes, error);
-
- total_bytes += bio_bytes;
- nr_bytes -= bio_bytes;
-
- if (!nr_bytes)
- break;
- }
-
- /*
- * completely done
- */
- if (!req->bio) {
- /*
- * Reset counters so that the request stacking driver
- * can find how many bytes remain in the request
- * later.
- */
- req->__data_len = 0;
- return false;
- }
-
- req->__data_len -= total_bytes;
- req->buffer = bio_data(req->bio);
-
- /* update sector only for requests with clear definition of sector */
- if (req->cmd_type == REQ_TYPE_FS)
- req->__sector += total_bytes >> 9;
-
- /* mixed attributes always follow the first bio */
- if (req->cmd_flags & REQ_MIXED_MERGE) {
- req->cmd_flags &= ~REQ_FAILFAST_MASK;
- req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
- }
-
- /*
- * If total number of sectors is less than the first segment
- * size, something has gone terribly wrong.
+ * 1) the bio is being initialized and bi_bdev is NULL. We can just
+ * simply nothing in this case
+ * 2) the bio points to a not poll enabled device. bio_poll will catch
+ * this and return 0
+ * 3) the bio points to a poll capable device, including but not
+ * limited to the one that the original bio pointed to. In this
+ * case we will call into the actual poll method and poll for I/O,
+ * even if we don't need to, but it won't cause harm either.
+ *
+ * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
+ * is still allocated. Because partitions hold a reference to the whole
+ * device bdev and thus disk, the disk is also still valid. Grabbing
+ * a reference to the queue in bio_poll() ensures the hctxs and requests
+ * are still valid as well.
*/
- if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
- blk_dump_rq_flags(req, "request botched");
- req->__data_len = blk_rq_cur_bytes(req);
- }
-
- /* recalculate the number of segments */
- blk_recalc_rq_segments(req);
-
- return true;
-}
-EXPORT_SYMBOL_GPL(blk_update_request);
-
-static bool blk_update_bidi_request(struct request *rq, int error,
- unsigned int nr_bytes,
- unsigned int bidi_bytes)
-{
- if (blk_update_request(rq, error, nr_bytes))
- return true;
-
- /* Bidi request must be completed as a whole */
- if (unlikely(blk_bidi_rq(rq)) &&
- blk_update_request(rq->next_rq, error, bidi_bytes))
- return true;
-
- if (blk_queue_add_random(rq->q))
- add_disk_randomness(rq->rq_disk);
-
- return false;
-}
-
-/**
- * blk_unprep_request - unprepare a request
- * @req: the request
- *
- * This function makes a request ready for complete resubmission (or
- * completion). It happens only after all error handling is complete,
- * so represents the appropriate moment to deallocate any resources
- * that were allocated to the request in the prep_rq_fn. The queue
- * lock is held when calling this.
- */
-void blk_unprep_request(struct request *req)
-{
- struct request_queue *q = req->q;
+ rcu_read_lock();
+ bio = READ_ONCE(kiocb->private);
+ if (bio)
+ ret = bio_poll(bio, iob, flags);
+ rcu_read_unlock();
- req->cmd_flags &= ~REQ_DONTPREP;
- if (q->unprep_rq_fn)
- q->unprep_rq_fn(q, req);
+ return ret;
}
-EXPORT_SYMBOL_GPL(blk_unprep_request);
+EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
-/*
- * queue lock must be held
- */
-static void blk_finish_request(struct request *req, int error)
+void update_io_ticks(struct block_device *part, unsigned long now, bool end)
{
- if (blk_rq_tagged(req))
- blk_queue_end_tag(req->q, req);
-
- BUG_ON(blk_queued_rq(req));
-
- if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
- laptop_io_completion(&req->q->backing_dev_info);
-
- blk_delete_timer(req);
-
- if (req->cmd_flags & REQ_DONTPREP)
- blk_unprep_request(req);
+ unsigned long stamp;
+again:
+ stamp = READ_ONCE(part->bd_stamp);
+ if (unlikely(time_after(now, stamp)) &&
+ likely(try_cmpxchg(&part->bd_stamp, &stamp, now)) &&
+ (end || bdev_count_inflight(part)))
+ __part_stat_add(part, io_ticks, now - stamp);
-
- blk_account_io_done(req);
-
- if (req->end_io)
- req->end_io(req, error);
- else {
- if (blk_bidi_rq(req))
- __blk_put_request(req->next_rq->q, req->next_rq);
-
- __blk_put_request(req->q, req);
+ if (bdev_is_partition(part)) {
+ part = bdev_whole(part);
+ goto again;
}
}
-/**
- * blk_end_bidi_request - Complete a bidi request
- * @rq: the request to complete
- * @error: %0 for success, < %0 for error
- * @nr_bytes: number of bytes to complete @rq
- * @bidi_bytes: number of bytes to complete @rq->next_rq
- *
- * Description:
- * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
- * Drivers that supports bidi can safely call this member for any
- * type of request, bidi or uni. In the later case @bidi_bytes is
- * just ignored.
- *
- * Return:
- * %false - we are done with this request
- * %true - still buffers pending for this request
- **/
-static bool blk_end_bidi_request(struct request *rq, int error,
- unsigned int nr_bytes, unsigned int bidi_bytes)
-{
- struct request_queue *q = rq->q;
- unsigned long flags;
-
- if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
- return true;
-
- spin_lock_irqsave(q->queue_lock, flags);
- blk_finish_request(rq, error);
- spin_unlock_irqrestore(q->queue_lock, flags);
-
- return false;
-}
-
-/**
- * __blk_end_bidi_request - Complete a bidi request with queue lock held
- * @rq: the request to complete
- * @error: %0 for success, < %0 for error
- * @nr_bytes: number of bytes to complete @rq
- * @bidi_bytes: number of bytes to complete @rq->next_rq
- *
- * Description:
- * Identical to blk_end_bidi_request() except that queue lock is
- * assumed to be locked on entry and remains so on return.
- *
- * Return:
- * %false - we are done with this request
- * %true - still buffers pending for this request
- **/
-bool __blk_end_bidi_request(struct request *rq, int error,
- unsigned int nr_bytes, unsigned int bidi_bytes)
-{
- if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
- return true;
-
- blk_finish_request(rq, error);
-
- return false;
-}
-
-/**
- * blk_end_request - Helper function for drivers to complete the request.
- * @rq: the request being processed
- * @error: %0 for success, < %0 for error
- * @nr_bytes: number of bytes to complete
- *
- * Description:
- * Ends I/O on a number of bytes attached to @rq.
- * If @rq has leftover, sets it up for the next range of segments.
- *
- * Return:
- * %false - we are done with this request
- * %true - still buffers pending for this request
- **/
-bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
-{
- return blk_end_bidi_request(rq, error, nr_bytes, 0);
-}
-EXPORT_SYMBOL(blk_end_request);
-
-/**
- * blk_end_request_all - Helper function for drives to finish the request.
- * @rq: the request to finish
- * @error: %0 for success, < %0 for error
- *
- * Description:
- * Completely finish @rq.
- */
-void blk_end_request_all(struct request *rq, int error)
-{
- bool pending;
- unsigned int bidi_bytes = 0;
-
- if (unlikely(blk_bidi_rq(rq)))
- bidi_bytes = blk_rq_bytes(rq->next_rq);
-
- pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
- BUG_ON(pending);
-}
-EXPORT_SYMBOL(blk_end_request_all);
-
-/**
- * blk_end_request_cur - Helper function to finish the current request chunk.
- * @rq: the request to finish the current chunk for
- * @error: %0 for success, < %0 for error
- *
- * Description:
- * Complete the current consecutively mapped chunk from @rq.
- *
- * Return:
- * %false - we are done with this request
- * %true - still buffers pending for this request
- */
-bool blk_end_request_cur(struct request *rq, int error)
+unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
+ unsigned long start_time)
{
- return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
-}
-EXPORT_SYMBOL(blk_end_request_cur);
-
-/**
- * blk_end_request_err - Finish a request till the next failure boundary.
- * @rq: the request to finish till the next failure boundary for
- * @error: must be negative errno
- *
- * Description:
- * Complete @rq till the next failure boundary.
- *
- * Return:
- * %false - we are done with this request
- * %true - still buffers pending for this request
- */
-bool blk_end_request_err(struct request *rq, int error)
-{
- WARN_ON(error >= 0);
- return blk_end_request(rq, error, blk_rq_err_bytes(rq));
-}
-EXPORT_SYMBOL_GPL(blk_end_request_err);
+ part_stat_lock();
+ update_io_ticks(bdev, start_time, false);
+ part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
+ part_stat_unlock();
-/**
- * __blk_end_request - Helper function for drivers to complete the request.
- * @rq: the request being processed
- * @error: %0 for success, < %0 for error
- * @nr_bytes: number of bytes to complete
- *
- * Description:
- * Must be called with queue lock held unlike blk_end_request().
- *
- * Return:
- * %false - we are done with this request
- * %true - still buffers pending for this request
- **/
-bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
-{
- return __blk_end_bidi_request(rq, error, nr_bytes, 0);
+ return start_time;
}
-EXPORT_SYMBOL(__blk_end_request);
+EXPORT_SYMBOL(bdev_start_io_acct);
/**
- * __blk_end_request_all - Helper function for drives to finish the request.
- * @rq: the request to finish
- * @error: %0 for success, < %0 for error
+ * bio_start_io_acct - start I/O accounting for bio based drivers
+ * @bio: bio to start account for
*
- * Description:
- * Completely finish @rq. Must be called with queue lock held.
+ * Returns the start time that should be passed back to bio_end_io_acct().
*/
-void __blk_end_request_all(struct request *rq, int error)
+unsigned long bio_start_io_acct(struct bio *bio)
{
- bool pending;
- unsigned int bidi_bytes = 0;
-
- if (unlikely(blk_bidi_rq(rq)))
- bidi_bytes = blk_rq_bytes(rq->next_rq);
-
- pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
- BUG_ON(pending);
+ return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
}
-EXPORT_SYMBOL(__blk_end_request_all);
+EXPORT_SYMBOL_GPL(bio_start_io_acct);
-/**
- * __blk_end_request_cur - Helper function to finish the current request chunk.
- * @rq: the request to finish the current chunk for
- * @error: %0 for success, < %0 for error
- *
- * Description:
- * Complete the current consecutively mapped chunk from @rq. Must
- * be called with queue lock held.
- *
- * Return:
- * %false - we are done with this request
- * %true - still buffers pending for this request
- */
-bool __blk_end_request_cur(struct request *rq, int error)
+void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
+ unsigned int sectors, unsigned long start_time)
{
- return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
-}
-EXPORT_SYMBOL(__blk_end_request_cur);
+ const int sgrp = op_stat_group(op);
+ unsigned long now = READ_ONCE(jiffies);
+ unsigned long duration = now - start_time;
-/**
- * __blk_end_request_err - Finish a request till the next failure boundary.
- * @rq: the request to finish till the next failure boundary for
- * @error: must be negative errno
- *
- * Description:
- * Complete @rq till the next failure boundary. Must be called
- * with queue lock held.
- *
- * Return:
- * %false - we are done with this request
- * %true - still buffers pending for this request
- */
-bool __blk_end_request_err(struct request *rq, int error)
-{
- WARN_ON(error >= 0);
- return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
-}
-EXPORT_SYMBOL_GPL(__blk_end_request_err);
-
-void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
- struct bio *bio)
-{
- /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
- rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
-
- if (bio_has_data(bio)) {
- rq->nr_phys_segments = bio_phys_segments(q, bio);
- rq->buffer = bio_data(bio);
- }
- rq->__data_len = bio->bi_size;
- rq->bio = rq->biotail = bio;
-
- if (bio->bi_bdev)
- rq->rq_disk = bio->bi_bdev->bd_disk;
+ part_stat_lock();
+ update_io_ticks(bdev, now, true);
+ part_stat_inc(bdev, ios[sgrp]);
+ part_stat_add(bdev, sectors[sgrp], sectors);
+ part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
+ part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
+ part_stat_unlock();
}
+EXPORT_SYMBOL(bdev_end_io_acct);
-#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
-/**
- * rq_flush_dcache_pages - Helper function to flush all pages in a request
- * @rq: the request to be flushed
- *
- * Description:
- * Flush all pages in @rq.
- */
-void rq_flush_dcache_pages(struct request *rq)
+void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
+ struct block_device *orig_bdev)
{
- struct req_iterator iter;
- struct bio_vec *bvec;
-
- rq_for_each_segment(bvec, rq, iter)
- flush_dcache_page(bvec->bv_page);
+ bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
}
-EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
-#endif
+EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
/**
* blk_lld_busy - Check if underlying low-level drivers of a device are busy
@@ -2733,127 +1101,66 @@ EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
*/
int blk_lld_busy(struct request_queue *q)
{
- if (q->lld_busy_fn)
- return q->lld_busy_fn(q);
+ if (queue_is_mq(q) && q->mq_ops->busy)
+ return q->mq_ops->busy(q);
return 0;
}
EXPORT_SYMBOL_GPL(blk_lld_busy);
-/**
- * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
- * @rq: the clone request to be cleaned up
- *
- * Description:
- * Free all bios in @rq for a cloned request.
- */
-void blk_rq_unprep_clone(struct request *rq)
+int kblockd_schedule_work(struct work_struct *work)
{
- struct bio *bio;
-
- while ((bio = rq->bio) != NULL) {
- rq->bio = bio->bi_next;
-
- bio_put(bio);
- }
+ return queue_work(kblockd_workqueue, work);
}
-EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
+EXPORT_SYMBOL(kblockd_schedule_work);
-/*
- * Copy attributes of the original request to the clone request.
- * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
- */
-static void __blk_rq_prep_clone(struct request *dst, struct request *src)
+int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
+ unsigned long delay)
{
- dst->cpu = src->cpu;
- dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
- dst->cmd_type = src->cmd_type;
- dst->__sector = blk_rq_pos(src);
- dst->__data_len = blk_rq_bytes(src);
- dst->nr_phys_segments = src->nr_phys_segments;
- dst->ioprio = src->ioprio;
- dst->extra_len = src->extra_len;
+ return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
}
+EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
-/**
- * blk_rq_prep_clone - Helper function to setup clone request
- * @rq: the request to be setup
- * @rq_src: original request to be cloned
- * @bs: bio_set that bios for clone are allocated from
- * @gfp_mask: memory allocation mask for bio
- * @bio_ctr: setup function to be called for each clone bio.
- * Returns %0 for success, non %0 for failure.
- * @data: private data to be passed to @bio_ctr
- *
- * Description:
- * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
- * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
- * are not copied, and copying such parts is the caller's responsibility.
- * Also, pages which the original bios are pointing to are not copied
- * and the cloned bios just point same pages.
- * So cloned bios must be completed before original bios, which means
- * the caller must complete @rq before @rq_src.
- */
-int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
- struct bio_set *bs, gfp_t gfp_mask,
- int (*bio_ctr)(struct bio *, struct bio *, void *),
- void *data)
+void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
{
- struct bio *bio, *bio_src;
-
- if (!bs)
- bs = fs_bio_set;
-
- blk_rq_init(NULL, rq);
-
- __rq_for_each_bio(bio_src, rq_src) {
- bio = bio_clone_bioset(bio_src, gfp_mask, bs);
- if (!bio)
- goto free_and_out;
-
- if (bio_ctr && bio_ctr(bio, bio_src, data))
- goto free_and_out;
-
- if (rq->bio) {
- rq->biotail->bi_next = bio;
- rq->biotail = bio;
- } else
- rq->bio = rq->biotail = bio;
- }
-
- __blk_rq_prep_clone(rq, rq_src);
-
- return 0;
-
-free_and_out:
- if (bio)
- bio_put(bio);
- blk_rq_unprep_clone(rq);
+ struct task_struct *tsk = current;
- return -ENOMEM;
-}
-EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
+ /*
+ * If this is a nested plug, don't actually assign it.
+ */
+ if (tsk->plug)
+ return;
-int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
-{
- return queue_work(kblockd_workqueue, work);
-}
-EXPORT_SYMBOL(kblockd_schedule_work);
+ plug->cur_ktime = 0;
+ rq_list_init(&plug->mq_list);
+ rq_list_init(&plug->cached_rqs);
+ plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
+ plug->rq_count = 0;
+ plug->multiple_queues = false;
+ plug->has_elevator = false;
+ INIT_LIST_HEAD(&plug->cb_list);
-int kblockd_schedule_delayed_work(struct request_queue *q,
- struct delayed_work *dwork, unsigned long delay)
-{
- return queue_delayed_work(kblockd_workqueue, dwork, delay);
+ /*
+ * Store ordering should not be needed here, since a potential
+ * preempt will imply a full memory barrier
+ */
+ tsk->plug = plug;
}
-EXPORT_SYMBOL(kblockd_schedule_delayed_work);
-
-#define PLUG_MAGIC 0x91827364
/**
* blk_start_plug - initialize blk_plug and track it inside the task_struct
* @plug: The &struct blk_plug that needs to be initialized
*
* Description:
+ * blk_start_plug() indicates to the block layer an intent by the caller
+ * to submit multiple I/O requests in a batch. The block layer may use
+ * this hint to defer submitting I/Os from the caller until blk_finish_plug()
+ * is called. However, the block layer may choose to submit requests
+ * before a call to blk_finish_plug() if the number of queued I/Os
+ * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
+ * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
+ * the task schedules (see below).
+ *
* Tracking blk_plug inside the task_struct will help with auto-flushing the
* pending I/O should the task end up blocking between blk_start_plug() and
* blk_finish_plug(). This is important from a performance perspective, but
@@ -2865,54 +1172,10 @@ EXPORT_SYMBOL(kblockd_schedule_delayed_work);
*/
void blk_start_plug(struct blk_plug *plug)
{
- struct task_struct *tsk = current;
-
- plug->magic = PLUG_MAGIC;
- INIT_LIST_HEAD(&plug->list);
- INIT_LIST_HEAD(&plug->cb_list);
-
- /*
- * If this is a nested plug, don't actually assign it. It will be
- * flushed on its own.
- */
- if (!tsk->plug) {
- /*
- * Store ordering should not be needed here, since a potential
- * preempt will imply a full memory barrier
- */
- tsk->plug = plug;
- }
+ blk_start_plug_nr_ios(plug, 1);
}
EXPORT_SYMBOL(blk_start_plug);
-static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
-{
- struct request *rqa = container_of(a, struct request, queuelist);
- struct request *rqb = container_of(b, struct request, queuelist);
-
- return !(rqa->q < rqb->q ||
- (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
-}
-
-/*
- * If 'from_schedule' is true, then postpone the dispatch of requests
- * until a safe kblockd context. We due this to avoid accidental big
- * additional stack usage in driver dispatch, in places where the originally
- * plugger did not intend it.
- */
-static void queue_unplugged(struct request_queue *q, unsigned int depth,
- bool from_schedule)
- __releases(q->queue_lock)
-{
- trace_block_unplug(q, depth, !from_schedule);
-
- if (from_schedule)
- blk_run_queue_async(q);
- else
- __blk_run_queue(q);
- spin_unlock(q->queue_lock);
-}
-
static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
{
LIST_HEAD(callbacks);
@@ -2955,244 +1218,72 @@ struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
}
EXPORT_SYMBOL(blk_check_plugged);
-void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
+void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
{
- struct request_queue *q;
- unsigned long flags;
- struct request *rq;
- LIST_HEAD(list);
- unsigned int depth;
-
- BUG_ON(plug->magic != PLUG_MAGIC);
-
- flush_plug_callbacks(plug, from_schedule);
- if (list_empty(&plug->list))
- return;
-
- list_splice_init(&plug->list, &list);
-
- list_sort(NULL, &list, plug_rq_cmp);
-
- q = NULL;
- depth = 0;
-
- /*
- * Save and disable interrupts here, to avoid doing it for every
- * queue lock we have to take.
- */
- local_irq_save(flags);
- while (!list_empty(&list)) {
- rq = list_entry_rq(list.next);
- list_del_init(&rq->queuelist);
- BUG_ON(!rq->q);
- if (rq->q != q) {
- /*
- * This drops the queue lock
- */
- if (q)
- queue_unplugged(q, depth, from_schedule);
- q = rq->q;
- depth = 0;
- spin_lock(q->queue_lock);
- }
-
- /*
- * Short-circuit if @q is dead
- */
- if (unlikely(blk_queue_dying(q))) {
- __blk_end_request_all(rq, -ENODEV);
- continue;
- }
-
- /*
- * rq is already accounted, so use raw insert
- */
- if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
- __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
- else
- __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
-
- depth++;
- }
-
+ if (!list_empty(&plug->cb_list))
+ flush_plug_callbacks(plug, from_schedule);
+ blk_mq_flush_plug_list(plug, from_schedule);
/*
- * This drops the queue lock
+ * Unconditionally flush out cached requests, even if the unplug
+ * event came from schedule. Since we know hold references to the
+ * queue for cached requests, we don't want a blocked task holding
+ * up a queue freeze/quiesce event.
*/
- if (q)
- queue_unplugged(q, depth, from_schedule);
-
- local_irq_restore(flags);
-}
-
-void blk_finish_plug(struct blk_plug *plug)
-{
- blk_flush_plug_list(plug, false);
-
- if (plug == current->plug)
- current->plug = NULL;
-}
-EXPORT_SYMBOL(blk_finish_plug);
+ if (unlikely(!rq_list_empty(&plug->cached_rqs)))
+ blk_mq_free_plug_rqs(plug);
-#ifdef CONFIG_PM_RUNTIME
-/**
- * blk_pm_runtime_init - Block layer runtime PM initialization routine
- * @q: the queue of the device
- * @dev: the device the queue belongs to
- *
- * Description:
- * Initialize runtime-PM-related fields for @q and start auto suspend for
- * @dev. Drivers that want to take advantage of request-based runtime PM
- * should call this function after @dev has been initialized, and its
- * request queue @q has been allocated, and runtime PM for it can not happen
- * yet(either due to disabled/forbidden or its usage_count > 0). In most
- * cases, driver should call this function before any I/O has taken place.
- *
- * This function takes care of setting up using auto suspend for the device,
- * the autosuspend delay is set to -1 to make runtime suspend impossible
- * until an updated value is either set by user or by driver. Drivers do
- * not need to touch other autosuspend settings.
- *
- * The block layer runtime PM is request based, so only works for drivers
- * that use request as their IO unit instead of those directly use bio's.
- */
-void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
-{
- q->dev = dev;
- q->rpm_status = RPM_ACTIVE;
- pm_runtime_set_autosuspend_delay(q->dev, -1);
- pm_runtime_use_autosuspend(q->dev);
+ plug->cur_ktime = 0;
+ current->flags &= ~PF_BLOCK_TS;
}
-EXPORT_SYMBOL(blk_pm_runtime_init);
/**
- * blk_pre_runtime_suspend - Pre runtime suspend check
- * @q: the queue of the device
+ * blk_finish_plug - mark the end of a batch of submitted I/O
+ * @plug: The &struct blk_plug passed to blk_start_plug()
*
* Description:
- * This function will check if runtime suspend is allowed for the device
- * by examining if there are any requests pending in the queue. If there
- * are requests pending, the device can not be runtime suspended; otherwise,
- * the queue's status will be updated to SUSPENDING and the driver can
- * proceed to suspend the device.
- *
- * For the not allowed case, we mark last busy for the device so that
- * runtime PM core will try to autosuspend it some time later.
- *
- * This function should be called near the start of the device's
- * runtime_suspend callback.
- *
- * Return:
- * 0 - OK to runtime suspend the device
- * -EBUSY - Device should not be runtime suspended
+ * Indicate that a batch of I/O submissions is complete. This function
+ * must be paired with an initial call to blk_start_plug(). The intent
+ * is to allow the block layer to optimize I/O submission. See the
+ * documentation for blk_start_plug() for more information.
*/
-int blk_pre_runtime_suspend(struct request_queue *q)
-{
- int ret = 0;
-
- spin_lock_irq(q->queue_lock);
- if (q->nr_pending) {
- ret = -EBUSY;
- pm_runtime_mark_last_busy(q->dev);
- } else {
- q->rpm_status = RPM_SUSPENDING;
- }
- spin_unlock_irq(q->queue_lock);
- return ret;
-}
-EXPORT_SYMBOL(blk_pre_runtime_suspend);
-
-/**
- * blk_post_runtime_suspend - Post runtime suspend processing
- * @q: the queue of the device
- * @err: return value of the device's runtime_suspend function
- *
- * Description:
- * Update the queue's runtime status according to the return value of the
- * device's runtime suspend function and mark last busy for the device so
- * that PM core will try to auto suspend the device at a later time.
- *
- * This function should be called near the end of the device's
- * runtime_suspend callback.
- */
-void blk_post_runtime_suspend(struct request_queue *q, int err)
+void blk_finish_plug(struct blk_plug *plug)
{
- spin_lock_irq(q->queue_lock);
- if (!err) {
- q->rpm_status = RPM_SUSPENDED;
- } else {
- q->rpm_status = RPM_ACTIVE;
- pm_runtime_mark_last_busy(q->dev);
+ if (plug == current->plug) {
+ __blk_flush_plug(plug, false);
+ current->plug = NULL;
}
- spin_unlock_irq(q->queue_lock);
}
-EXPORT_SYMBOL(blk_post_runtime_suspend);
+EXPORT_SYMBOL(blk_finish_plug);
-/**
- * blk_pre_runtime_resume - Pre runtime resume processing
- * @q: the queue of the device
- *
- * Description:
- * Update the queue's runtime status to RESUMING in preparation for the
- * runtime resume of the device.
- *
- * This function should be called near the start of the device's
- * runtime_resume callback.
- */
-void blk_pre_runtime_resume(struct request_queue *q)
+void blk_io_schedule(void)
{
- spin_lock_irq(q->queue_lock);
- q->rpm_status = RPM_RESUMING;
- spin_unlock_irq(q->queue_lock);
-}
-EXPORT_SYMBOL(blk_pre_runtime_resume);
+ /* Prevent hang_check timer from firing at us during very long I/O */
+ unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
-/**
- * blk_post_runtime_resume - Post runtime resume processing
- * @q: the queue of the device
- * @err: return value of the device's runtime_resume function
- *
- * Description:
- * Update the queue's runtime status according to the return value of the
- * device's runtime_resume function. If it is successfully resumed, process
- * the requests that are queued into the device's queue when it is resuming
- * and then mark last busy and initiate autosuspend for it.
- *
- * This function should be called near the end of the device's
- * runtime_resume callback.
- */
-void blk_post_runtime_resume(struct request_queue *q, int err)
-{
- spin_lock_irq(q->queue_lock);
- if (!err) {
- q->rpm_status = RPM_ACTIVE;
- __blk_run_queue(q);
- pm_runtime_mark_last_busy(q->dev);
- pm_request_autosuspend(q->dev);
- } else {
- q->rpm_status = RPM_SUSPENDED;
- }
- spin_unlock_irq(q->queue_lock);
+ if (timeout)
+ io_schedule_timeout(timeout);
+ else
+ io_schedule();
}
-EXPORT_SYMBOL(blk_post_runtime_resume);
-#endif
+EXPORT_SYMBOL_GPL(blk_io_schedule);
int __init blk_dev_init(void)
{
- BUILD_BUG_ON(__REQ_NR_BITS > 8 *
- sizeof(((struct request *)0)->cmd_flags));
+ BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
+ BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
+ sizeof_field(struct request, cmd_flags));
+ BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
+ sizeof_field(struct bio, bi_opf));
/* used for unplugging and affects IO latency/throughput - HIGHPRI */
kblockd_workqueue = alloc_workqueue("kblockd",
- WQ_MEM_RECLAIM | WQ_HIGHPRI |
- WQ_POWER_EFFICIENT, 0);
+ WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
if (!kblockd_workqueue)
panic("Failed to create kblockd\n");
- request_cachep = kmem_cache_create("blkdev_requests",
- sizeof(struct request), 0, SLAB_PANIC, NULL);
+ blk_requestq_cachep = KMEM_CACHE(request_queue, SLAB_PANIC);
- blk_requestq_cachep = kmem_cache_create("blkdev_queue",
- sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
+ blk_debugfs_root = debugfs_create_dir("block", NULL);
return 0;
}